Plan of the Lecture

» Review: state-space models of systems; linearization

» Today’s topic: linear systems and their dynamic response



Plan of the Lecture

» Review: state-space models of systems; linearization

» Today’s topic: linear systems and their dynamic response

Goal: develop a methodology for characterizing the output of a
given system for a given input.



Plan of the Lecture

» Review: state-space models of systems; linearization

» Today’s topic: linear systems and their dynamic response

Goal: develop a methodology for characterizing the output of a
given system for a given input.

Reading: FPE, Section 3.1, Appendix A.
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State-Space Models
it = Ax + Bu
y=Cx

where:
» 2(t) € R™ is the state at time ¢
» u(t) € R™ is the input at time ¢
» y(t) € RP is the output at time ¢
and
» A e R™" is the dynamics matrix
» B e R™™ is the control matrix

» C € RP*™ ig the sensor matrix
How do we determine the output y for a given input u?

Reminder: we will only consider single-input, single-output (SISO)
systems, i.e., u(t),y(t) € R for all times ¢ of interest. (m =p=1)
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Impulse Response
(Review from ECE 210)

T = Azxr + Bu
y=Cx

u

Unit impulse (or Dirac’s d-function):

1. 6(t) =0forallt #0
2. d(t)dt =1 for all a > 0

—a

It is useful to think of §(¢) as a limit of impulses of unit area:

area = 1 .
1/e as € — 0, the impulse gets taller
] (1/e = +00), but the area
! ¢ under its graph remains at 1
0 €
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Impulse Response

T = Ax + Bu
y=Cx

—Y

zero initial condition: z(0) =0
Consider the input
u(t) =0(t —7) unit impulse applied at t = 7
The system is linear and time-invariant (LTI), with zero I.C.:

2(0)=0; LTI system

u(t) =0(t—7) > y(t) =h(t—1)

The function h is the impulse response of the system.
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Impulse Response

T = Ax + Bu
y=Cx

—Y

zero initial condition: z(0) =0

2(0)=0; LTI system

u(t) =0(t — 1) y(t) = h(t — 1)
Questions to consider:

1. If we know h, how can we find the system’s response to
other (arbitrary) inputs?

2. If we don’t know h, how can we determine it?

We will start with Question 1.
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Question: If we know h, how can we find the system’s response
to other (arbitrary) inputs?

Recall the sifting property of the §-function: for any function f
which is “well-behaved” at t = 7,

/ " F0)6(t - r)dt = f(r)

— any reasonably reqular function can be represented as an
integral of impulses!!
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Question: If we know h, how can we find the system’s response
to other (arbitrary) inputs?

By the sifting property, for a general input u(t) we can write

o0

u(t) = / u(r)o(t — 7)dr.
—00

Now we recall the superposition principle: the response of a

linear system to a sum (or integral) of inputs is the sum (or
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T = Ax + Bu
y=Cx

—Y

zero initial condition: z(0) =0

The superposition principle: the response of a linear system to
a sum (or integral) of inputs is the sum (or integral) of the
individual responses to these inputs.

oo

u(t) = /Oo W)t — e — y(t) = / w(r) h(t — ) dr

—0o0 —0o0
response to

8(t — 1)

— the integral that defines y(¢) is a convolution of w and h.
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T = Az + Bu
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—Y

zero initial condition: z(0) =0

Conclusion so far: for zero initial conditions, the output
is the convolution of the input with the system impulse
response:

o0

y(t) = u(t) x h(t) = h(t) xu(t) = / u(T)h(t — 7)dr

—0o0

Q: Does this formula provide a practical way of computing the
output y for a given input u?

A: Not directly (computing convolutions is not exactly
pleasant), but ...we can use Laplace transforms.
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Laplace Transforms and the Transfer Function
Reminder: the two-sided Laplace transform of a function f(t) is

F(s) = /_OO f(r)e *dr, seC

time domain frequency domain
u(t)  U(s)
h(t) — H(s)
y(t)  Y(s)

convolution in time domain <—  multiplication in frequency domain
y(t) =h(t)xu(t) <«— Y(s)=H(s)U(s)
The Laplace transform of the impulse response
o0
H(s) = / h(r)e*"dr,
—0o0

is called the transfer function of the system.
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Laplace Transforms and the Transfer Function

Y(s) = H(s)U(s),  where H(s) = / h(r)e*dr
Limits of integration:

> We only deal with causal systems — output at time ¢ is
not affected by inputs at future times ¢’ > ¢

» If the system is causal, then h(t) =0 for ¢t < 0 — h(t) is
the response at time ¢ to a unit impulse at time 0

» We will take all other possible inputs (not just impulses) to
be 0 for t < 0, and work with one-sided Laplace transforms:

y(t) = /000 u(T)h(t — 7)dT
H(s) = /000 h(r)e*"dr
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Laplace Transforms and the Transfer Function

Y(s)=H(s)U(s), where H(s) = /OO h(r)e *"dr

— 00

Given u(t), we can find U(s) using tables of Laplace transforms
or MATLAB. But how do we know h(t) [or H(s)]?

» Suppose we have a state-space model:

T = Ax + Bu
y=Cx

In this case, we have an exact formula:

H(s)=C(Is— A)"'B (matrix inversion)
h(t) = CeB, t >0~ (matrix exponential)

— will not encounter this until much later in the semester.
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Laplace Transforms and the Transfer Function

Y(s) = H(s)U(s),  where H(s) / " hr)edr

—0o0

» So, how should we compute H(s) in practice?

Try injecting some specific inputs and see what happens at
the output.

Let’s try u(t) = e%t,t > 0 (s is some fixed number)

e

h(T)u(t — 7)dr (because u* h = hxu)
h(T)es(t_T)dT

= eSt/ h(r)e *Tdr
0
= e H(s)

— 50, u(t) = e is multiplied by H(s) to give the output.



Example

Y= —ay +u (think y = x, full measurement)

/\
\_/

(always assume u(t) = 0 for ¢ < 0)



Example

Y= —ay +u (think y = x, full measurement)
u(t) = (always assume u(t) = 0 for t < 0)
y(t) = H(s)e — what is H?



Example

Y= —ay +u (think y = z, full measurement)

u(t)

(always assume u(t) = 0 for ¢ < 0)
y(t) = H(s)e — what is H?
Let’s use the system model:

y(t) = % (H(s)e™) = sH(s)e™



Example

Y= —ay +u (think y = z, full measurement)

u(t)

(always assume u(t) = 0 for ¢ < 0)

y(t) = H(s)e — what is H?
Let’s use the system model:

y(t) = % (H(s)e™) = sH(s)e™

Substitute into §y = —ay + w:

sH(s)e™ = —aH(s)e™ + e (Vs;t > 0)



Example

Y= —ay +u (think y = z, full measurement)

u(t)

(always assume u(t) = 0 for ¢ < 0)

y(t) = H(s)e — what is H?
Let’s use the system model:

y(t) = % (H(s)e™) = sH(s)e™

Substitute into §y = —ay + w:

sH(s)e* = —aH(s)e’ + &7 (Vs;t>0)



Example

Y= —ay +u (think y = z, full measurement)

u(t)

(always assume u(t) = 0 for ¢ < 0)
y(t) = H(s)e — what is H?
Let’s use the system model:

y(t) = % (H(s)e™) = sH(s)e™

Substitute into §y = —ay + w:

sH(s)e* = —aH(s)e’ + &7 (Vs;t>0)
sH(s) = —aH(s)+ 1



Example

Y= —ay +u (think y = z, full measurement)

u(t)

(always assume u(t) = 0 for ¢ < 0)
y(t) = H(s)e™ — what is H?
Let’s use the system model:
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Example (continued)

y=—ay+u
1
H =
(s) s+a

Now we can fund the impulse response h(t) by taking the
inverse Laplace transform — from tables,

—at t>0
ht)y=4°  '=
0, t<0
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u(t) = et >0 z(0)=0; LTI system , y(t) = GStH(s)

Back to our two questions:
1. If we know h, how can we find y for a given u?

2. If we don’t know h, how can we determine it?

We have answered Question 1. Now let’s turn to Question 2.
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2. If we don’t know h, how can we determine it?

We have answered Question 1. Now let’s turn to Question 2.

One idea: inject the input u(t) = e, determine y(¢), compute

repeat for all s of interest.



Determining the Impulse Response

h

u

U,(t) _ 68t7 £>0 2(0)=0; LTI system N y(t) _ GStH(S)

Back to our two questions:
1. If we know h, how can we find y for a given u?

2. If we don’t know h, how can we determine it?

We have answered Question 1. Now let’s turn to Question 2.

One idea: inject the input u(t) = e, determine y(¢), compute

repeat for all s of interest. : Is this a good idea?
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Determining the Impulse Response

u(t) = e h y(t) = e**H(s)

y(t)

compute H(s) = o) repeat for as many values of s as
U

necessary

Q: Is this likely to work in practice?

A: No — e blows up very quickly if s > 0, and decays to 0
very quickly if s < 0.

So we need sustained, bounded signals as inputs.

This is possible if we allow s to take on complex values.
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s=_a ,+7 _b

~~~ ~~~
real imaginary
part part
Im(s)
bLo_ S
(L
X‘o :
P ! .
o T sin @
% |
< |
¥ !
0 rcosy a

Re(s)

— rectangular form

Polar form:

s =rel?

r=|s| = vVa?+b?
(magnitude)

©=/s=tan ! <b>
a

(phase)



Review: Complex Numbers

s=_a ,+ ] b — rectangular form
real imaginary
part part
Polar form:
Im(s)
s s =rel?
bl .

9 ! r=|s| = Va2 +b?

x ! .

Ris ' rsing (magnitude)

% | (b
) © w p=4s=tan " | —
1 Re(s a

0 rcose a (5) (phase)

Euler’s formula: €/¥ = cos ¢ + jsin ¢
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Frequency Response

U h ——Y

u(t) = Acos(wt) A — amplitude; w — (angular) frequency, rad/s
From Euler’s formula:
A, .
A t) = = Jwt —jwt
cos(wt) 5 (e + e

By linearity, the response is

u(t) = & (H () + H(~jw)e )

where H (jw) = / h(r)e 7“Tdr
0

H(—jw) = /0 " h(r)e ™ dr = F(—jw)

complex
conjugate

(recall that h(7) is real-valued)
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u(t) = Acos(wt) — y(t) = ?(H(jw)ejwt n H(—jw)e_jm)
H(jw)eC =  H(jw)=Mw)e*“
Therefore,

y(t) = g M(w)[H0) 4 mstetre)]

= AM (w) cos (wt + p(w)) (only true in steady state)

The (steady-state) response to a cosine signal with amplitude
A and frequency w is still a cosine signal with amplitude
AM (w), same frequency w, and phase shift ¢(w)
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Frequency Response

U h ———Y

u(t) = Acos(wt) — y(t)=A M(w) cos(wt+pw))

N—— ——
amplitude phase
magnification shift

Still an incomplete picture:
» What about response to general signals (not necessarily
sinusoids)? — always given by Y (s) = H(s)U(s)
» What about response under nonzero I.C.’s?7— we will see
that, if the system is stable, then

transient response steady-state response
total response = .
(depends on I1.C.)  (independent of I1.C.)

— need more on Laplace transforms



