
Designing a Dynamic Output Feedback
Controller: An Example

Consider the following state-space model:(
ẋ1

ẋ2

)
=

(
0 1
2 4

)(
x1

x2

)
+

(
0
1

)
u

y =
(
2 1

)(x1

x2

)
.

(a) Is this system controllable?

Solution. By inspection, we see that the state-space model is in CCF, so the system is
controllable. However, we can also directly compute the controllability matrix:

C(A,B) =
[
B |AB

]
AB =

(
0 1
2 4

)(
0
1

)
=

(
1
4

)
∴ C(A,B) =

(
0 1
1 4

)
det C(A,B) = −1 – the system is controllable

(b) Is this system observable?

Solution. Let’s compute the observability matrix:

O(A,C) =

[
C
CA

]
CA =

(
2 1

)(0 1
2 4

)
=
(
2 6

)
∴ O(A,C) =

(
2 1
2 6

)
detO(A,C) = 10 – the system is observable
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(c) Design an observer to place observer poles at −5 and −5.

Solution. To do this, let us convert the state-space model into OCF. Since the system
is observable, there exists an invertible coordinate transformation T that does this. The
transformed system will be

˙̄x = Āx̄ + B̄u

y = C̄x̄

where x̄ = Tx, Ā = TAT−1, B̄ = TB, and C̄ = CT−1. Since for observer design we
only care about A and C, we do not need to determine the new system in its entirety,
just the new system matrix Ā = TAT−1 and the new output matrix C̄ = CT−1.

A quick way to find Ā and C̄ is to use the fact that the original system is in CCF.
To pass from CCF to OCF, we simply take Ā = AT and C̄ = BT , which gives

Ā =

(
0 2
1 4

)
, C̄ =

(
0 1

)
.

However, we can solve for Ā and C̄ directly. Since the new system will be in OCF, we
know that Ā and C̄ will have the form

Ā =

(
0 −a2
1 −a1

)
, C̄ =

(
0 1

)
.

To determine the entries a1 and a2, we use the fact that the characteristic polynomials
of A and Ā are the same:

det(Is− A) = det(Is− Ā)

det

(
s −1
−2 s− 4

)
= det

(
s a2
−1 s + a1

)
s(s− 4)− 2 = s(s + a1) + a2

s2 − 4s− 2 = s2 + a1s + a2

Matching coefficients, we get a1 = −4, a2 = −2, so the new system will have

Ā =

(
0 2
1 4

)
, C̄ =

(
0 1

)
.

Either way, we can compute the new observability matrix:

O(Ā, C̄) =

[
C̄
C̄Ā

]
C̄Ā =

(
0 1

)(0 2
1 4

)
=
(
1 4

)
∴ O(Ā, C̄) =

(
0 1
1 4

)
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To find the coordinate transformation T , we use the fact that

O(Ā, C̄) = O(A,C)T−1,

which is equivalent to

T =
[
O(Ā, C̄

]−1O(A,C).

Now, using the formula for the inverse of a 2× 2 matrix,[
O(Ā, C̄)

]−1
=

(
0 1
1 4

)−1

=

(
−4 1
1 0

)
Therefore,

T =

(
−4 1
1 0

)(
2 1
2 6

)
=

(
−6 2
2 1

)
We will also need the inverse of T later, so let’s compute it:

T−1 =

(
−6 2
2 1

)−1

=
1

10

(
−1 2
2 6

)
.

Now, for the system in OCF with the given Ā and C̄, we determine the output injection

matrix L̄ =

(
`1
`2

)
, so that the characteristic polynomial of Ā− L̄C̄ has a repeated root

at −5.

Ā− L̄C̄ =

(
0 2
1 4

)
−
(
`1
`2

)(
0 1

)
=

(
0 2− `1
1 4− `2

)
det(Is− Ā + L̄C̄) = (s + 5)2

det

(
s `1 − 2
−1 s + `2 − 4

)
= (s + 5)2

s2 + (`2 − 4)s + `1 − 2 = s2 + 10s + 25

Matching coefficients, we get `1 = 27, `2 = 14. The observer, in the new coordinates,
will have the form

˙̄̂x= (Ā− L̄C̄)̂̄x + L̄y + B̄u,

where ̂̄x is the estimate of the state x̄. We need to express it in the original coordinates,
where x̂ = T−1̂̄x and x = T−1x̄. Thus,

˙̂x = T−1 ˙̄̂x

= T−1
[(
TAT−1 − L̄CT−1

)
Tx + L̄y + TBu

]
= (A− T−1L̄C)x + T−1L̄y + Bu

= (A− LC)x̂ + Ly + Bu,
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where L = T−1L̄. We can now compute the output injection matrix in the original
coordinates (remember that we have already determined the inverse of T ):

L =
1

10

(
−1 2
2 6

)(
27
14

)
=

(
1/10

138/10

)
Thus,

A− LC =

(
0 1
2 4

)
−
(

1/10
138/10

)(
2 1

)
=

(
0 1
2 4

)
−
(

2/10 1/10
276/10 138/10

)
=

1

10

(
−2 9
−256 −98

)
(which has −5 as a repeated eigenvalue), and the observer dynamics is given by(

˙̂x1

˙̂x2

)
=

1

10

(
−2 9
−256 −98

)(
x̂1

x̂2

)
+

1

10

(
1

138

)
y +

(
0
1

)
u.

(d) Design a full-state feedback controller to place controller poles at −1 and −2.

Solution. Since the system is already in CCF, the feedback gain matrix K =
(
k1 k2

)
can be determined directly from the fact that

A−BK =

(
0 1
2 4

)
−
(

0
1

)(
k1 k2

)
=

(
0 1

2− k1 4− k2

)
,

and the controller poles are the roots of the characteristic polynomial of A−BK. Thus,
we want

det(Is− A + BK) = (s + 1)(s + 2)

det

(
s −1

k1 − 2 s + k2 − 4

)
= s2 + 3s + 2

s2 + (k2 − 4)s + k1 − 2 = s2 + 3s + 2.

Matching coefficients, we get k1 = 4 and k2 = 7. Thus, the controller will be

u = −Kx̂ = −
(
4 7

)(x̂1

x̂2

)
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(e) Suppose that you now apply the controller you designed in part (d) to the state es-
timate x̂ produced by the observer you designed in part (c) – that is, u = −Kx̂.
Write down the transfer function of the resulting dynamic output feedback controller
(observer+controller) from Y to U .

Solution. The observer-controller dynamics has the form

˙̂x = (A− LC −BK)x̂ + Ly

u = −Kx̂.

The transfer function from Y to U is therefore given by

U(s) = −K(Is− A + LC + BK)−1LY (s)

From our solution above,

K =
(
4 7

)
A− LC −BK =

1

10

(
−2 9
−256 −98

)
−
(

0 0
4 7

)
=

1

10

[(
−2 9
−256 −98

)
−
(

0 0
40 70

)]
=

1

10

(
−2 9
−296 −168

)
(Is− A + LC + BK)−1 =

(
s + 2

10
− 9

10
296
10

s + 168
10

)−1

=
1

s2 + 17s + 30

(
s + 168

10
9
10

−296
10

s + 2
10

)
(Is− A + LC + BK)−1L =

1

10s2 + 170s + 300

(
s + 168

10
9
10

−296
10

s + 2
10

)(
1

138

)
=

1

10s2 + 170s + 300

(
s + 141
138s + 2

)
−K(Is− A + LC + BK)−1L = − 1

10s2 + 170s + 300

(
4 7

)( s + 141
138s + 2

)
= − 970s + 578

10s2 + 170s + 300

Therefore, since our system is SISO, the transfer function is

U(s)

Y (s)
= − 970s + 578

10s2 + 170s + 300
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