Designing a Dynamic Output Feedback Controller: An Example

Consider the following state-space model:

$$
\begin{aligned}
\binom{\dot{x}_{1}}{\dot{x}_{2}} & =\left(\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u \\
y & =\left(\begin{array}{ll}
2 & 1
\end{array}\right)\binom{x_{1}}{x_{2}} .
\end{aligned}
$$

(a) Is this system controllable?

Solution. By inspection, we see that the state-space model is in CCF, so the system is controllable. However, we can also directly compute the controllability matrix:

$$
\begin{aligned}
\mathcal{C}(A, B) & =[B \mid A B] \\
A B & =\left(\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right)\binom{0}{1}=\binom{1}{4} \\
\therefore \mathcal{C}(A, B) & =\left(\begin{array}{ll}
0 & 1 \\
1 & 4
\end{array}\right) \\
\operatorname{det} \mathcal{C}(A, B) & =-1 \quad-\text { the system is controllable }
\end{aligned}
$$

(b) Is this system observable?

Solution. Let's compute the observability matrix:

$$
\begin{aligned}
\mathcal{O}(A, C) & =\left[\frac{C}{C A}\right] \\
C A & =\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 & 6
\end{array}\right) \\
\therefore \mathcal{O}(A, C) & =\left(\begin{array}{ll}
2 & 1 \\
2 & 6
\end{array}\right) \\
\operatorname{det} \mathcal{O}(A, C) & =10 \quad-\text { the system is observable }
\end{aligned}
$$

(c) Design an observer to place observer poles at -5 and -5 .

Solution. To do this, let us convert the state-space model into OCF. Since the system is observable, there exists an invertible coordinate transformation T that does this. The transformed system will be

$$
\begin{aligned}
\dot{\bar{x}} & =\bar{A} \bar{x}+\bar{B} u \\
y & =\bar{C} \bar{x}
\end{aligned}
$$

where $\bar{x}=T x, \bar{A}=T A T^{-1}, \bar{B}=T B$, and $\bar{C}=C T^{-1}$. Since for observer design we only care about A and C, we do not need to determine the new system in its entirety, just the new system matrix $\bar{A}=T A T^{-1}$ and the new output matrix $\bar{C}=C T^{-1}$.

A quick way to find \bar{A} and \bar{C} is to use the fact that the original system is in CCF. To pass from CCF to OCF, we simply take $\bar{A}=A^{T}$ and $\bar{C}=B^{T}$, which gives

$$
\bar{A}=\left(\begin{array}{ll}
0 & 2 \\
1 & 4
\end{array}\right), \quad \bar{C}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

However, we can solve for \bar{A} and \bar{C} directly. Since the new system will be in OCF, we know that \bar{A} and \bar{C} will have the form

$$
\bar{A}=\left(\begin{array}{ll}
0 & -a_{2} \\
1 & -a_{1}
\end{array}\right), \quad \bar{C}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

To determine the entries a_{1} and a_{2}, we use the fact that the characteristic polynomials of A and \bar{A} are the same:

$$
\begin{aligned}
\operatorname{det}(I s-A) & =\operatorname{det}(I s-\bar{A}) \\
\operatorname{det}\left(\begin{array}{cc}
s & -1 \\
-2 & s-4
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
s & a_{2} \\
-1 & s+a_{1}
\end{array}\right) \\
s(s-4)-2 & =s\left(s+a_{1}\right)+a_{2} \\
s^{2}-4 s-2 & =s^{2}+a_{1} s+a_{2}
\end{aligned}
$$

Matching coefficients, we get $a_{1}=-4, a_{2}=-2$, so the new system will have

$$
\bar{A}=\left(\begin{array}{ll}
0 & 2 \\
1 & 4
\end{array}\right), \quad \bar{C}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) .
$$

Either way, we can compute the new observability matrix:

$$
\begin{aligned}
\mathcal{O}(\bar{A}, \bar{C}) & =\left[\frac{\bar{C}}{\bar{C} A}\right] \\
\bar{C} \bar{A} & =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
1 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 4
\end{array}\right) \\
\therefore \mathcal{O}(\bar{A}, \bar{C}) & =\left(\begin{array}{ll}
0 & 1 \\
1 & 4
\end{array}\right)
\end{aligned}
$$

To find the coordinate transformation T, we use the fact that

$$
\mathcal{O}(\bar{A}, \bar{C})=\mathcal{O}(A, C) T^{-1}
$$

which is equivalent to

$$
T=\left[\mathcal{O}(\bar{A}, \bar{C}]^{-1} \mathcal{O}(A, C)\right.
$$

Now, using the formula for the inverse of a 2×2 matrix,

$$
[\mathcal{O}(\bar{A}, \bar{C})]^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 4
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-4 & 1 \\
1 & 0
\end{array}\right)
$$

Therefore,

$$
T=\left(\begin{array}{cc}
-4 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
2 & 6
\end{array}\right)=\left(\begin{array}{cc}
-6 & 2 \\
2 & 1
\end{array}\right)
$$

We will also need the inverse of T later, so let's compute it:

$$
T^{-1}=\left(\begin{array}{cc}
-6 & 2 \\
2 & 1
\end{array}\right)^{-1}=\frac{1}{10}\left(\begin{array}{cc}
-1 & 2 \\
2 & 6
\end{array}\right) .
$$

Now, for the system in OCF with the given \bar{A} and \bar{C}, we determine the output injection matrix $\bar{L}=\binom{\ell_{1}}{\ell_{2}}$, so that the characteristic polynomial of $\bar{A}-\bar{L} \bar{C}$ has a repeated root at -5 .

$$
\begin{aligned}
& \bar{A}-\bar{L} \bar{C}=\left(\begin{array}{ll}
0 & 2 \\
1 & 4
\end{array}\right)-\binom{\ell_{1}}{\ell_{2}}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 2-\ell_{1} \\
1 & 4-\ell_{2}
\end{array}\right) \\
& \operatorname{det}(I s-\bar{A}+\bar{L} \bar{C})=(s+5)^{2} \\
& \operatorname{det}\left(\begin{array}{cc}
s & \ell_{1}-2 \\
-1 & s+\ell_{2}-4
\end{array}\right)=(s+5)^{2} \\
& s^{2}+\left(\ell_{2}-4\right) s+\ell_{1}-2=s^{2}+10 s+25
\end{aligned}
$$

Matching coefficients, we get $\ell_{1}=27, \ell_{2}=14$. The observer, in the new coordinates, will have the form

$$
\dot{\hat{\bar{x}}}=(\bar{A}-\bar{L} \bar{C}) \widehat{\bar{x}}+\bar{L} y+\bar{B} u
$$

where $\widehat{\bar{x}}$ is the estimate of the state \bar{x}. We need to express it in the original coordinates, where $\widehat{x}=T^{-1} \widehat{\bar{x}}$ and $x=T^{-1} \bar{x}$. Thus,

$$
\begin{aligned}
\dot{\widehat{x}} & =T^{-1} \dot{\overline{\widehat{x}}} \\
& =T^{-1}\left[\left(T A T^{-1}-\bar{L} C T^{-1}\right) T x+\bar{L} y+T B u\right] \\
& =\left(A-T^{-1} \bar{L} C\right) x+T^{-1} \bar{L} y+B u \\
& =(A-L C) \widehat{x}+L y+B u,
\end{aligned}
$$

where $L=T^{-1} \bar{L}$. We can now compute the output injection matrix in the original coordinates (remember that we have already determined the inverse of T):

$$
L=\frac{1}{10}\left(\begin{array}{cc}
-1 & 2 \\
2 & 6
\end{array}\right)\binom{27}{14}=\binom{1 / 10}{138 / 10}
$$

Thus,

$$
\begin{aligned}
A-L C & =\left(\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right)-\binom{1 / 10}{138 / 10}\left(\begin{array}{ll}
2 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right)-\left(\begin{array}{cc}
2 / 10 & 1 / 10 \\
276 / 10 & 138 / 10
\end{array}\right) \\
& =\frac{1}{10}\left(\begin{array}{cc}
-2 & 9 \\
-256 & -98
\end{array}\right)
\end{aligned}
$$

(which has -5 as a repeated eigenvalue), and the observer dynamics is given by

$$
\binom{\dot{\widehat{x}}_{1}}{\dot{\widehat{x}}_{2}}=\frac{1}{10}\left(\begin{array}{cc}
-2 & 9 \\
-256 & -98
\end{array}\right)\binom{\widehat{x}_{1}}{\widehat{x}_{2}}+\frac{1}{10}\binom{1}{138} y+\binom{0}{1} u .
$$

(d) Design a full-state feedback controller to place controller poles at -1 and -2 .

Solution. Since the system is already in CCF, the feedback gain matrix $K=\left(\begin{array}{ll}k_{1} & k_{2}\end{array}\right)$ can be determined directly from the fact that

$$
\begin{aligned}
A-B K & =\left(\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right)-\binom{0}{1}\left(\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 1 \\
2-k_{1} & 4-k_{2}
\end{array}\right),
\end{aligned}
$$

and the controller poles are the roots of the characteristic polynomial of $A-B K$. Thus, we want

$$
\begin{aligned}
\operatorname{det}(I s-A+B K) & =(s+1)(s+2) \\
\operatorname{det}\left(\begin{array}{cc}
s & -1 \\
k_{1}-2 & s+k_{2}-4
\end{array}\right) & =s^{2}+3 s+2 \\
s^{2}+\left(k_{2}-4\right) s+k_{1}-2 & =s^{2}+3 s+2
\end{aligned}
$$

Matching coefficients, we get $k_{1}=4$ and $k_{2}=7$. Thus, the controller will be

$$
u=-K \widehat{x}=-\left(\begin{array}{ll}
4 & 7
\end{array}\right)\binom{\widehat{x}_{1}}{\widehat{x}_{2}}
$$

(e) Suppose that you now apply the controller you designed in part (d) to the state estimate \widehat{x} produced by the observer you designed in part (c) - that is, $u=-K \widehat{x}$. Write down the transfer function of the resulting dynamic output feedback controller (observer+controller) from Y to U.

Solution. The observer-controller dynamics has the form

$$
\begin{aligned}
& \dot{\widehat{x}}=(A-L C-B K) \widehat{x}+L y \\
& u=-K \widehat{x} .
\end{aligned}
$$

The transfer function from Y to U is therefore given by

$$
U(s)=-K(I s-A+L C+B K)^{-1} L Y(s)
$$

From our solution above,

$$
\begin{aligned}
K & =\left(\begin{array}{ll}
4 & 7
\end{array}\right) \\
A-L C-B K & =\frac{1}{10}\left(\begin{array}{cc}
-2 & 9 \\
-256 & -98
\end{array}\right)-\left(\begin{array}{cc}
0 & 0 \\
4 & 7
\end{array}\right) \\
& =\frac{1}{10}\left[\left(\begin{array}{cc}
-2 & 9 \\
-256 & -98
\end{array}\right)-\left(\begin{array}{cc}
0 & 0 \\
40 & 70
\end{array}\right)\right] \\
& =\frac{1}{10}\left(\begin{array}{cc}
-2 & 9 \\
-296 & -168
\end{array}\right) \\
(I s-A+L C+B K)^{-1} & =\left(\begin{array}{cc}
s+\frac{2}{10} & -\frac{9}{10} \\
\frac{296}{10} & s+\frac{168}{10}
\end{array}\right) \\
& =\frac{1}{s^{2}+17 s+30}\left(\begin{array}{cc}
s+\frac{168}{10} & \frac{9}{10} \\
-\frac{296}{10} & s+\frac{2}{10}
\end{array}\right) \\
(I s-A+L C+B K)^{-1} L & =\frac{1}{10 s^{2}+170 s+300}\left(\begin{array}{cc}
s+\frac{168}{10} & \frac{9}{10} \\
-\frac{296}{10} & s+\frac{2}{10}
\end{array}\right)\binom{1}{138} \\
& =\frac{1}{10 s^{2}+170 s+300}\binom{s+141}{138 s+2} \\
-K(I s-A+L C+B K)^{-1} L & =-\frac{1}{10 s^{2}+170 s+300}(4 \quad 7)\binom{s+141}{138 s+2} \\
& =-\frac{970 s+578}{10 s^{2}+170 s+300}
\end{aligned}
$$

Therefore, since our system is SISO, the transfer function is

$$
\frac{U(s)}{Y(s)}=-\frac{970 s+578}{10 s^{2}+170 s+300}
$$

