Plan of the Lecture

» Review: coordinate transformations; conversion of any

controllable system to CCF.
» Today’s topic: pole placement by (full) state feedback.

Goal: learn how to assign arbitrary closed-loop poles of a
controllable system @& = Az + Bu by means of state feedback

u=—Kux.

Reading: FPE, Chapter 7



State-Space Realizations

= Axr + Bu
y=Cx

I

G(s) = O(Is — A)"'B

Open-loop poles are the eigenvalues of A:

det(Is—A)=0

Then we add a controller to move the poles to desired locations:

R—JF{I)H

KD(s)

G(s) Y




Goal: Pole Placement by State Feedback

Consider a single-input system in state-space form:

T = Az + Bu
y=Cx

—Y

Today, our goal is to establish the following fact:

If the above system is controllable, then we can assign
arbitrary closed-loop poles by means of a state feedback law

Z1
Z2
UZ—KSC:—(/ﬁ /{72 kn)

Tn

= —(kix1+ ...+ knzyp),

where K is a 1 x n matrix of feedback gains.



Review: Controllability
Consider a single-input system (u € R):
& = Az + Bu, y=Cz x €R"
The Controllability Matrix is defined as
C(A,B)=[B|AB|A*B| ... |A" 'B]

We say that the above system is controllable if its
controllability matrix C(A, B) is invertible.

» As we will see today, if the system is controllable, then we
may assign arbitrary closed-loop poles by state feedback of
the form v = — K.

» Whether or not the system is controllable depends on its
state-space realization.



Controller Canonical Form

A single-input state-space model
& = Az + Bu, y=Cx

is said to be in Controller Canonical Form (CCF) is the
matrices A, B are of the form

010 ... 00 0

0O 01 ... 00 0
A=|: 1 w1, B=

0 01 0

* * * ok 1

A system in CCF is always controllable!!

(The proof of this for n > 2 uses the Jordan canonical form, we will
not worry about this.)



Coordinate Transformations

> We will see that state feedback design is particularly easy
when the system is in CCF.

» Hence, we need a way of constructing a CCF state-space
realization of a given controllable system.

» We will do this by suitably changing the coordinate system
for the state vector.



Coordinate Transformations and State-Space Models

T = Az + Bu L) = Az +

where A = TAT 1, B =TB, C=cr!
» The transfer function does not change.

» The controllability matrix is transformed:

C(A,B) = TC(A, B).

» The transformed system is controllable if and only if the

original one is.

» If the original system is controllable, then
T =C(A,B)[C(A, B)]™

This gives us a way of systematically passing to CCF.

Ql UJ\
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Example: Converting a Controllable System to CCF

—-15 8 1 A .
A= (_15 7> , B= <1> (C is immaterial)

Step 1: check for controllability.

C = <1 :;) detC = —1 — controllable

Step 2: Determine desired C(A, B).
S 01
C(A,B)=[B|AB| = <1 —8)

Step 3: Compute T

T=C(A,B) [C(4,B)]" = <(1) _18> <§ :D B <c1> _11>



Finally, Pole Placement via State Feedback

Consider a state-space model
z = Az + Bu, zeR"uelR
y=u
Let’s introduce a state feedback law
u=—-Ky=—-Kzx
I
Z2
:—(k‘l ko ... k?n) : :—(k‘1$1—|—...—|—kn$n)
In
Closed-loop system:
t=Ax — BKx = (A— BK)x

y=x



Pole Placement via State Feedback

Let’s also add a reference input:

z = Az + Bu

T%Qi -y

y=z

A

K

&t =Ax+ B(—Kxz +7r)=(A— BK)xz + Br, y=zx
Take the Laplace transform:
sX(s)=(A—-BK)X(s)+ BR(s), Y(s) = X(s)
Y(s) = (Is— A+ BK) 'BR(s)
G

Closed-loop poles are the eigenvalues of A — BK!!



Pole Placement via State Feedback

4+ u| &= Az + Bu
e y

K

assigning closed-loop poles = assigning eigenvalues of A — BK

Now we will see that this is particularly straightforward if the
(A, B) system is in CCF.

0 1 0 0 0 0
0 0 1 0 0 0
A= : , B=
0 0 0 0 1 0



The Beauty of CCF

0 1 0 0 0 0
0 0 1 0 0 0
A= : : , B =
0 0 0 0 1 0
—ay, —Qp—1 —Gp—2 ... —ag —ai 1

Claim.
det(Is — A) = s" + a1s" '+ .. tan_15+an

— the last row of the A matrix in CCF consists of the
coefficients of the characteristic polynomial, in reverse order,
with “—” signs.



Proof of the Claim

A nice way is via Laplace transforms:

T = Ax + Bu

o O
O =
)
OO
o O
o O

A= : . B=
0 0 0 0 1 0
—Qayp —Qp_1 —Gp_2 ... —ao —ai 1
Represent this as a system of ODEs:
T1 = T9 X9 =sX4
ig =3 X3 = SXQ = S2X1
n
Ty = —Zan,iﬂxmtu (S”+a18”_1+...—|—an) Xi=U
i=1

~
char. poly.



. And, Back to Pole Placement

0 1 0 ... 0 0
0 0 1 ... 0 0
A — . . ;
0 0 0 0 1
—Gnp —Ap—-1 —0p-2 —az —ag
0 0 0 0
0 0 0 0
0 0 0 0
1 ki ko ks
0 1 0
0 0 1
A-BK = — :
0 0 0

an + ki an_1+ky an—o+ks
— still in CCF!!

az + kn—1

a1+k:n



Pole Placement in CCF
& =(A— BK)x + Br, y=Cz

0 1 0 0
0 0 0 0
A— BK =— : : . : :
0 0 0 1
an +k1 ap1+ky ... ax+kp_1 a1+ ky

Closed-loop poles are the roots of the characteristic polynomial
det(I/s — A+ BK)
= 5"+ (a1 + kn)s" V4 F (a1 + ko)s + (an + k1)

Key observation: When the system is in CCF, each control
gain affects only one of the coefficients of the characteristic
polynomial, and these coefficients can be assigned arbitrarily by
a suitable choice of k1,..., k,.

Hence the name Controller Canonical Form — convenient for
control design.



Pole Placement by State Feedback

General procedure for any controllable system:

1.

Convert to CCF using a suitable invertible coordinate
transformation 7' (such a transformation exists by
controllability).

2. Solve the pole placement problem in the new coordinates.

3. Convert back to original coordinates.



Example

Given z = Ax + Bu

—-15 8 1
(50 2=)
Goal: apply state feedback to place closed-loop poles at —10 + j.

Step 1: convert to CCF — already did this

r=(p 1) = a=(1 &) 5=())



Example
Step 2: find u = —KZ to place closed-loop poles at —10 = j.

Desired characteristic polynomial:
(5 4+ 104 5)(s +10 — 5) = (s +10)* + 1 = s + 205 + 101
Thus, the closed-loop system matrix should be
S 0 1
A-BE= (—101 —20)
On the other hand, we know

o 0 1
A-BK = - - ki =86, ky =12
<—(15+k1) —(8+k2)) — M 2

This gives the control law

u=—-Ki=—(86 12) (;l>

2



Example

Step 3: convert back to the old coordinates.

u=—-Kz
= KTz
~~
K
— therefore,
K =KT
1 -1

= (86 12) (o ) )
= (86 —74)

The desired state feedback law is

u=(—86 74) (‘“)

Z2



