
Plan of the Lecture

I Review: state-space notions: canonical forms,
controllability.

I Today’s topic: controllability, stability, and pole-zero
cancellations; effect of coordinate transformations;
conversion of any controllable system to CCF.

Goal: explore the effect of pole-zero cancellations on internal
stability; understand the effect of coordinate transformations on
the properties of a given state-space model (transfer function;
open-loop poles; controllability).

Reading: FPE, Chapter 7



State-Space Realizations

ẋ = Ax + Bu
y = Cx

u y

I a given transfer function G(s) can be realized using
infinitely many state-space models

I certain properties make some realizations preferable to
others

I one such property is controllability



Controllability Matrix

Consider a single-input system (u ∈ R):

ẋ = Ax + Bu, y = Cx x ∈ Rn

The Controllability Matrix is defined as

C(A,B) =
[
B |AB |A2B | . . . |An−1B

]
We say that the above system is controllable if its
controllability matrix C(A,B) is invertible.

I As we will see later, if the system is controllable, then we
may assign arbitrary closed-loop poles by state feedback of
the form u = −Kx.

I Whether or not the system is controllable depends on its
state-space realization.



Example: Computing C(A,B)

Let’s get back to our old friend:(
ẋ1

ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1

x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
1 1

)︸ ︷︷ ︸
C

(
x1

x2

)

Here, x ∈ R2 =⇒ A ∈ R2×2 =⇒ C(A,B) ∈ R2×2

C(A,B) = [B |AB] AB =

(
0 1
−6 −5

)(
0
1

)
=

(
1
−5

)
=⇒ C(A,B) =

(
0 1
1 −5

)
Is this system controllable?

det C = −1 6= 0 =⇒ system is controllable



Controller Canonical Form
A single-input state-space model

ẋ = Ax + Bu, y = Cx

is said to be in Controller Canonical Form (CCF) is the
matrices A,B are of the form

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
∗ ∗ ∗ . . . ∗ ∗

 , B =


0
0
...
0
1


A system in CCF is always controllable!!

(The proof of this for n > 2 uses the Jordan canonical form, we will

not worry about this.)



CCF with Arbitrary Zeros

In our example, we had G(s) =
s + 1

s2 + 5s + 6
, with a

minimum-phase zero at z = −1.

Let’s consider a general zero location s = z:

G(s) =
s− z

s2 + 5s + 6

This gives us a CCF realization(
ẋ1

ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1

x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
−z 1

)︸ ︷︷ ︸
C

(
x1

x2

)

Since A,B are the same, C(A,B) is the same =⇒ the system is
still controllable.

A system in CCF is controllable for any locations of the zeros.



OCF with Arbitrary Zeros

Start with the CCF(
ẋ1

ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1

x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
−z 1

)︸ ︷︷ ︸
C

(
x1

x2

)

Convert to OCF: (A 7→ AT , B 7→ CT , C 7→ BT )(
ẋ1

ẋ2

)
=

(
0 −6
1 −5

)
︸ ︷︷ ︸

Ā=AT

(
x1

x2

)
+

(
−z
1

)
︸ ︷︷ ︸
B̄=CT

u, y =
(
0 1

)︸ ︷︷ ︸
C̄=BT

(
x1

x2

)

We already know that this system realizes the same t.f. as the
original system.

But is it controllable?



OCF with Arbitrary Zeros

(
ẋ1

ẋ2

)
=

(
0 −6
1 −5

)
︸ ︷︷ ︸

Ā=AT

(
x1

x2

)
+

(
−z
1

)
︸ ︷︷ ︸
B̄=CT

u, y =
(
0 1

)︸ ︷︷ ︸
C̄=BT

(
x1

x2

)

Let’s find the controllability matrix:

C(Ā, B̄) =
[
B̄ | ĀB̄

]
ĀB̄ =

(
0 −6
1 −5

)(
−z
1

)
=

(
−6
−z − 5

)
∴ C(Ā, B̄) =

(
−z −6
1 −z − 5

)
det C = z(z + 5) + 6 = z2 + 5z + 6 = 0 for z = −2 or z = −3

The OCF realization of the transfer function

G(s) =
s− z

s2 + 5s + 6
is not controllable when z = −2 or −3,

even though the CCF is always controllable.



Beware of Pole-Zero Cancellations!
The OCF realization of the transfer function

G(s) =
s− z

s2 + 5s + 6

is not controllable when z = −2 or −3, even though the CCF is
always controllable.

Let’s examine G(s) when z = −2:

G(s) =
s− z

s2 + 5s + 6

∣∣∣
z=−2

=
���s + 2

(���s + 2)(s + 3)
=

1

s + 3

— pole-zero cancellation!

For z = −2, G(s) is a first-order transfer function, which can
always be realized by this 1st-order controllable model:

ẋ1 = −3x1 + u, y = x1 −→ G(s) =
1

s + 3



Beware of Pole-Zero Cancellations!!

We can look at this from another angle: consider the t.f.

G(s) =
1

s + 3

We can realize it using a one-dimensional controllable
state-space model

ẋ1 = −3x1 + u, y = x1

or a noncontrollable two-dimensional state-space model(
ẋ1

ẋ2

)
=

(
0 −6
1 −5

)(
x1

x2

)
+

(
2
1

)
u, y =

(
0 1

)(x1

x2

)
— certainly not the best way to realize a simple t.f.!

Thus, even the state dimension of a realization of a given t.f.
is not unique!!



Beware of Pole-Zero Cancellations!!

Here is a really bad realization of the t.f.

G(s) =
1

s + 3
.

Use a two-dimensional model:

ẋ1 = −3x1 + u

ẋ2 = 100x2

y = x1

I x2 is not affected by the input u (i.e., it is an
uncontrollable mode), and not visible from the output y

I does not change the transfer function

I ... and yet, horrible to implement: x2(t) ∝ e100t

The transfer function can mask undesirable internal state
behavior!!



Pole-Zero Cancellations and Stability

I In case of a pole-zero cancellation, the t.f. contains much
less information than the state-space model because some
dynamics are “hidden.”

I These dynamics can be either good (stable) or bad
(unstable), but we cannot tell from the t.f.

I Our original definition of stability (no RHP poles) is flawed
because there can be RHP eigenvalues of the system matrix
A that are canceled by zeros,yet they still have dynamics
associated with them.

Definition of Internal Stability (State-Space Version): a
state-space model with matrices (A,B,C,D) is internally
stable if all eigenvalues of the A matrix are in LHP.

This is equivalent to having no RHP open-loop poles and no
pole-zero cancellations in RHP.



Coordinate Transformations

Now that we have seen that a given transfer function can have
many different state-space realizations, we would like a
systematic procedure of generating such realizations, preferably
with favorable properties (like controllability).

One such procedure is by means of coordinate transformations.



Coordinate Transformations

x1

x2

x̄ 2
x̄ 1

0

x 7−→ x̄ = Tx, T ∈ Rn×nnonsingular

x = T−1x̄ (go back and forth between the coordinate systems)



Coordinate Transformations

For example, (
x1

x2

)
7−→

(
x̄1

x̄2

)
=

(
x1 + x2

x1 − x2

)
This can be represented as

x̄ = Tx, where T =

(
1 1
1 −1

)
The transformation is invertible: detT = −2, and

T−1 =
1

detT

(
−1 −1
−1 1

)
=

(
1
2

1
2

1
2 −1

2

)
Or we can see this directly:

x̄1 + x̄2 = 2x1; x̄1 − x̄2 = 2x2



Coordinate Transformations and State-Space Models
Consider a state-space model

ẋ = Ax + Bu

y = Cx

and a change of coordinates x̄ = Tx (T invertible).

What does the system look like in the new coordinates?

˙̄x = ˙Tx = T ẋ (linearity of derivative)

= T (Ax + Bu)

= T (AT−1x̄ + Bu) (x = T−1x̄)

= TAT−1︸ ︷︷ ︸
Ā

x̄ + TB︸︷︷︸
B̄

u

y = Cx

= CT−1︸ ︷︷ ︸
C̄

x̄



Coordinate Transformations and State-Space Models

ẋ = Ax + Bu
T−−−−→ ˙̄x = Āx̄ + B̄u

y = Cx y = C̄x̄

where

Ā = TAT−1, B̄ = TB, C̄ = CT−1

What happens to

I the transfer function?

I the controllability matrix?



Coordinate Transformations and State-Space Models

ẋ = Ax + Bu
T−−−−→ ˙̄x = Āx̄ + B̄u

y = Cx y = C̄x̄

where Ā = TAT−1, B̄ = TB, C̄ = CT−1

Claim: The transfer function doesn’t change.

Proof:

Ḡ(s) = C̄(Is− Ā)−1B̄

= (CT−1)
(
Is− TAT−1

)−1
(TB)

= CT−1
(
TIT−1s− TAT−1

)−1
TB

= CT−1
[
T (Is−A)T−1

]−1
TB

= C T−1T︸ ︷︷ ︸
I

(Is−A)−1 T−1T︸ ︷︷ ︸
I

B

= C (Is−A)−1 B ≡ G(s)



Coordinate Transformations and State-Space Models

ẋ = Ax + Bu
T−−−−→ ˙̄x = Āx̄ + B̄u

y = Cx y = C̄x̄

where Ā = TAT−1, B̄ = TB, C̄ = CT−1

The transfer function doesn’t change.

In fact:

I open-loop poles don’t change

I characteristic polynomial doesn’t change:

det(Is− Ā) = det(Is− TAT−1)

= det
[
T (Is−A)−1T−1

]
= detT · det(Is−A)−1 · detT−1

= det(Is−A)−1



Coordinate Transformations and State-Space Models

ẋ = Ax + Bu
T−−−−→ ˙̄x = Āx̄ + B̄u

y = Cx y = C̄x̄

where Ā = TAT−1, B̄ = TB, C̄ = CT−1

Claim: Controllability doesn’t change.

Proof: For any k = 0, 1, . . .,

ĀkB̄ = (TAT−1)kTB = TAkT−1TB = TAkB (by induction)

Therefore, C(Ā, B̄) = [TB |TAB | . . . |TAn−1B]

= T [B |AB | . . . |An−1B]

= TC(A,B)

Since detT 6= 0, det C(Ā, B̄) 6= 0 if and only if det C(A,B) 6= 0.

Thus, the new system is controllable if and only if the old one is.



Coordinate Transformations and State-Space Models

ẋ = Ax + Bu
T−−−−→ ˙̄x = Āx̄ + B̄u

y = Cx y = C̄x̄

where Ā = TAT−1, B̄ = TB, C̄ = CT−1

Note: The controllability matrix does change:

C(Ā, B̄)︸ ︷︷ ︸
new

= T︸︷︷︸
coord.
trans.

C(A,B)︸ ︷︷ ︸
old

m
T = C(Ā, B̄) [C(A,B)]−1

This is a recipe for going from one controllable realization of a
given t.f. to another.

CCF is the most convenient controllable realization of a given
t.f., so we want to convert a given controllable system to CCF
(useful for control design).



Example: Converting a Controllable System to CCF

Note!! The way I do this is different from the textbook.

Consider A =

(
−15 8
−15 7

)
, B =

(
1
1

)
(C is immaterial).

Convert to CCF if possible.

Step 1: check for controllability.

AB =

(
−15 8
−15 7

)(
1
1

)
=

(
−7
−8

)
=⇒ C =

(
1 −7
1 −8

)
det C = −1 – controllable



Example: Converting a Controllable System to CCF

Step 2: Determine desired C(Ā, B̄).

We need to figure out Ā and B̄.

For CCF, we must have

Ā =

(
0 1
−a2 −a1

)
, B̄ =

(
0
1

)
,

so we need to find the coefficients a1, a2.

Recall: the characteristic polynomial does not change:

det(Is−A) = det(Is− Ā)

det

(
s + 15 −8

15 s− 7

)
= det

(
s −1
a2 s + a1

)
(s + 15)(s− 7) + 120 = s(s + a1) + a2

s2 + 8s + 15 = s2 + a1s + a2



Example: Converting a Controllable System to CCF

Step 2: Determine desired C(Ā, B̄).

We need to figure out Ā and B̄.

For CCF, we must have

Ā =

(
0 1
−a2 −a1

)
, B̄ =

(
0
1

)
.

We have just computed

Ā =

(
0 1
−15 −8

)
, B̄ =

(
0
1

)
Therefore, the new controllability matrix should be

C(Ā, B̄) = [B̄ | ĀB̄] =

(
0 1
1 −8

)



Example: Converting a Controllable System to CCF
Step 3: Compute T .

Recall: T = C(Ā, B̄) · [C(A,B)]−1

C(A,B) =

(
1 −7
1 −8

)
[C(A,B)]−1 =

(
1 −7
1 −8

)−1

=
1

−1

(
−8 7
−1 1

)
=

(
8 −7
1 −1

)
C(Ā, B̄) =

(
0 1
1 −8

)
T =

(
0 1
1 −8

)(
8 −7
1 −1

)
=

(
1 −1
0 1

)



In the next lecture, we will see why CCF is so useful.


