
Plan of the Lecture

I Review: frequency-domain design method.

I Today’s topic: introduction to state-space design.

Goal: introduce basic notions of state-space control: different
state-space realizations of the same transfer function; several
canonical forms of state-space systems; controllability matrix.

Reading: FPE, Chapter 7

Frequency-Domain vs. State-Space

I 90% of industrial controllers are designed using
frequency-domain methods (PID is a popular architecture)

I 90% of current research in systems and control is in the
state-space framework

To be able to talk to control engineers and follow progress in
the field, we need to know both methods and understand the
connections between them.

State-Space Methods

I the state-space approach reveals internal system
architecture for a given transfer function

I the mathematics is different: heavy use of linear algebra

I this is just a short introduction; to learn this material
properly, take ECE 515

A General State-Space Model

state x =

x1
...
xn

 ∈ Rn input u =

u1
...

um

 ∈ Rm

output y =

y1
...
yp

 ∈ Rp

ẋ = Ax+Bu

y = Cx+Du

where:

A – system matrix (n× n) B – input matrix (n×m)

C – output matrix (p× n) D – feedthrough matrix (p×m)

From State-Space to Transfer Function

Let us find the transfer function from u to y corresponding to
the state-space model

ẋ = Ax + Bu

y = Cx + Du

I in the scalar case (x, y, u ∈ R), we took the Laplace
transform

I the same idea here when working with vectors: just do it
component by component

From State-Space to Transfer Function

ẋ = Ax + Bu

y = Cx + Du

x =


x1
x2
...
xn

 , u =


u1
u2
...

um

 , y =


y1
y2
...
yp


Recall matrix-vector multiplication:

ẋi = (Ax)i + (Bu)i y` = (Cx)` + (Du)`

=

n∑
j=1

aijxj +

m∑
k=1

bikuk =

n∑
j=1

c`jxj +

m∑
k=1

d`kuk

From State-Space to Transfer Function

Now we take the Laplace transform:

ẋi =

n∑
j=1

aijxj +

m∑
k=1

bikuk

↓ L

sXi(s)− xi(0) =

n∑
j=1

aijXj(s) +

m∑
k=1

bikUk(s), i = 1, . . . , n

Write down in matrix-vector form:

sX(s)− x(0) = AX(s) + BU(s)

(Is−A)X(s) = x(0) + BU(s) (I is the n× n identity matrix)

X(s) = (Is−A)−1x(0) + (Is−A)−1BU(s)

From State-Space to Transfer Function

y` =

n∑
j=1

c`jxj +

m∑
k=1

d`kuk

↓ L

Y`(s) =

n∑
j=1

c`jXj(s) +

m∑
k=1

d`kUk(s), ` = 1, . . . , p

Write down in matrix-vector form:

Y (s) = CX(s) + DU(s)

= C
[
(Is−A)−1x(0) + (Is−A)−1BU(s)

]
+ DU(s)

= C(Is−A)−1x(0) +
[
C(Is−A)−1B + D

]
U(s)

To find the input-output t.f., set the IC to 0:

Y (s) = G(s)U(s), where G(s) = C(Is−A)−1B + D

From State-Space to Transfer Function

The transfer function from u to y, corresponding to

ẋ = Ax + Bu

y = Cx + Du

is given by

G(s) = C(Is− A)−1B +D

Observe that G(s) contains information about the state-space
matrices A,B,C,D!!

From State-Space to Transfer Function

ẋ = Ax + Bu Y (s) = G(s)U(s)

y = Cx + Du =
[
C(Is−A)−1B + D

]
U(s)

Important!!

I G(s) is undefined when the n× n matrix Is−A is singular
(or noninvertible), i.e., precisely when det(Is−A) = 0

I since A is n× n, det(Is−A) is a polynomial of degree n
(the characteristic polynomial of A):

det(Is−A) = det


s− a11 −a12 . . . −a1n
−a21 s− a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . s− ann

 ,

and its roots are the eigenvalues of A

I G is (open-loop) stable if all eigenvalues of A lie in LHP.

Example: Computing G(s)

Consider the state-space model in Controller Canonical Form
(CCF)∗:(

ẋ1
ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1
x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
1 1

)︸ ︷︷ ︸
C

(
x1
x2

)

— this is a single-input, single-output (SISO) system, since
u, y ∈ R; the state is two-dimensional.

Let’s compute the transfer function:

G(s) = C(Is−A)−1B (D = 0 here)

Is−A =

(
s −1
6 s + 5

)
∗ We will explain this terminology later.

Example: Computing G(s)

Is−A =

(
s −1
6 s + 5

)
— how do we compute (Is−A)−1?

A useful formula for the inverse of a 2× 2 matrix:

M =

(
a b
c d

)
, detM 6= 0 =⇒ M−1 =

1

detM

(
d −b
−c a

)

Applying the formula, we get

(Is−A)−1 =
1

det(Is−A)

(
s + 5 1
−6 s

)
=

1

s2 + 5s + 6

(
s + 5 1
−6 s

)

Example: Computing G(s)

(
ẋ1
ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1
x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
1 1

)︸ ︷︷ ︸
C

(
x1
x2

)

G(s) = C(Is−A)−1B

=
(
1 1

) 1

s2 + 5s + 6

(
s + 5 1
−6 s

)(
0
1

)
=

1

s2 + 5s + 6

(
1 1

)(1
s

)
=

s + 1

s2 + 5s + 6

I the above state-space model is a realization of this t.f.

I note how coefficients 5 and 6 appear in both G(s) and A!!

State-Space Realizations of Transfer Functions

(
ẋ1
ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1
x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
1 1

)︸ ︷︷ ︸
C

(
x1
x2

)

G(s) =
s + 1

s2 + 5s + 6

— at least in this example, information about the state-space
model (A,B,C) is contained in G(s).

Is this information recoverable? — i.e., is there only one
state-space realization of a given t.f.? Or are there many?

Answer: There are infinitely many!

State-Space Realizations of Transfer Functions

Start with(
ẋ1
ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1
x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
1 1

)︸ ︷︷ ︸
C

(
x1
x2

)

and consider a new state-space model

ẋ = Āx + B̄u, y = C̄x

with

Ā = AT =

(
0 −6
1 −5

)
, B̄ = CT =

(
1
1

)
, C̄ = BT =

(
0 1

)
This is a different state-space model!

State-Space Realizations of Transfer Functions
Claim: The state-space model

ẋ = Āx + B̄u, y = C̄x

with

Ā = AT , B̄ = CT , C̄ = BT

has the same transfer function as the original model with
(A,B,C).

Proof:

C̄(Is− Ā)−1B̄ = BT
(
Is−AT

)−1
CT

= BT
[
(Is−A)T

]−1
CT

= BT
[
(Is−A)−1

]T
CT

=
[
C(Is−A)−1B

]T
= C(Is−A)−1B

State-Space Realizations of Transfer Functions

The state-space model

ẋ = Āx + B̄u, y = C̄x

with

Ā = AT , B̄ = CT , C̄ = BT

has the same transfer function as the original model with
(A,B,C).

But the state-space model is now in the Observer Canonical
Form (OCF):(

ẋ1
ẋ2

)
=

(
0 −6
1 −5

)(
x1
x2

)
+

(
1
1

)
u, y =

(
0 1

)(x1
x2

)

Even More Realizations ...
Yet another realization of G(s) =

s + 1

s2 + 5s + 6
can be extracted

from the partial-fractions decomposition:

G(s) =
s + 1

(s + 2)(s + 3)
=

2

s + 3
− 1

s + 2
.

This is the Modal Canonical Form (MCF):(
ẋ1
ẋ2

)
=

(
−3 0
0 −2

)(
x1
x2

)
+

(
1
1

)
u, y =

(
2 −1

)(x1
x2

)

Then C(Is−A)−1B =
(
2 −1

)(s + 3 0
0 s + 2

)−1(
1
1

)
=
(
2 −1

)(1
s+3 0

0 1
s+2

)(
1
1

)
=
(
2 −1

)(1
s+3
1

s+2

)
=

2

s + 3
− 1

s + 2

State-Space Realizations: Bottom Line

I a given transfer function G(s) can be realized using
infinitely many state-space models

I certain properties make some realizations preferable to
others

I one such property is controllability

Controllability Matrix

Consider a single-input system (u ∈ R):

ẋ = Ax + Bu, y = Cx x ∈ Rn

The Controllability Matrix is defined as

C(A,B) =
[
B |AB |A2B | . . . |An−1B

]
— recall that A is n× n and B is n× 1, so C(A,B) is n× n;
— the controllability matrix only involves A and B, not C

We say that the above system is controllable if its
controllability matrix C(A,B) is invertible.

(This definition is only true for the single-input case; the
multiple-input case involves the rank of C(A,B).)

Controllability Matrix

Consider a single-input system (u ∈ R):

ẋ = Ax + Bu, y = Cx x ∈ Rn

The Controllability Matrix is defined as

C(A,B) =
[
B |AB |A2B | . . . |An−1B

]
We say that the above system is controllable if its
controllability matrix C(A,B) is invertible.

I As we will see later, if the system is controllable, then we
may assign arbitrary closed-loop poles by state feedback of
the form u = −Kx.

I Whether or not the system is controllable depends on its
state-space realization.

Example: Computing C(A,B)

Let’s get back to our old friend:(
ẋ1
ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1
x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
1 1

)︸ ︷︷ ︸
C

(
x1
x2

)

Here, x ∈ R2 =⇒ A ∈ R2×2 =⇒ C(A,B) ∈ R2×2

C(A,B) = [B |AB] AB =

(
0 1
−6 −5

)(
0
1

)
=

(
1
−5

)
=⇒ C(A,B) =

(
0 1
1 −5

)
Is this system controllable?

det C = −1 6= 0 =⇒ system is controllable

Controller Canonical Form
A single-input state-space model

ẋ = Ax + Bu, y = Cx

is said to be in Controller Canonical Form (CCF) is the
matrices A,B are of the form

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
∗ ∗ ∗ . . . ∗ ∗

 , B =


0
0
...
0
1


A system in CCF is always controllable!!

(The proof of this for n > 2 uses the Jordan canonical form, we will

not worry about this.)

CCF with Arbitrary Zeros

In our example, we had G(s) =
s + 1

s2 + 5s + 6
, with a

minimum-phase zero at z = −1.

Let’s consider a general zero location s = z:

G(s) =
s− z

s2 + 5s + 6

This gives us a CCF realization(
ẋ1
ẋ2

)
=

(
0 1
−6 −5

)
︸ ︷︷ ︸

A

(
x1
x2

)
+

(
0
1

)
︸︷︷︸
B

u, y =
(
−z 1

)︸ ︷︷ ︸
C

(
x1
x2

)

Since A,B are the same, C(A,B) is the same =⇒ the system is
still controllable.

A system in CCF is controllable for any locations of the zeros.

