Plan of the Lecture

» Review: Nyquist stability criterion

» Today’s topic: Nyquist stability criterion (more examples);
phase and gain margins from Nyquist plots.

Goal: explore more examples of the Nyquist criterion in action.

Reading: FPE, Chapter 6



Review: Nyquist Plot

Consider an arbitrary transfer function H.

Nyquist plot: Im H (jw) vs. Re H(jw) as w varies from —oo to oo
Im H(jw)

Re H(jw)




Review: Nyquist Stability Criterion

R j»@a K G(s) Y

Goal: count the number of RHP poles (if any) of the
closed-loop transfer function
KG(s)
1+ KG(s)

based on frequency-domain characteristics of the plant
transfer function G(s)



The Nyquist Theorem

R —JEQ—» K G(s) Y

Nyquist Theorem (1928) Assume that G(s) has no poles on
the imaginary axis*, and that its Nyquist plot does not pass
through the point —1/K. Then

N=/Z-P
#(O of —1/K by Nyquist plot of G(s))
= #(RHP closed-loop poles) — #(RHP open-loop poles)

* Easy to fix: draw an infinitesimally small circular path that goes around
the pole and stays in RHP



The Nyquist Stability Criterion

R iQH K G(s) Y

N = Z — P
~—~— ~— ~—
#(O of —1/K) #(unstable CL poles)  #(unstable OL poles)
Z=N+P

Z =0 — N=-P

Nyquist Stability Criterion. Under the assumptions of the
Nyquist theorem, the closed-loop system (at a given gain K) is
stable if and only if the Nyquist plot of G(s) encircles the
point —1/K P times counterclockwise, where P is the number
of unstable (RHP) open-loop poles of G(s).



Applying the Nyquist Criterion

Workflow:
Bode M and ¢-plots —— Nyquist plot

Advantages of Nyquist over Routh—Hurwitz

» can work directly with experimental frequency response
data (e.g., if we have the Bode plot based on
measurements, but do not know the transfer function)

» less computational, more geometric (came 55 years after

Routh)



Example 1 (From Last Lecture)

1

Gr1)s+2) (no open-loop RHP poles)

G(s) =

Characteristic equation:
(s+1)(s+2)+K =0 — $24+3s+K+2=0

From Routh, we already know that the closed-loop system is
stable for K > —2.

We will now reproduce this answer using the Nyquist criterion.



Example 1

1
=" -1 HP pol
G(s) GIDGLY) (no open-loop RHP poles)

Strategy:
» Start with the Bode plot of G

» Use the Bode plot to graph Im G(jw) vs. Re G(jw) for
0<w<

» This gives only a portion of the entire Nyquist plot

(Re G(jw),Im G(jw)), —00 < w < 00

> Symmetry:
G(—jw) = G(w)

— Nyquist plots are always symmetric w.r.t. the real axis!!



Example 1

G(s) = (s+1)1(5+2) (no open-loop RHP poles)

Bode plot: Nyquist plot:

1/2

00

—90°

—180°




Example 1: Applying the Nyquist Criterion

1

R e )

(no open-loop RHP poles)

Nyquist plot: #(O of —1/K)
= #(RHP CL poles) — #(RHP OL poles)

=0

— K € R is stabilizing if and only if

#(O of =1/K) =0

» If K >0, #(0O of =1/K) =0
» If0< —1/K < 1/2,
#(O of —1/K) >0 =
closed-loop stable for K > —2




Example 2

1 1
G — =
(s) (s=1)(s®2+2s+3) 3+s2+s5—3

#(RHP open-loop poles) =1 at s =1

Routh: the characteristic polynomial is
S+2+s+K—3 — 3rd degree

— stable if and only if K —3 >0 and 1 > K — 3.
Stability range: 3<K <4

Let’s see how to spot this using the Nyquist criterion ...



Example 2

1
G(s) =
(s) (s —1)(s2+2s+3)

Bode plot:
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(1 open-loop RHP pole)

Nyquist plot:

w=0 M=1/3 ¢=—180°
w=1 M=1/4, ¢=—180°
w—o00 M—0,¢p— —270°
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Example 2: Applying the Nyqiust Criterion

1

1 -1 HP pol
(s —1)(s2+2s+3) (1 open-loop RHP pole)

G(s) =

Nyquist plot:
I K € R is stabilizing if
and only if

005+

#(O of —1/K) = —1

—0‘.35 —0‘.3(] . —0‘20 —(I‘A 15 —0‘. 10 —0‘.05
Which points —1/K are
encircled once O by this
~0.10F Nyqulst plOt?

#(O of —1/K)
= #(RHP CL poles) only —1/3<-1/K <—-1/4
— #(RHP OL poles) = 3< K <4

=1




Example 2: Nyquist Criterion and Phase Margin

1

(s—1)(s2+2s+3)
3 < K < 4 (using either Routh or Nyquist).

Closed-loop stability range for G(s) =

We can interpret this in terms of phase margin:
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for 3 < K <4, w, is here

So, in this case, stability <= PM > 0 (typical case).



Example 3

Gls) = —2 52

s—1

(8+2)(32—3+1) -

Open-loop poles:

s = —2
82_3+1:O
1\? 3
_ = 2 _0
(S 2> +4
1 V3
S 5 ]2

.. 2 RHP poles

$ 4 5% =542

(LHP)

(RHP)



Example 3

Gls) = s—1 _ s—1
s+ 2)(s2—s5+1) s3+s2—s5+2

Routh:

char. poly. s>+ s> —s+2+ K(s—1)
P+ (K-1)s+2-K (3rd-order)

— stable if and only if

K-1>0
2-K>0
K-1>2-K

— stability range is 3/2 < K < 2



Example 3
G(s) = s—1

(s+2)(s2—s+1)

Bode plot (tricky, RHP
poles/zeros)

180° %

(2 open-loop RHP poles)

¢ = 180° when:
» w=0and w—0
> W= 1/\/5:
jw—1
(jw = D((jw)? = jw + 1)
41
V2
J_ _1_
(5+2) (-3
g _
I
_3 (i _
(%)
(need to guess this, e.g., by
mouseclicking in Matlab)

w:l/ﬁ

+1)
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Example 3
G(s)

_ s—1
3482 —5+2

Bode plot:

180° ¢

(2 open-loop RHP poles)
Nyquist plot:

w=0 M=1/2 ¢=180°
w=1/vV/2 M=2/3, ¢=180°
w—o00 M—0,¢— 180°
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Example 3: Applying the Nyqiust Criterion

s—1
G(s)= — >~
() $3+s2—s+2

(2 open-loop RHP poles)
Nyquist plot:

K € R is stabilizing if
o and only if

#(O of —1/K) = -2

-/ y Which points —1/K are
encircled twice O by this
-02f Nyquist plot?

#(O of —1/K) only —2/3 < —1/K < —1/2
= #(RHP CL poles)
— #(RHP OL poles)l

=2

3




Example 2: Nyquist Criterion and Phase Margin
. s—1
CL stability range for G(s) = PO ——— K €(3/2,2)

We can interpret this in terms of phase margin:

for 3/2 < K < 2, w, is here

So, in this case, stability <= PM < 0 (atypical case; Nyquist
criterion is the only way to resolve this ambiguity of Bode
plots).



Stability Margins
How do we determine stability margins (GM & PM) from the
Nyquist plot?

GM & PM are defined relative to a given K, so consider
Nyquist plot of KG(s) (we only draw the w > 0 portion):

N How do we spot GM & PM?

» GM = 1/M18()o

—if we divide K by Misge,
\ then the Nyquist plot will

? pass through (—1,0),

/ giving M =1, ¢ = 180°

' » PM =

— the phase difference
from 180° when M =1




