Plan of the Lecture

» Review: rules for sketching root loci; introduction to
dynamic compensation

» Today’s topic: lead and lag dynamic compensation

Goal: introduce the use of lead and lag dynamic compensators
for approximate implementation of PD and PI control.

Reading: FPE, Chapter 5



From Last Time: Double Integrator with PD-Control
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Characteristic equation: 14+ K -—— =0
s

What can we conclude from this root locus about stabilization?
» all closed-loop poles are in LHP  (we already knew this
from Routh, but now can visualize)
» nice damping, so can meet reasonable specs
So, the effect of D-gain was to introduce an open-loop zero into

LHP, and this zero “pulled” the root locus into LHP, thus
stabilizing the system.



Dynamic Compensation

Objectives: stabilize the system and satisfy given time response
specs using a stable, causal controller.
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Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller Kps by
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— here, —p is the pole of the controller.
So, we replace the PD controller Kp + Kps by
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Lead & Lag Compensators
Consider a general controller of the form
s+z
s+p

K

— K, z,p > 0 are design parameters

Depending on the relative values of z and p, we call it:
» a lead compensator when z < p

> a lag compensator when z > p

Why the name “lead/lag?” — think frequency response
Y j.w +z
Jw+p

=L(jw+z)—L(jut+p)=v—-¢

> if 2 <p, then ¢ — ¢ >0
(phase lead)

> if 2> p, then ¢ — ¢ <0

(phase lag)



Back to Double Integrator
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Controller transfer function is K Gl z’ where:
s
K K
K = Kp + pKbp, 5 = pap p—oo P
Kp + pKp Kp

S0, as p — 00, 2 tends to a constant, so we get a lead controller.

We use lead controllers as dynamic compensators for
approximate PD control.



Double Integrator & Lead Compensator
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To keep things simple, let’s set Kp = Kp. Then:

K =Kp+pKp=(1+p)Kp
pKp pKp P pooo
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z
Since we can choose p and z directly, let’s take

z=1 and p large.

We expect to get behavior similar to PD control.



Double Integrator & Lead Compensator
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Let’s try a few values of p. Here’s p = 10:

Close to jw-axis, this root locus looks similar to the PD root
locus. However, the pole at s = —10 makes the locus look
different for s far into LHP.



Double Integrator & Lead Compensator
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Root locus for p = 10:

The design seems to look good: nice damping, can meet
reasonable specs.

Any concerns with large values of p?

When p is large, we are very close to PD control, so we run into
the same issue: noise amplification.

(This is just intuition for now — we will confirm it later using
frequency-domain methods.)



Double Integrator & Lead Compensator
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Let’s try p = 5:
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— for this value of p, the root locus is different, not nearly as
nicely damped as for p = 10.



Double Integrator & Lead Compensator
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Let’s try p in between p =5 and p = 10, say p = 9:
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— for this value of p, the branches meet (break in) and separate
(break away) at the same point on the real axis.



Summary on Design Trade-offs

From what we have seen so far:

» p large — good damping, but bad noise suppression (too
close to PD); the branches first break in (meet at the real
axis), then break away.

» p small — noise suppression is better, but RL is too close
to jw-axis, which is not good; no break-in for small values
of p.

» intermediate values of p — transition between two types of
RL; break-in and break-away points are the same.




Lead Controller Design

With a lead controller in place, we have

S+ z
S+p

KL(s)=K Gp(s)
where the lead zero parameter z and lead pole parameter p are
constrained to satisfy z < p.

In our example with G,(s) = 1/s%, we have set z = 1 to
approximate PD control. Then p > 1 is our design parameter
(and, of course, K is the gain parameter in the root locus).

Alternatively, we can assume that p is given (say, from noise
suppression considerations), and we look for z that will give us
a desired pole on the RL.

Is there a systematic procedure for doing this?



Pole Placement Using RL

Back to our example: double integrator with lead compensation

S+ z
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KL(s) = K

Problem: given p and a desired closed-loop pole s, find the
value of z that will guarantee this (if possible).

Solution: use the phase condition
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Pole Placement Using RL
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Thus, we should
have z = —s

Suppose
Y1 = Y2 = 1200,
w3 = 30°.

We want ¢ = 180° + Z i
i

Im

.4
s — given

G0 NP2 =120°
L=

6 Re

(given)

—z=s 0
(from phase

condition)




Control Design Using Root Locus

1
s—1

Control objective: stability and constant reference tracking

Case study: plant transfer function Gy(s) =

In earlier lectures, we saw that for perfect steady-state tracking
we need PI control
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Closed-loop poles are determined by:
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K 1
Characteristic equation: 1+ <Kp + I) < > =0
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To use the RL method, we need to convert it into the Evans
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Root Locus

s+1
L p—
(s) s(s—1)
Rule A: 2 branches

Rule B: branches start at

p1 = 0,ps =1 (RHP!)

Rule C: branches end at z; = —1, £
Rule D: real locus = [0, 1], (—o0, —1]
Rule E: asymptote at 180°

L
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Rule F: jw-crossings:

a(s) + Kb(s) =0
s(s—=1)+K(s+1)=0
S+ (K—-1)s+K=0
Kaitical =1 = wo =1




Root Locus for PI Compensation

» The system is stable for K > 1
(from Routh-Hurwitz)

» For very large K, we get a
completely damped system, with
negative real poles

» Perfect steady-state tracking of
constant references:
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R 1+G.G,
B s(s—1)
Cos(s—1)+K(s+1)

DC gain(R — E) =0 (for K > 1)

» However: 1/s is not a stable
element.



Approximate PI via Dynamic Compensation

PI control achieves the objective of stabilization and perfect
steady-state tracking of constant references; however, just as
with PD earlier, we want a stable controller.

Here’s an idea:
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More generally, if z = K1/Kp, then

S+ z

s+ z
replace K ste by K , where p < z
s
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This is lag compensation (or lag control)!

We use lag controllers as dynamic compensators for
approximate PI control.



