Plan of the Lecture

» Review: transient and steady-state response; DC gain and
the FVT

» Today’s topic: system-modeling diagrams; prototype
2nd-order system

Goal: develop a methodology for representing and analyzing
systems by means of block diagrams; start analyzing a
prototype 2nd-order system.

Reading: FPE, Sections 3.1-3.2; lab manual



System Modeling Diagrams

d
large system s——— smaller blocks (subsystems)
compose

— this is the core of systems theory

We will take smaller blocks from some given library and play
with them to create/build more complicated systems.



All-Integrator Diagrams

Our library will consist of three building blocks:

U14+>©—> Y
B = Uy — U2
(or sY) (orY) U v y=au
integrator summing junction constant gain

Two warnings:

» We can (and will) work either with u,y (time domain) or
with U, Y (s-domain) — will often go back and forth

» When working with block diagrams, we typically ignore
initial conditions.

This is the lowest level we will go to in lectures; in the labs, you
will implement these blocks using op amps.



Example 1

Build an all-integrator diagram for
j=u — Y =U

This is obvious:

u 1/s J 1/s

or




Example 2

(building on Example 1)
Y+ a1y + agy =u <= Y +a1sY +apY =U

24 a1s+ag

Always solve for the highest derivative:

J=—a1y —agy + u
—_————

=v

+ Y
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ap




Example 3

Build an all-integrator diagram for a system with transfer

function
b18 + bo

- s2+ais+ ag
1
s2 4+ a1s+ ag

H(s)

Step 1: decompose H(s) = - (b1s + by)

1 X

s2+a1s+ag

U

b18+bg 4>Y

— here, X is an auxiliary (or intermediate) signal

Note: bg + bys involves differentiation, which we cannot
implement using an all-integrator diagram. But we will see that
we don’t need to do it directly.



Example 3, continued

1
Step 1: d H(s)=———-(b b
ep ecompose H(s) PR (bis + bo)
1 X
U 2+ ais+ag Basieto Y

Step 2: The transformation U — X is from Example 2:

2
s“X
vt d1ys| 2 X

=

ago

1/s X




Example 3, continued
Step 3: now we notice that
Y(s) =b1sX(s) + bo X (s),

and both X and sX are available signals in our diagram. So:

b1

2 X ‘
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Example 3, continued

b b
All-integrator diagram for H(s) = 218¢
s+ a1s+ ap

by
U%Ez){l/s SX‘I/S S +O+ Y
-
Qo

Can we write down a state-space model corresponding to this
diagram?



Example 3, continued

b1
U%E;{l/s SX’us Xty
-
Qo

State-space model:

$?X =U —a1sX — apX Y =b1sX + bpX

I=—a1& —apT +u Yy = bi1Z + box



Example 3, continued

State-space model:

T =—a1% — apr +u

T =, Toa=1T

() = () () ()
T2 —ag —aq xT9 1

This is called controller canonical form.

» Easily generalizes to dimension > 1

y = b1t + box

» The reason behind the name will be made clear later in the

semester



Example 3, wrap-up

b b
All-integrator diagram for H(s) = %
s2 +ays + ag

State-space model:

()= (o ) () 0)e vmo (D)

Important: for a given H(s), the diagram is not unique. But,
once we build a diagram, the state-space equations are unique
(up to coordinate transformations).



Basic System Interconnections

Now we will take this a level higher — we will talk about
building complex systems from smaller blocks, without
worrying about how those blocks look on the inside (they could
themselves be all-integrator diagrams, etc.)

Block diagrams are an abstraction (they hide unnecessary
“low-level” detail ...)

Block diagrams describe the flow of information



Basic System Interconnections: Series & Parallel

Series connection

U

Gy

Ga Y

Y

— =G1Gy

U

(G is common

notation for t.f.’s)

U—

G1G>

—Y

(for SISO systems, the order of G; and G»

does not matter)

Parallel connection

G1

]+

Gi1+ Gy ——Y




Basic System Interconnections: Negative Feedback

Riog' G1 Y
- W Find the transfer function from R
(reference) to Y
Gy
G
ST aGY

U=R-W 12

Y =GiU

=Gi(R-W) G1

=GR - G1GyYY U%H—%%Y




Basic System Interconnections: Negative Feedback

Rj*Qg' G1 Y G
- — Y=—"1_R
W 1+ GGy

G

The gain of a negative feedback loop:

forward gain

1 + loop gain

This is an important relationship, easy to derive — no need to
memorize it.



Unity Feedback

Other feedback configurations are also possible:

R—0E G

U

G

Y

This is called unity feedback — no component on the feedback

path.

Common structure (saw this in Lecture 1):

» R = reference
» U = control input
» Y = output

» FE — error

» G1 = plant (also denoted by P)

G2 = controller or compensator (also denoted by C or K)

v



Unity Feedback
E
R—EOP G Gif Ty

f d gai
Let’s practice with deriving transfer functions: M
1 + loop gain

» Reference R to output Y:
Y G1G>

R 1+ G1Go

» Reference R to control input U:

U Go

R~ 1+ GG

» Error E to output Y:

Y
5= G1Gs (no feedback path)



Block Diagram Reduction

Given a complicated diagram involving series, parallel, and
feedback interconnections, we often want to write down an
overall transfer function from one of the variables to another.

This requires lots of practice: read FPE, Section 3.2 for
examples.

General strategy:

>

>

Name all the variables in the diagram

Write down as many relationships between these variables
as you can

Learn to recognize series, parallel, and feedback
interconnections

Replace them by their equivalents
Repeat



Prototype 2nd-Order System

So far, we have only seen transfer functions that have either
real poles or purely imaginary poles:

1 1 1
s+a’ (s+a)(s+0b)’ s + w?

We also need to consider the case of complex poles, i.e., ones
that have Re(s) # 0 and Im(s) # 0.

For now, we will only look at second-order systems, but this will
be sufficient to develop some nontrivial intuition (dominant
poles).

Plus, you will need this for Lab 1.



Prototype 2nd-Order System

Consider the following transfer function:

w2

H(s) = n
(s) §2 + 2Cwy,s + w2

Comments:
» ( > 0,w, > 0 are arbitrary parameters

» the denominator is a general 2nd-degree monic polynomial,
just written in a weird way

» H(s) is normalized to have DC gain = 1 (provided DC gain
exists)



Prototype 2nd-Order System

w?

H(s) = n
() $2 + 2Cwp s + w2

By the quadratic formula, the poles are:

s = —Cwp twpV/ (% -1
= —tn (Ci N 1)

The nature of the poles changes depending on (:

» (>1 both poles are real and negative

» (=1 one negative pole

» (<1 two complex poles with negative real parts
§=—0 % jwg

where o= Cwp, wg = wnp\/1— (2



Prototype 2nd-Order System

2

w
H(s) = “ , <1
(5) 52 + 2Cwps + w? ¢

The poles are
5= —Cwp £ jwup V1 - =—0 =% juwy

Im
. wa = wn/T=C2 Note that
! <
- 0w = (Pl 4wl - (%l
o =Cwn 0 Re _ wi
o cosy = Wn =(
n




2nd-Order Response
Let’s compute the system’s impulse and step response:
2 2
w w
H(s) = L = 4 5
82+ 2wns +w?  (s+0)2+ w3

» Impulse response:

w2 Jwq)w,
h(t)zf‘l{H@)}:f_l{m}
w2 _,

tsin(wgt) (table, # 20)
wq

> Step response:

T e )

=1-e (cos(wdt) +Z sin(wdt)> (table, #21)
wy




2nd-Order Step Response
w2 (.U2

T 2+ 2wns + w2 (s+0)?+w?

H(s)

u(t) = 1(t) — y(t)=1—e7" <cos(wdt) + wi sin(wdt))
d
where 0 = (wy, and wg = wy/1 — ¢? (damped frequency)
y(®

The parameter ( is called
15) the damping ratio

/\ > ( > 1: system is
100 / overdamped
\/ > ( < 1: system is

— (=01
0.5} £=09 underdamped
— =1 » ( = 0: no damping

e (wa = wn)




