Plan of the Lecture

» Review: dynamic response; transfer functions; transient
and steady-state response

» Today’s topic: dynamic response (transient and
steady-state) with arbitrary 1.C.’s

Goal: develop a methodology for characterizing the output of a
given system for a given input.

Reading: FPE, Section 3.1, Appendix A



Dynamic Response

h F——Y

Problem: compute the response y to a given input «
under a given set of initial conditions.

In particular, we wish to know both the transient response (due
to I.C.’s) and the steady-state response (once the effect of the
I.C.’s “washes away”).



Laplace Transforms Revisited
(see FPE, Appendix A)

One-sided (or unilateral) Laplace transform:

Z{f(t) / f(t)e stdt (really, from 07)

— for simple functions f, can compute .Z f by hand.

Example: unit step

o 1
0 =

Z{1(t)} = / e stdt = —ée_St (pole at s =0)
0

— this is valid provided Re(s) > 0, so that e™5! ——— 2% 0.



Laplace Transforms Revisited
Example: f(t) = cost

1 . 1 .
L{cost} =2 {26]t + 26_]t} (Euler’s formula)
1 1 L
= 5,,?{6] }+ 53{6 s (linearity)
L{e') = /00 elle™stdt = /oo eIt dt = #e(jfs)t =
0 0 J—s 0
= (oleats=))
R pole at s = j
. o0 . o0 ) 1 . 00
Lle ) = / e Jte st = / e~ Utsltqp — — _ e Uts)t
0 0 J+s 0
1
= le at s = —j
e (pole at s 7)

— in both cases, require Re(s) > 0, i.e., s must lie in the right
half-plane (RHP)



Laplace Transforms Revisited

Example: f(t) = cost
1 o 1
ZL{cost} = 53{63 }—1—5.,2”{6 7
1< 1 1 >
+
j—s j+s

—s+/—s>

(J—98)+5s)

-5 (5
g )

= (poles at s = +j)

w\»—l l\D\

for Re(s) >0



Laplace Transforms Revisited

Convolution: Z{f xg} = ZL{f}%{g}
(useful because Y (s) = H(s)U(s))

Example: y=-y+u y(0) =0
Compute the response for u(t) = cost

We already know

1

H(s) = o] (from earlier example)
S .

U(s) = 21 (just proved)

S

= Y() = HEUG) = oy

y(t) = 27y}

— can’t find Y (s) in the tables. So how do we compute y?



Method of Partial Fractions
) -1 S
Problem: Compute f {(34—1)(524—1)}
This Laplace transform is not in the tables, but let’s look at the
table anyway. What do we find?

1 UG
s+1 z {5—1—1}_6 (#7)
! gl 1 =sint (F17)
s2+1 2r1f o
s 1 s B
211 Z {32 n 1} = cost (#18)

— so we see some things that are similar to Y'(s), but not quite.

This brings us to the method of partial fractions:
» boring (i.e., character-building), but very useful
» allows us to break up complicated fractions into sums of
simpler ones, for which we know .Z~! from tables



Method of Partial Fractions
Problem: compute .2~ '{Y (s)}, where

S

e

We seek a, b, ¢, such that

b
Y(s) = % + % (need bs + ¢ so that deg(num) = deg(den) — 1)

» Find a: multiply by s + 1 to isolate a

s (s+ 1)(as+b)

(5+1)Y(5)282+1:a+ Y

— now let s = —1 to “kill” the second term on the RHS:

a=(s 1 Y(s)| = —%



Method of Partial Fractions

Problem: compute .2~ '{Y (s)}, where
s

Y(§) = — >

®) = e

We seek a, b, ¢, such that

a bs +c
Y(s) = ey + 21 (need bs + ¢ so that deg(num) = deg(den) — 1)

» Find b: multiply by s + 1 to isolate bs + ¢
s a(s®+1)

2
)Y (s) = = b
S+ DY) = Z3 = = Fhste
— now let s = j to “kill” the first term on the RHS:
, J
bj+c=(s>+1)Y(s = —
j+e= (Y| _ =

Match Re(:) and Im(-) parts:
i jd-g) 1

+bj = = : =
S T e ) T )R

(=
Il
o
Il
N[ =




Method of Partial Fractions
Problem: compute .2~ '{Y (s)}, where

s
Y(s)= —
O = e+
We found that
1 S 1

YO = Yy Tae )

Now we can use linearity and tables:

y(t) = 27" {_2(5 +1) + 2(s2 + 1) + 2(s? + 1)}

1) 1 lyaf_s loaf 1
B 2"5’” {.s+1}+2‘$ {52+1}+2‘$ {32+1}

€ COS ! 2 S ! ( : tablss)
2 2
1

1
= ——e '+ ——cos(t —m/4) (cos(a—b) = cosacosb+ sinasinb)

2 V2



Transient and Steady-State Response
Consider the system 1§ = —y +u y(0) =0

1, 1
u(t) = cost —» y(t):—ie —|—\ﬁcos(t—7r/4)

vV
steady-state
response

transient
response

— transient response vanishes as t — oo (we will see later why)
Let’s compare against the frequency response formula:

1 ) 1
Hs) = = HG) =

u(t) = cost has A=1and w =1, so

y(t) = M(1) cos (t + (1))

= icos (t—m/4)

V2

— the freq. response formula gives only the steady-state part!!



Transient and Steady-State Response
Consider the system 1§ = —y +u y(0) =0
We computed the response to u(t) = cost in two ways:
1 1
t)=——e '+ ——=cos(t—7/4
Wt) = 57"+ s coslt = /1)
— using the method of partial fractions;

y(t) = \}5 cos (t — m/4)

— using the frequency response formula.

Q: Which answer is correct? And why?
1
A At t =0, 7z cos(t — m/4) = 3 # 0, which is inconsistent

with the initial condition y(0) = 0. The term —ie~* i
t—

D=

cancels the steady-state term, so indeed y(0) = 0.

Therefore, the first formula is correct.



Transient and Steady-State Response

Main message: the frequency response formula only gives the
steady-state part of the response, but the inverse Laplace
transform gives the whole response (including the transient
part).

— we will now see how to deal with nonzero I.C.’s ...



Laplace Transforms and Differentiation

Given a differentiable function f, what is the Laplace transform
Z{f'(t)} of its time derivative?

217 (1)} = / " e at

= (e
= —f(0) 4+ sF(s)

— provided f(t)e”* — 0 ast — oo

00 o0
. + s/ e St f(t)dt (integrate by parts)
0

f{f’(t)} = sF(s) — f(0) — this is how we account for .C.’s

Similarly:
2{f")} = 2{(f'()'} = s2{f' (1)} - £'(0)
= sF(s) — s£(0) — f'(0)



Example

Consider the system

J+39+2y =u, y(0) = 4(0) =0
(need two I.C.’s for 2nd-order ODE’s)
Y(s)
Ul(s)

— take Laplace transform of both sides (zero I.C.’s):

Let’s compute the transfer function: H(s) =

s2Y (s) + 3sY (s) + 2Y (s) = U(s) H(s) =



Example (continued)

g+3y+2y=u,  y(0)=a,50)=5
Compute the step response, i.e., response to u(t) = 1(¢)
Caution!! Y (s) = H(s)U(s) no longer holds if « # 0 or 8 # 0
Again, take Laplace transforms of both sides, mind the 1.C.’s:
s2Y (s) — sa — B+ 3sY(s) — 3o+ 2Y (s) = U(s)
U(s) = Z{1(t)} = 1/s, which gives

52Y(s) —sa—fF+3sY(s) —3a+2Y(s) = é

as+ (3a+8)+1  as®+(Ba+p)s+1

Y(s) = $2435+2 s(s+1)(s+2)

Note: if « = 8 =0, then Y (s) = m = H(s)U(s)



Example (continued)

Compute the step response of

i+ 3y +2y =u, y(0) =, y(0) =

as®+ (Ba+B)s+1 o
v = S EEEDEL - 2y

Use the method of partial fractions:

c
s+2

— thisgivesa=1/2, b=2a+8—-1, c=—a—[+1/2

as?’+(Ba+B)s+1  a b

s(s+1)(s+2) s+3—|—1+

1 1 —a—F+1/2
Y(s) = — 2 -1
(5) 25+(a+6 )s+1+ s+ 2

Y1) = 27V (5)) = 5100 + Qo+ B— Ve + (1/2— a— Bl




Example (continued)
The step response of
j+39+2y=u y0)=a,y(0) =5

is given by

y(t) = %1@) Qa4 B—De +(1/2—a— B

What are the transient and the steady-state terms?

» The transient terms are e, e=2! (decay to zero at exponential
rates —1 and —2)
1
Note the poles of H(s) = ——————— at s= —1 and s = —2

(s+1)(s+2)
— these are stable poles (both lie in LHP)

> the steady-state part is %1(15) — converges to steady-state value
of 1/2



DC Gain

h ——Y

Definition: the steady-state value of the step response is called
the DC gain of the system.

DC gain = y(o0) = tlim y(t) for u(t) = 1(t)
—00
In our example above, the step response is
1
y(t) = il(t) +QRa+p—1Net+(1/2—a—Be

therefore, DC gain = y(c0) = 1/2



Steady-State Value

U h ——vy
u(t) = 1(1) U(s) = % — Y(s) = H§8)
— can we compute y(oco) from Y (s)?

Let’s look at some examples:

1
>Y(s)*8+a,a>0 (pole at s = —a < 0)
y(t) =e = y(oo)=0
1
(s) s+a’a<0 (pole at s a > 0)
y(t) =e™® = y(oo) =00
1
> Y(s) = o w€eR (poles at s = +jw, purely imaginary)
y(t) =sin(wt) == y(oo) does not exist
> Y(s) = < (pole at the origin, s = 0)

y(t) =cl(t) — ylo) =c



The Final Value Theorem
We can now deduce the Final Value Theorem (FVT):

If all poles of sY (s) are strictly stable or lie in the open left
half-plane (OLHP), i.e., have Re(s) < 0, then

y(o00) = lim sY (s).

s—0

In our examples, multiply Y (s) by s, check poles:

1 s
> Y = Y =
(8) =+ sY(s) = ——
if a > 0, then y(o0) = 0; if @ < 0, FVT does not give correct
answer
s
" YO =mre Y- ars

poles are purely imaginary (not in OLHP), FVT does not give
correct answer

> Y(s) = z sY(s)=c

poles at infinity, so y(co) = ¢ — FVT gives correct answer



Back to DC Gain

Step response: Y(s) =

— if all poles of sY (s) = H(s) are strictly stable, then
y(oo) = lim H(s)
s—0
by the FVT.

Example: compute DC gain of the system with transfer function

_ s%+5s+3
8344542545

All poles of H(s) are strictly stable (we will see this later using
the Routh—Hurwitz criterion), so

H(s)




