
Plan of the Lecture

I Review: dynamic response; transfer functions; transient
and steady-state response

I Today’s topic: dynamic response (transient and
steady-state) with arbitrary I.C.’s

Goal: develop a methodology for characterizing the output of a
given system for a given input.

Reading: FPE, Section 3.1, Appendix A



Dynamic Response

u yh

Problem: compute the response y to a given input u
under a given set of initial conditions.

In particular, we wish to know both the transient response (due
to I.C.’s) and the steady-state response (once the effect of the
I.C.’s “washes away”).



Laplace Transforms Revisited
(see FPE, Appendix A)

One-sided (or unilateral) Laplace transform:

L {f(t)} ≡ F (s) =

∫ ∞
0

f(t)e−stdt (really, from 0−)

— for simple functions f , can compute L f by hand.

Example: unit step

f(t) = 1(t) =

{
1, t ≥ 0

0, t < 0

L {1(t)} =

∫ ∞
0

e−stdt = −1

s
e−st

∣∣∣∞
0

=
1

s
(pole at s = 0)

— this is valid provided Re(s) > 0, so that e−st
t→+∞−−−−→ 0.



Laplace Transforms Revisited
Example: f(t) = cos t

L {cos t} = L

{
1

2
ejt +

1

2
e−jt

}
(Euler’s formula)

=
1

2
L {ejt}+

1

2
L {e−jt} (linearity)

L {ejt} =

∫ ∞
0

ejte−stdt =

∫ ∞
0

e(j−s)tdt =
1

j − s
e(j−s)t

∣∣∣∞
0

= − 1

j − s
(pole at s = j)

L {e−jt} =

∫ ∞
0

e−jte−stdt =

∫ ∞
0

e−(j+s)tdt = − 1

j + s
e−(j+s)t

∣∣∣∞
0

=
1

j + s
(pole at s = −j)

— in both cases, require Re(s) > 0, i.e., s must lie in the right
half-plane (RHP)



Laplace Transforms Revisited

Example: f(t) = cos t

L {cos t} =
1

2
L {ejt}+

1

2
L {e−jt}

=
1

2

(
− 1

j − s
+

1

j + s

)
=

1

2

(
− ��j − s+ ��j − s
(j − s)(j + s)

)
=

1

2

(
−2s

−1 + ��js −��js − s2

)
=

s

s2 + 1
(poles at s = ±j)

for Re(s) > 0



Laplace Transforms Revisited

Convolution: L {f ? g} = L {f}L {g}
(useful because Y (s) = H(s)U(s))

Example: ẏ = −y + u y(0) = 0

Compute the response for u(t) = cos t

We already know

H(s) =
1

s+ 1
(from earlier example)

U(s) =
s

s2 + 1
(just proved)

=⇒ Y (s) = H(s)U(s) =
s

(s+ 1)(s2 + 1)

y(t) = L −1{Y }

— can’t find Y (s) in the tables. So how do we compute y?



Method of Partial Fractions

Problem: compute L −1
{

s

(s+ 1)(s2 + 1)

}
This Laplace transform is not in the tables, but let’s look at the
table anyway. What do we find?

1

s+ 1
L −1

{
1

s+ 1

}
= e−t (#7)

1

s2 + 1
L −1

{
1

s2 + 1

}
= sin t (#17)

s

s2 + 1
L −1

{
s

s2 + 1

}
= cos t (#18)

— so we see some things that are similar to Y (s), but not quite.

This brings us to the method of partial fractions:

I boring (i.e., character-building), but very useful

I allows us to break up complicated fractions into sums of
simpler ones, for which we know L −1 from tables



Method of Partial Fractions
Problem: compute L −1{Y (s)}, where

Y (s) =
s

(s+ 1)(s2 + 1)

We seek a, b, c, such that

Y (s) =
a

s+ 1
+
bs+ c

s2 + 1
(need bs+ c so that deg(num) = deg(den)− 1)

I Find a: multiply by s+ 1 to isolate a

(s+ 1)Y (s) =
s

s2 + 1
= a+

(s+ 1)(as+ b)

(s2 + 1)

— now let s = −1 to “kill” the second term on the RHS:

a = (s+ 1)Y (s)
∣∣∣
s=−1

= −1

2



Method of Partial Fractions
Problem: compute L −1{Y (s)}, where

Y (s) =
s

(s+ 1)(s2 + 1)

We seek a, b, c, such that

Y (s) =
a

s+ 1
+
bs+ c

s2 + 1
(need bs+ c so that deg(num) = deg(den)− 1)

I Find b: multiply by s2 + 1 to isolate bs+ c

(s2 + 1)Y (s) =
s

s+ 1
=
a(s2 + 1)

s+ 1
+ bs+ c

— now let s = j to “kill” the first term on the RHS:

bj + c = (s2 + 1)Y (s)
∣∣∣
s=j

=
j

1 + j

Match Re(·) and Im(·) parts:

c+ bj =
j

1 + j
=

j(1− j)
(1 + j)(1− j)

=
1

2
+
j

2
=⇒ b = c = 1

2



Method of Partial Fractions
Problem: compute L −1{Y (s)}, where

Y (s) =
s

(s+ 1)(s2 + 1)

We found that

Y (s) = − 1

2(s+ 1)
+

s

2(s2 + 1)
+

1

2(s2 + 1)

Now we can use linearity and tables:

y(t) = L −1
{
− 1

2(s+ 1)
+

s

2(s2 + 1)
+

1

2(s2 + 1)

}
= −1

2
L −1

{
1

s+ 1

}
+

1

2
L −1

{
s

s2 + 1

}
+

1

2
L −1

{
1

s2 + 1

}
= −1

2
e−t +

1

2
cos t+

1

2
sin t (from tables)

= −1

2
e−t +

1√
2

cos(t− π/4) (cos(a− b) = cos a cos b+ sin a sin b)



Transient and Steady-State Response
Consider the system ẏ = −y + u y(0) = 0

u(t) = cos t −→ y(t) = −1

2
e−t︸ ︷︷ ︸

transient
response

+
1√
2

cos(t− π/4)︸ ︷︷ ︸
steady-state
response

— transient response vanishes as t→∞ (we will see later why)

Let’s compare against the frequency response formula:

H(s) =
1

s+ 1
=⇒ H(jω) =

1

jω + 1

u(t) = cos t has A = 1 and ω = 1, so

y(t) = M(1) cos
(
t+ ϕ(1)

)
=

1√
2

cos
(
t− π/4

)
— the freq. response formula gives only the steady-state part!!



Transient and Steady-State Response
Consider the system ẏ = −y + u y(0) = 0

We computed the response to u(t) = cos t in two ways:

y(t) = −1

2
e−t +

1√
2

cos(t− π/4)

— using the method of partial fractions;

y(t) =
1√
2

cos
(
t− π/4

)
— using the frequency response formula.

Q: Which answer is correct? And why?

A: At t = 0,
1√
2

cos(t− π/4) = 1
2 6= 0, which is inconsistent

with the initial condition y(0) = 0. The term −1
2e
−t
∣∣∣
t=0

= −1
2

cancels the steady-state term, so indeed y(0) = 0.

Therefore, the first formula is correct.



Transient and Steady-State Response

Main message: the frequency response formula only gives the
steady-state part of the response, but the inverse Laplace
transform gives the whole response (including the transient
part).

— we will now see how to deal with nonzero I.C.’s ...



Laplace Transforms and Differentiation
Given a differentiable function f , what is the Laplace transform
L {f ′(t)} of its time derivative?

L {f ′(t)} =

∫ ∞
0

f ′(t)e−stdt

= f(t)e−st
∣∣∣∞
0

+ s

∫ ∞
0

e−stf(t)dt (integrate by parts)

= −f(0) + sF (s)

— provided f(t)e−st → 0 as t→∞

L {f ′(t)} = sF (s)− f(0) — this is how we account for I.C.’s

Similarly:

L {f ′′(t)} = L {(f ′(t))′} = sL {f ′(t)} − f ′(0)

= s2F (s)− sf(0)− f ′(0)



Example

Consider the system

ÿ + 3ẏ + 2y = u, y(0) = ẏ(0) = 0

(need two I.C.’s for 2nd-order ODE’s)

Let’s compute the transfer function: H(s) =
Y (s)

U(s)

— take Laplace transform of both sides (zero I.C.’s):

s2Y (s) + 3sY (s) + 2Y (s) = U(s) H(s) =
Y (s)

U(s)
=

1

s2 + 3s+ 2



Example (continued)

ÿ + 3ẏ + 2y = u, y(0) = α, ẏ(0) = β

Compute the step response, i.e., response to u(t) = 1(t)

Caution!! Y (s) = H(s)U(s) no longer holds if α 6= 0 or β 6= 0

Again, take Laplace transforms of both sides, mind the I.C.’s:

s2Y (s)− sα− β + 3sY (s)− 3α+ 2Y (s) = U(s)

U(s) = L {1(t)} = 1/s, which gives

s2Y (s)− sα− β + 3sY (s)− 3α+ 2Y (s) =
1

s

Y (s) =
αs+ (3α+ β) + 1

s

s2 + 3s+ 2
=
αs2 + (3α+ β)s+ 1

s(s+ 1)(s+ 2)

Note: if α = β = 0, then Y (s) =
1

s(s+ 1)(s+ 2)
= H(s)U(s)



Example (continued)
Compute the step response of

ÿ + 3ẏ + 2y = u, y(0) = α, ẏ(0) = β

Y (s) =
αs2 + (3α+ β)s+ 1

s(s+ 1)(s+ 2)
y(t) = L −1{Y (s)}

Use the method of partial fractions:

αs2 + (3α+ β)s+ 1

s(s+ 1)(s+ 2)
=
a

s
+

b

s+ 1
+

c

s+ 2

— this gives a = 1/2, b = 2α+ β − 1, c = −α− β + 1/2

Y (s) =
1

2s
+ (2α+ β − 1)

1

s+ 1
+
−α− β + 1/2

s+ 2

y(t) = L −1{Y (s)} =
1

2
1(t) + (2α+ β − 1)e−t + (1/2− α− β)e−2t



Example (continued)

The step response of

ÿ + 3ẏ + 2y = u, y(0) = α, ẏ(0) = β

is given by

y(t) =
1

2
1(t) + (2α+ β − 1)e−t + (1/2− α− β)e−2t

What are the transient and the steady-state terms?

I The transient terms are e−t, e−2t (decay to zero at exponential
rates −1 and −2)

Note the poles of H(s) =
1

(s+ 1)(s+ 2)
at s = −1 and s = −2

— these are stable poles (both lie in LHP)

I the steady-state part is 1
21(t) — converges to steady-state value

of 1/2



DC Gain

u yh

Definition: the steady-state value of the step response is called
the DC gain of the system.

DC gain = y(∞) = lim
t→∞

y(t) for u(t) = 1(t)

In our example above, the step response is

y(t) =
1

2
1(t) + (2α+ β − 1)e−t + (1/2− α− β)e−2t

therefore, DC gain = y(∞) = 1/2



Steady-State Value
u yh

u(t) = 1(t) U(s) =
1

s
=⇒ Y (s) =

H(s)

s

— can we compute y(∞) from Y (s)?

Let’s look at some examples:

I Y (s) =
1

s+ a
, a > 0 (pole at s = −a < 0)

y(t) = e−at =⇒ y(∞) = 0

I Y (s) =
1

s+ a
, a < 0 (pole at s = −a > 0)

y(t) = e−at =⇒ y(∞) =∞

I Y (s) =
1

s2 + ω2
, ω ∈ R (poles at s = ±jω, purely imaginary)

y(t) = sin(ωt) =⇒ y(∞) does not exist

I Y (s) =
c

s
(pole at the origin, s = 0)

y(t) = c1(t) =⇒ y(∞) = c



The Final Value Theorem
We can now deduce the Final Value Theorem (FVT):

If all poles of sY (s) are strictly stable or lie in the open left
half-plane (OLHP), i.e., have Re(s) < 0, then

y(∞) = lim
s→0

sY (s).

In our examples, multiply Y (s) by s, check poles:

I Y (s) =
1

s+ a
sY (s) =

s

s+ a
if a > 0, then y(∞) = 0; if a < 0, FVT does not give correct
answer

I Y (s) =
1

s2 + ω2
sY (s) =

s

s2 + ω2

poles are purely imaginary (not in OLHP), FVT does not give
correct answer

I Y (s) =
c

s
sY (s) = c

poles at infinity, so y(∞) = c – FVT gives correct answer



Back to DC Gain
u yh

Step response: Y (s) =
H(s)

s

— if all poles of sY (s) = H(s) are strictly stable, then

y(∞) = lim
s→0

H(s)

by the FVT.

Example: compute DC gain of the system with transfer function

H(s) =
s2 + 5s+ 3

s3 + 4s+ 2s+ 5

All poles of H(s) are strictly stable (we will see this later using
the Routh–Hurwitz criterion), so

y(∞) = H(s)
∣∣∣
s=0

=
3

5
.


