ECE 463: Digital Communications Lab.

Lecture 4: Modulation Part I Haitham Hassanieh

Previous Lecture:

- ✓ Pulse Shaping Filters
- ✓ Matched Filters
- ✓ Symbol Timing Recovery
- ✓ Eye Diagrams

This Lecture:

- Channel Distortion
- Non-Coherent vs. Coherent Modulation

Digital Communication System

Digital Communication System

Channel adds noise (AWGN)!

Channel delays the signal!

Channel attenuates the signal (Pathloss)

$$P_{RX} = G_{TX}G_{RX}\frac{\lambda^2}{(4\pi d)^2}P_{TX} \quad \Longrightarrow \quad |h| \propto \frac{\lambda}{d}$$

x(t)

 $\Rightarrow y(t) = \mathbf{h} x(t - \tau) + v(t)$

Channel rotates the signal (Adds Phase)

$$h \propto \frac{\lambda}{d} e^{j\phi}$$

x(t)

 $h \times x(t) + v(t)$

Ι

The Channel Consider QAM Modulation

Demolulating correctly requires COHERENCE! iecture ed to estimate & correct for the channel h wext lecture ed to estimate EQUALIZATION

Modulation

Based on the type of receiver

Coherent

Signal at RX must be phase coherent with TX signal to be able to decode correctly.

Need to correct for channel as well as timing and frequency offsets.

Non-Coherent

No need for phase coherence at the receiver to decode.

"No" need for channel equalization

Simpler Receiver Architecture

Modulation Based on how the bits are encoded FSK ASK PSK Amplitude Phase Frequency Shift Keying Shift Keying Shift Keying 0 0 0 0 1 0 1 1 1 0 1 0 0 0 M-PSK $\pi/2$ $3\pi/4$ $\pi/4$ Phase is integer multiple of: $\frac{2\pi}{\pi}$ π 0 Bits per symbol: $\log_2 M$ $7\pi/4$ $5\pi/4$ $3\pi/2$

Modulation Based on how the bits are encoded ASK FSK PSK QAM Amplitude Phase Frequency Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK) 0 0 1 0 0 1 0 0 1 0 1 0 0 1

1

ModulationBased on how the bits are encodedASKFSKPSKASKFSKPSKQAMAmplitudeFrequencyPhasePhase &
AmplitudeShift KeyingShift KeyingShift KeyingAmplitude

Frequency Shift Keying

4-QAM

0

0

0

Modulation

(APSK)

Modulation Based on how the bits are encoded FSK ASK PSK QAM Amplitude Phase Frequency Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK)

1

0

0

1

0

0

1

0

0

1

0

0

1

0

Modulation Based on how the bits are encoded ASK FSK PSK QAM

Amplitude Shift Keying Frequency Shift Keying

Phase & Amplitude Modulation (APSK)

Modulation

Based on how the bits are encoded

Modulation Based on how the bits are encoded ASK FSK QAM PSK Amplitude Frequency Phase Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK) 0 0 1 0 1 1 0 0 0 0 0 0

M-QAM

IQ gird: $\sqrt{M} \times \sqrt{M}$ Bits per symbol: $\log_2 M$

Modulation

Based on how the bits are encoded

Modulation Based on how the bits are encoded ASK FSK QAM PSK Amplitude Frequency Phase Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK) 0 0 1 0 0 0 1 0 0 1 PPM

Pulse Position Modulation

Modulation Based on how the bits are encoded ASK FSK QAM PSK Amplitude Phase Frequency Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK) 0 0 1 0 0 0 1 0 0 1 PPM **Pulse Position** Modulation

Modulation Based on how the bits are encoded ASK FSK QAM PSK Amplitude Frequency Phase Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK) 0 0 1 0 0 0 1 0 0 1 PPM

Pulse Position Modulation

0

1

0

1

0

Modulation Based on how the bits are encoded ASK FSK QAM PSK Amplitude Phase Frequency Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK) 0 0 1 0 0 0 0 1 0 PPM PWM Pulse Width **Pulse Position** Modulation Modulation 1 0 0 1 0 1 0 1 0 0

Bits:

Modulation Based on how the bits are encoded ASK FSK QAM PSK Amplitude Phase Frequency Phase & Shift Keying Shift Keying Shift Keying Amplitude Modulation (APSK) 0 0 1 0 0 0 1 0 0 1 PPM PWM Pulse Width **Pulse Position** Modulation Modulation

0

1

0

0

1

1

0

0

1

0

Modulation

Based on how the bits are encoded

Modulation

Based on how the bits are encoded

DBPSK: Differential Binary Phase Shit Keying

BPSK Modulation $0 \rightarrow -1$ $1 \rightarrow +1$ $\hat{b} = 0 \text{ if } x(t) < 0$

$$x(t) - \begin{cases} b = 0 \text{ if } x(t) < 0\\ \hat{b} = 1 \text{ if } x(t) > 0 \end{cases}$$

y(t) = hx(t)

→ Real{y(t)} = Real{h}x(t)Without knowing h, it is not

possible to decode correctly.

DBPSK Modulation $0 \rightarrow x(t+1) = -x(t)$ $1 \rightarrow x(t+1) = +x(t)$ $\hat{b} = 0$ if $x(t)x^*(t+1) < 0$ $\hat{b} = 1 \ if \ x(t)x^*(t+1) > 0$ y(t) = hx(t) $\rightarrow y(t)y^*(t+1)$ $= hx(t)h^{*}x^{*}(t+1)$

DBPSK: Differential Binary Phase Shit Keying

BPSK Modulation $0 \rightarrow -1$ $1 \rightarrow +1$

$$x(t) - \begin{cases} \hat{b} = 0 \text{ if } x(t) < 0\\ \hat{b} = 1 \text{ if } x(t) > 0 \end{cases}$$

y(t) = hx(t)

 $\rightarrow \text{Real}\{y(t)\} = \text{Real}\{h\}x(t)$

Without knowing h, it is not possible to decode correctly.

DBPSK Modulation $0 \rightarrow x(t+1) = -x(t)$ $1 \rightarrow x(t+1) = +x(t)$

 $\hat{b} = 0 \ if \ x(t)x^*(t+1) < 0$ $\hat{b} = 1 \ if \ x(t)x^*(t+1) > 0$

y(t) = hx(t)

$$→ y(t)y^{*}(t+1) = |h|^{2}x(t)x^{*}(t+1)$$

Without knowing *h*, it is possible to decode correctly.

Modulation

Based on how the bits are encoded

Definitions & Variables

- x(t): Transmitted Baseband Signal
- v(t): Additive Gaussian Noise
- y(t): Received Signal
- τ : Propagation delay in the signal
- *h*: Channel Coefficient.
- *P_{RX}*: Received Power
- *P_{TX}*: Transmitted Power
- *G_{RX}*: Receiver Antenna Gain
- *G_{TX}*: Transmitter Antenna Gain

- λ : Wavelength
- *d*: Distance between transmitter and receiver
- ϕ : Channel Phase
- f_c : Carrier Frequency
- c: Speed of light

•
$$I = \Re\{x(t)\} \& Q = \Im\{x(t)\}$$

- *M*: Number of constellation points in modulation
- \hat{b} : Decoded bit