ECE 463: Digital Communications Lab.

Lecture 13: IoT III Haitham Hassanieh

Previous Lecture:

- ✓ Backscatter Communication
- ✓ RFIDs

This Lecture:

- Bluetooth
- DSSS & FHSS
- Urap Up

IoT Technologies

Bluetooth

Bluetooth

Bluetooth

Bluetooth v4.0+: BLE Bluetooth Low Energy

SMART

Bluetooth vs. Bluetooth Low Energy

Classic Bluetooth

- Frequency: 2400 MHz 2483.5 MHz
- Bands: 79 channels (1 MHz sep.)
 32 for device discovery
- Connection Setup: 100 ms
- Power: 1
- Range: up to 150m
- Data Rate: 2-3 Mbps
- Modulation: GFSK
- FHSS:

1600 hops/sec 625μsec (dwell time) Pseudo Random Seq.

- **Bluetooth Low Energy**
- 2400 MHz 2483.5 MHz
- 40 channels (2 MHz sep.)
- 3 for device discovery
- ≈3ms
- 20 to 100x lower power
- up to 50m
- 200 Kbps 1Mbps
- GFSK
- Longer dwell time max (400 msec)

Frequency hopping: $f_{n+1} = (f_n + hop) \mod 37$

Frequency hopping: $f_{n+1} = (f_n + hop) \mod 37$

What about Interference from WiFi?

Use Adaptive Frequency Hopping!

Use Adaptive Frequency Hopping!

Avoid bad channels by remapping them to other channels.

Use Adaptive Frequency Hopping!

Avoid bad channels by remapping them to other channels.

Spread Spectrum Technology

- **Problem:** frequency dependent fading & interference can wipe out narrow band signals for duration of the interference
- Solution: spread the narrow band signal into a broad band signal using a special code
- XOR the signal with PN sequence (chipping sequence)

Code Division Multiple Access (CDMA)

- DSSS enables multiple users to transmit at the same time using CDMA
- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- *encoded signal* = (original data) X (chipping sequence)
- *decoding:* inner-product of encoded signal and chipping sequence

CDMA encode/decode

CDMA: two-sender interference

Code Division Multiple Access (CDMA)

• Ideally, need codes to have good: Auto-correlation properties: $c_i(t) \cdot c_i(t) = 1$ Cross-correlation properties: $c_i(t) \cdot c_j(t) = 0$ for $j \neq i$

$$\left(\sum_{i} h_{i}d_{i}(t) c_{i}(t)\right) \cdot c_{i}(t) = h_{i}d_{i}(t)$$

• Need orthogonal codes:

For N users, length of code is exponential in N $\rightarrow 2^{N-1}$

• Example of good codes: Gold Codes, Walsh Codes

DSSS enables decoding at very low SNR

- Transmit: $bit \times c(t)$
- Receiver: $h \times bit \times c(t) + n(t)$

• Decode:
$$\sum_{t=1}^{M} h \times bit \times c(t) \times c(t) + n(t) \times c(t)$$
$$= M \times h \times bit + \sum_{t=1}^{M} n(t) \times c(t)$$
$$= M \times h \times bit + n'(t)$$

DSSS enables decoding at very low SNR

- Transmit: $bit \times c(t)$
- Receiver: $h \times bit \times c(t) + n(t)$

$$n(t) \sim N(0, \sigma)$$
$$n'(t) \sim N(0, \sqrt{M}\sigma)$$

• Decode:
$$\sum_{t=1}^{M} h \times bit \times c(t) \times c(t) + n(t) \times c(t)$$
$$= M \times h \times bit + \sum_{t=1}^{M} n(t) \times c(t)$$
$$= M \times h \times bit + n'(t)$$

DSSS enables decoding at very low SNR

- Transmit: $bit \times c(t)$
- Receiver: $h \times bit \times c(t) + n(t)$

$$n(t) \sim N(0, \sigma)$$
$$n'(t) \sim N(0, \sqrt{M}\sigma)$$

• Decode: $= M \times h \times bit + n'(t)$

SNR Before $=\frac{|h|^2}{\sigma^2}$ SNR After $=\frac{|Mh|^2}{M\sigma^2} = M \times \frac{|h|^2}{\sigma^2}$

SNR Increased By M times

DSSS: Direct Sequence Spread Spectrum **DSSS enables decoding at very low SNR**

- GPS uses DSSS with code length M = 1023
- GPS uses BPSK: Can be decode well at SNR > 6 dB
- GPS signals can be decoded if received at SNR:

 $6 \,\mathrm{dB} - 10 \log_{10} M = -24 \,\mathrm{dB}$

 GPS signals come from satellites → typically received below the noise floor.

DSSS enables decoding signals buried below the noise floor

DSSS enables decoding at very low SNR

• GPS uses DSSS with code length M = 1023

GPS receivers sometimes use a single bit ADC to sample the signal and yet can still decode correctly. How come?

Quantization SNR: Thermal SNR:

6 dB ×Quantization bits

 $= 6 dB \qquad > \qquad -23 dB$

Summary

Single Carrier TX/RX:

- Up/Down Conversion (Lec. 2)
- Pulse Shaping (Lec. 3)
- Modulation (Lec. 4, 5, 8)

(DBPSK, BPSK, ASK, FSK, PSK, PAM, QAM,...)

- Frame Synchronization (Lec. 5)
- Channel Equalization (Lec. 6)
- Carrier Recovery & CFO (Lec. 7)
- AGCs (Lec. 8)

Summary

Multi-Carrier TX/RX:

- OFDM (Lec. 9, 10)
- OFDM Synchronization (Lec. 10)

Summary

IoT:

- LPWAN: LoRA (Lec. 11)
- Backscatter Communication: RFIDs, Miller code, full duplex (Lec. 12)
- Bluetooth (Lec. 13)
- Spread Spectrum: DSSS, FHSS, CSS (Lec. 11, 12, 13)

Quiz 2

- Covers Lectures & Lab: 8-13
- Closed Book! Bring nothing except:

- Pen or Pencil Calculator (No Phones)
- Types of Questions to Expect:
 - \succ 3 Problems (1 on modulation, 1 on OFDM, 1 on IoT)
- No Labs the week of the Quiz.