
UIUC ECE 463 Digital Communication Laboratory Fall 2018

1

ECE 463 Lab 1: Introduction to LabVIEW

1. Introduction

The purpose of the lab session of ECE463 is to apply/practice the digital communication theory on software-defined
radios (USRPs). USRP is coupled with LabVIEW software, a graphical programming language that uses blocks
and wires instead of lines of texts. Although the course goal is not to specifically train students to be efficient
programmers in LabVIEW, it is necessary that all students become comfortable with the semantics of LabVIEW
and become capable of writing some of their own code.

1.1. Lab goals
• Become familiar with LabVIEW Communication Suite.
• Use While/For loops to process data.
• Work with various data types.
• Use arrays and access/process element-wise.
• Generate waveforms using MathScript.

1.2. Contents

1. Introduction
2. Getting Started
3. While Loop
4. Data Type
5. Arrays
6. MathScripts

1.3. Report

Submit the answers, figures and the discussions on all the questions. The report is due as a hard copy at the
beginning of the next lab.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

2

2. Getting Started

1. Find a LabVIEW Communications 2.0 shortcut in your Desktop and run it.
2. Open a new project by clicking File®New®Project. It will open an untitled project.
3. Add a new VI by clicking File®New®VI.
4. Rename the project name as Lab1 by right-clicking the project in the left window and clicking Rename.

The windows will be similar to the following figure.

5. Each VI has two windows; Panel and Diagram. The Panel
window is where the user interacts with the VI. It can
contain as many controls (inputs) or indicators (outputs).
The Diagram window contains the actual code
(flowchart) that receives the input data from the controls,
processes them by wires and blocks, and then displays
the results through the indicators.

6. There are two palettes: the Controls palettes in Panel
window and the Functions palettes in Diagram window.
Both the controls and the indicators are available in the
Control palettes. The Functions palettes contains the
blocks and the functions used to create a flowchart.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

3

3. While Loop

3.1. Terminology

A while loop is a control flow statement to execute a function repeatedly until a given conditional terminal is met.
The conditional terminal defines when the loop stops. There are two settings for the conditional terminal: Continue

if True and Stop if True . If it is set to Continue if True, the loop runs only if a Boolean control returns true.
If the conditional terminal is set to Stop if True, and a Boolean value of true is sent, the loop stops execution. By
default, the conditional terminal is Stop if True.

3.2. Example

The following example will explore the use of While loops. The example VI will generate random integers
between 0 and 10, and it will stop if it is matched with the integer given by the user.

1. Open a blank VI.
2. Select Diagram tab and place a while loop in Program Flow subpalette.

3. To generate random numbers, place a Random Number from Data Types ® Numeric. The Random
Number block generates random floating-point numbers between 0 and 1.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

4

4. To generate random numbers between 0 and 10, use a Multiply and a Numeric Constant from Data
Types ® Numeric. Then, use Round to Nearest to make the number integer.

5. Create a Numeric Indicator to monitor the random integer every loop. Place a Numeric Terminal from
Data Types ® Numeric. The default behavior of the terminal is Control (input from Panel). Change to
Indicator (output to Panel). Rename the indicator as Random Integer.

6. Create a Numeric Control to receive an integer to match. Rename the Control as Number to match.
7. Use Equal? to compare two numbers from Math®Comparison.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

5

8. Now, we are ready to connect the output of the comparator to the conditional terminal. However, it is a
good programming practice to allow users to terminate the loop by a control in the panel. Go to the panel
and create a stop button from Buttons® Stop Button. Go back to the diagram and you will see unplaced
items in the top of the palette. Drag and drop the item into the diagram.

9. Place OR from Data Types ® Boolean, then connect the Boolean control with the output of the comparator.

In this way, the loop terminates either the random integer is matched or the STOP is clocked by the user.
10. Go back to the panel. Drag and drop the unplaced items in the palette.
11. The final panel and the diagram will look like the following.

12. Execute the code by clicking Run button.
13. Click the light bulb (“Highlight Execution”) button at the top of the screen. Then, execute the code by

clicking Run button. This will show you the data flow throughout the diagram which is very useful for
debugging.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

6

3.3. Questions

For all the below questions, include a figure of the diagram and panel in your report.

3.3.1. Finish the above example.

3.3.2. Add some delay (1 second) in the while loop so that you can see the number is changing.

3.3.3. Add a Boolean indicator that turns on when the random integer is bigger than 5 and turns off

when it is less than or equal to 5.

3.3.4. Add an indicator to show the number of iterations. For example, the indicator displays ‘1’ at the

first trial.

4. Data Type
4.1. Terminology

In LabVIEW, every object and wire is always associated with some data type. LabVIEW supports a variety of
data types, which are distinguished by the different colors and shapes.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

7

4.2. Example

The following example will demonstrate the use of the cluster data type. The VI will 1) receive a string and
reverse it, 2) add an offset to a given numeric array.

1. Open a blank VI.
2. In Panel, create an Empty Cluster.

3. Place a String Control, a Numeric Control and a Numeric Array Input inside of the empty cluster. Change
the size of the Numeric Array Input to have 5 elements by dragging up/down. Place another String Control
and a Numeric Array Input outside out the cluster. Change them to Indicator.

4. Go to Diagram and place the unplaced items. You need to read individual values from the cluster. To do

that, use the Cluster Properties function. Connect the cluster control to the Cluster Properties. Grow it down
to show more property terminals.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

8

5. To reverse a string, use Reverse String function under Data Types ® String. Use Add to add the offset to
the array as shown below.

6. Go to Panel and fill the control values, then run the code. Verify the result with the indicators.
7. Now, let’s combine the modified values into the cluster again. Copy and paste the cluster in Panel and

change to Indicator.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

9

8. Go to Diagram and place the new cluster. To combine the modified string and the modified array into the

new cluster, use the Cluster Properties function again. At this time, we want to write a cluster, so change
it to “Set All to Write”. Wire the original cluster value to the “cluster in” terminal and wire the “cluster
out” terminal to the new cluster indicator.

9. Run the code and compare the results.

4.3. Questions

4.3.1. Finish the above example. Provide a figure of your panel and diagram in the report

4.3.2. Can you simply wire an integer type control to a double type indicator? How about an integer type
control to a string type indicator? If it is not possible, what block should you use to convert the
type?

UIUC ECE 463 Digital Communication Laboratory Fall 2018

10

5. Arrays
5.1. Terminology

Arrays combine data points of the same data type into one data structure (c.f. clusters combine data points of
multiple data types into one data structure). You can build arrays of numeric, Boolean, path, string, waveform, and
cluster data types. Consider using arrays when you work with a collection of similar data points and when you
perform repetitive computations. Arrays are ideal for storing data you collect from waveforms or data generated in
loops, where each iteration of a loop produces one element of the array.

5.2. Example

The following example will explore the use of arrays. The example VI will find the maximum element in a given
numeric array.

1. Open a blank VI.
2. Add a Numeric Array Input in the panel under Array. Increase the size of array to 5 by dragging down

the Numeric Array Input. Rename as “Array”.
3. Add a Numeric Control. Change it to Indicator. Rename it as “Maximum value”.

4. Go to Diagram. Add a For loop under Program Flow. Place the

Array terminal outside of the loop and the Maximum Value terminal
inside of the loop.

5. Wire the Array terminal to the left edge of the For loop. A tunnel
will be created. The tunnel allows a loop to communicate with the
blocks outside of it. Notice that the tunnel has indexing enabled ().
When an incoming tunnel has indexing enabled, the loop structure
(either a For Loop or a While Loop) will take the elements of the
incoming array one-by-one. If indexing is disabled (), the loop
structure will take the array in as a whole.

6. We will compare the elements in the incoming array one-by-one
with the maximum value we found. Add a Greater? in
Math®Comparison and a Select in Programing Flow.

7. If the current element is greater than the maximum so far, we want
to update the maximum. Connect the tunnel to the X terminal of the
Greater? and the True case terminal of the Select. Connect the output
of the Greater? to the Selector terminal of the Select.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

11

8. We want to store the current maximum value so that the next iteration can use it. Shift register is a data
pipeline that can connect two adjacent iterations together. Connect the output of the Select to the right edge
of the loop. It will create a tunnel by default. Change it to the Shift Register () by right-clicking the
tunnel. Notice that your mouse cursor changes to the Shift Register icon. Click the left edge of the loop
()to finish the placement.

*The left square of the shift register can be seen as an input from the previous iteration, and the right
square of the shift register can be treated as an output for the current iteration.

9. We now know the left square of the shift register is the maximum value from the previous iteration which
is to be compared with the current element. Connect the left square of the shift register to the Y terminal
of the Greater. If the current element is not greater than the previous maximum value, nothing will be
updated. Connect the left square of the shift register to the False case terminal of the Selector.

10. Connect the output of the Selector to the Maximum Value indicator.

11. Input numbers into the array in the panel. Run the code and verify the result.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

12

5.3. Questions

5.3.1. Finish the example. Show a figure of the diagram and panel.

5.3.2. Change the maximum element in the array to 0. Run the code again. Does the example VI find the
correct value? Modify the example VI to find the right maximum value in every run.

5.3.3. Modify the above VI to output the index of the maximum value as well. The result will be like

the following figure.

5.3.4. Implement the following VI: Generate two random numbers between -0.5 and 0.5. Compare the

two numbers and if the first number is greater than the second one, Team A scores a point. When
the second number is greater, Team B scores a point. The program keeps running until any team
reaches 50 points first. Display the two random numbers, the number of iterations, the points of
Team A and B, and the winner of the game. The panel will be like the following figure.

5.3.5. (Optional: do this only after you are done with the lab) Use arrays and for-loop to implement
the system H where impulse response is 𝒉[𝒏] = 	𝜹[𝒏] + 𝜹[𝒏 − 𝟏].

UIUC ECE 463 Digital Communication Laboratory Fall 2018

13

6. MathScript

6.1. Terminology

Certain tasks arise in LabVIEW, such as scaling signals and solving mathematical equations, during which it can
be beneficial to implement text-based programming in LabVIEW. LabVIEW provides the option to use C++ syntax
with the Formula Node and .m file script syntax with the MathScript Node for signal processing, analysis, and math
functions.

6.2. Example

In this example, we will use MathScript to generate a sin wave and control its amplitude and frequency by the
controls.

1. Open a blank VI.
2. Go to Diagram and place a MathScript Node.

3. Type the following m-file code to generate a sin wave.

% sampling period
dt = 0.01;
% time vector
t = (0:dt:1);
% sin wave
y = A*sin(2*pi*fc*t);

4. Create inputs for variable “A” and “fc” and outputs for “dt” and “y” by right-clicking the mouse on the
MathScript Node.

5. Create the controls for the amplitude and the frequency of the sin wave and connect them to “A” and “fc”
of the MathScript Node.

6. Place Build Waveform function from Data Types ® Waveform ®Analog Waveform. Connect the output
“y” and “dt” of the MathScript Node to the input “Y” and “dt” of the Build Waveform.

UIUC ECE 463 Digital Communication Laboratory Fall 2018

14

7. Create Waveform Constant and change to Indicator and connect to the output of the Build Waveform.
8. Run the code.

6.3. Questions

6.3.1. Finish the example.

6.3.2. Can you keep increasing the frequency and get the right sin wave? If not explain why.

6.3.3. Implement a sin wave using LabVIEW blocks only (without MathScript).

