A Statistical Theory of Mobile-Radio
Reception

By R. H. CLARKE

The statistical characteristics of the fields and signals in the reception
of radio frequencies by a moving vehicle are deduced from a scattering propa-
gation model. The model assumes that the field incident on the receiver
antenna 1is composed of randomly phased azimuthal plane waves of arbi-
trary azimuth angles. Amplitude and phase distributions and spatial
correlations of fields and signals are deduced, and a simple direct rela-
tionship 1is established between the signal amplitude spectrum and the
product of the incident plane waves’ angular distribution and the azimulhal
antenna gain.

The coherence of two mobile-radio signals of different frequencies is
shown to depend on the statistical distribution of the relative time delays
in the arrival of the component waves, and the coherent bandwidth s shown
to be the inverse of the spread in time delays.

Wherever posstble theorelical predictions are compared with the experi=
mental results. There is sufficient agreement to indicate the validity of the
approach. Agreement improves if allowance is made for the nonstationary
character of mobile-radio signals.

I. INTRODUCTION

In a typical mobile-radio situation one station is fixed in position
while the other is moving, usually in such a way that the direct line
between transmitter and receiver is obstrueted by buildings. At ultra-
high frequencies and above, therefore, the mode of propagation of the
electromagnetic energy from transmitter to receiver will be largely
by way of scattering, either by reflection from the flat sides of build-
ings or by diffraction around such buildings or other man-made or
natural obstacles.

1.1 The Model

It therefore seems reasonable to suppose that at any point the
received field is made up of a number of generally horizontally trav-
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eling free-space plane waves whose azimuthal angles of arrival oceur
at random for different positions of the receiver, and whose phases
are completely random such that the phase is rectangularly distributed
throughout 0 to 2. The phase and angle of arrival of each component
wave will be assumed to be statistically independent. The probability
density function p(a) which gives the probability p(a)da that a com-
ponent plane wave will occur in the azimuthal sector from « to « + da
will not be specified, since it will be different for different environ-
ments, and is also likely to vary from region to region within one
environment; but the assumption that the phase ¢ has a rectangular
probability density function throughout 0 to 2x will be made in all
cases.

For simplicity, it will be assumed that at every point there are
exactly N component waves and that these N waves have the same
amplitude. In addition it will be assumed that the transmitted radia-
tion is vertically polarized, that is, with the electrie-field vector di-
rected vertically, and that the polarization is unchanged on scattering
so that the received field is also vertically polarized.

The model described so far gives what might be termed the “scat-
tered field,” since the energy arrives at the receiver by way of a
number of indirect paths. Another term for this scattered field is the
“incoherent field,” because its phase is completely random. Some-
times a significant fraction of the total received energy arrives by
way of the direct line-of-sight path from transmitter to receiver. The
phase of the “direct wave” is nonrandom and it may therefore be
deseribed as a “coherent wave.” It will be seen later that the field
in a heavily built-up area such as New York City is entirely of the
scattered type, whereas the field in a suburban area with the trans-
mitter not more than a mile or two distant is often a combination of
a scattered field with a direct wave.

1.2 Comparison W ith Other Proposed M odels

J. F. Ossanna! was the first to attempt an explanation of the sta-
tistical character of the received mobile-radio signal in terms of a set
of interfering waves. He was concerned with measurements taken in
a suburban environment, and assumed that reflection occurred at the
flat sides of houses and that the incident and reflected waves form an
interference pattern through which the receiver moves. He then as-
sumed that all orientations of the sides of houses are equally likely,
and hence obtained spectra for the randomly fading signal with the
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angle between the direction of vehicle motion and the direction to
the transmitter as a parameter.

There is quite good agreement between Ossanna’s theoretical spectra
and those derived from measurements on several suburban streets
situated within 2 miles of the transmitter. There is marked disagree-
ment, however, at very low frequencies and at frequencies in the
region of the sharp cut-off associated with the maximum Doppler
frequency shift. At very low frequencies the spectral energy is al-
ways observed to be higher than that predicted by theory, whether
Ossanna’s or the one we use in this paper. The reason for this is that
neither theoretical model takes into account the large-scale varia-
tions in total energy which result from the changing topography
between transmitter and mobile receiver.

The basic difference between Ossanna's theoretical model and the
model used here is that the former is essentially a reflection model
whereas the latter is essentially a scattering model and so includes
the former as a special case. An example of the limitations of the
reflection model ean be seen from the experimental spectra plotted
in Ossanna’s paper. The spectra are derived from signal-fading rec-
ords made on several streets whose inclination to the transmitter
direction ranged from 15 degrees to 84 degrees, and in each case
there is evidence of a shelf which cuts off at twice the maximum
Doppler frequency shift. Ignoring the higher harmonies generated in
the detection process, the reflection model predicts a spectral cutoff
which depends on the direction of the street with respect to the trans-
mitter, ranging from the maximum Doppler frequency shift itself
when the street is at right angles to the transmitter direction to twice
that value when the street is in line with the transmitter.

With the scattering model, on the other hand, the angular distribu-
tion p(«) of seattered waves can be chosen to predict the existence
of a spectral shelf out to twice the Doppler frequency shift for any
street direction. Another feature of the reflection model which makes
it rather inflexible is that for every randomly oriented reflected wave
there exists a direct wave incident on the mobile receiver and carry-
ing the same power. Thus the ratio of coherent to incoherent power
in the received signal is fixed, whereas in the scattering model this
ratio is arbitrary and may be adjusted according to the environment.

In his study of energy reception in mobile radio, E. N. Gilbert?
examined several models of the scattering type and established a
number of important relationships between them. One feature com-
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mon to all of them, however, was the uniform distribution of waves
in angle, although he briefly mentioned the effect of a single strong
component arriving directly from the transmitter. The first model
Gilbert considered was that of N waves arriving from fixed directions,
equally spaced in angle. The phases of the waves were assumed to be
independent and uniformly distributed throughout 0 to 2m; their
amplitudes were assumed to be Rayleigh distributed and independent,
but with the same variance. In a second model the angles of arrival
were allowed to occur at random with equal probability for any
direction; the phases were again completely random but the ampli-
tudes were assumed to be constant. (This model is the same as the
one we use in this paper, with the restriction that pla] = [2x]) A
third model was an extension of the second to include the case of an
arbitrary distribution of the amplitudes. Gilbert showed that the
second and third models were equivalent to the first for sufficiently
large N.

1.3 Scope

This paper shows that the scattering model can be used to predict
the statistical characteristics of the signal received at the antenna
terminals, hence at the output of a square-law or envelope detector,
of the mobile receiving wvehicle. These characteristics include the
probability distributions of amplitude and phase, spatial correlations,
amplitude spectra, and frequency correlations.

A simple relationship is established between the spectrum of the
signal input and the product of the azimuthal power gain g(a) of the
antenna and the probability distribution function p(a) of the angle
of arrival of the component waves. This relationship will be particu-
larly useful in analyzing mobile-radio systems with directional an-
tennas on the mobile unit.

Other topics discussed are the use of space and frequency diversity,
coherent bandwidth, and random frequency modulation. Some com-
ments also are made on the nonstationary aspects of mobile-radio
fields and on the consequent need for their characterization in terms
which will be useful to the mobile-radio system designer. Whenever
possible the theory is discussed in the light of available experiments.

II. FIRST-ORDER STATISTICS OF THE FIELD

2.1 Theory
Under the assumption that the total field at any receiving point
is vertically polarized and is composed of the superposition of N
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waves, the ntt wave arriving at any angle a, to the z axis (Fig. 1)
with phase ¢,, the field components at point 0 (the zero phase refer-
ence point) are

N

E. =E, D exp |je.) )
n=1

E, &

H, = — —;’-' }: sin e, eXp | Jen) @
n X

H, = :,2 2 €os a, exp {jea) - ®)
n=1

In these equations E is the common (real) amplitude of the N waves
and 5 is the intrinsic impedance of free space. The time variation is
understood to be of the form exp{jwt}. Notice that E. will be propor-
tional to the signal input to the receiver when a vertical dipole an-
tenna is used, and that E., H,, and H, will be proportional to the
three inputs from a Pierce antenna system.?

The three field components E., H,, and H, are complex Gaussian
random variables, to a good approximation, provided that N is suf-
ficiently large. This is a consequence of the Central Limit Theorem
and the assumption that the phases ¢, are independent of each other
and of the angles of arrival a,. Thus each field component has a real
part and an imaginary part which are approximately zero-mean Gaus-
sian random variables of equal variance, the approximation improv-
ing for larger N, and provided that the phases ¢, are rectangularly
distributed throughout 0 to 2=. Appendix A shows that under the
same assumptions the real and imaginary parts of each field com-
ponent are uncorrelated ; they are therefore approximately statistically
independent.®

An important consequence of this is that the envelope of all three
field components (hence of the signals at the terminals of a vertical
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Fig. 1— A typical component wave and the two field points 0 and 0",
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dipole antenna and of two orthogonal, vertical loops) will be Ray-
leigh distributed; and their phases will be rectangularly distributed
throughout 0 to 2. (See pp. 160-161 of Ref. 3.)

If, in addition to the N scattered waves, there is a wave of sig-
nificant magnitude arriving directly from the transmitter, the result-
ing envelope and phase will no longer be respectively Rayleigh and
rectangularly distributed. The relevant distributions will then be
those derived by Rice* for a sine wave plus random noise. These
distributions are, in general, quite complicated (see pp. 165-167 of
Ref. 3), but in the limit, when the power in the direct wave is con-
siderably greater than that in the combined scattered waves, both
the phase and the envelope are approximately Gaussian distributed;
the phase with zero mean and the envelope with a mean value equal
to the amplitude of the direct wave.

2.2 Experiment

W. R. Young® has found that the Rayleigh distribution gives an
excellent fit to the observed amplitude fluctuations in mobile-radio
reception at 150, 450, 900, and 3700 MHz in New York City, pro-
vided that the sample area is less than about 1000 feet square. Tri-
fonov, Budko, and Zutov, in a review of several investigations at 50,
150, and 300 MHz, also found that the Rayleigh distribution fits the
data measured in rural suburbs at distances of about 5 and 9 km
from the transmitter.® The fact that the measured distributions are
Rayleigh in the above situations implies that there is no significant
directly transmitted component and the fields are wholly of the
scattered type, which seems physically reasonable.

Trifonov and his colleagues also found that for short transmission
distances in towns (about 1 km), the signal amplitude has a non-
zero-mean Gaussian distribution; and that for a transmission distance
of 11 km in woodland, the signal has a Rice distribution. In these
two cases there is apparently a significant direct component wave,
and in the first case, where the transmission distance is only 1 km,
the power in the direct component is considerably greater than that
in the combined scattered components.

W. C. Jakes and D. O. Reudink have compared the statistical
character of the amplitude of the fluctuating signal at the two fre-
quencies of 836 MHz and 11200 MHz on the same street in a suburban
environment at about 4 km from the transmitter. They find that the
signal amplitudes are Rayleigh distributed at both frequencies, again
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indicating that the direct wave is not significant.” This conclusion is
borne out, for reasons discussed in Section 3.2.3, by the shape of the
amplitude spectra which were computed from the same data.

The particular section of data which Jakes and Reudink analyzed
was chosen with some care. The criterion of choice was that the data
should “look” statistically uniform, and although this criterion is
both arbitrary and subjective, it is important that it be applied in
the absence of any other satisfactory criterion. The point is well il-
lustrated by Fig. 2, which shows a section of signal-amplitude data
at 836 MHz, obtained with a vertical dipole on a street adjacent to
that used by Jakes and Reudink. The speed of the mobile receiver was
22 feet per second, and each of the five frames lasts about a second
(time scale horizontal). The vertical scale is approximately linear
in dB, covering a 70 dB spread with about 7 dB to each vertical
division.

There 1s an obvious change in the statistics of the received signal
in the fourth frame, compared with the others. (In fact, the fourth
frame corresponds to the position of a street intersection, with one
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Fig. 2 —Section of a mobile radio data run, showing the variation of signal
amplitude with time. (One vertical division is approximately 7 dB, and one hori-
zontal frame is approximately 1 second.)
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of the intersecting streets pointing in the direction of the transmitter.
Then, according to the arguments used above, there will be a strong
direct component which will raise the average signal level and change
the distribution from a Rayleigh to a Rice or even a Gaussian. The
average signal level in the fourth frame does rise, and the distribution
does appear to be more symmetrical.) Using all five frames to estimate
the probability density function would therefore be misleading in
this case since obviously different parts of the data are samples of
different distributions.

More subtle differences, as when the distributions underlying the
data are all Rayleigh but with different variances over different parts
of the run, can be equally misleading. Young found that whereas over
fairly small areas of New York City the signal amplitude was accu-
rately described by a Rayleigh distribution, over larger areas—even
when the path of the receiver was roughly concentric with the trans-
mitter—the data did not fit a Rayleigh distribution. This is examined
in greater detail in Section VI.

III. SPATIAL CORRELATION OF FIELDS

3.1 Theory

The field components at some point 0 (see Fig. 1) in the mobile-radio
field are given by equations (1), (2), and (3). At another point 0, a
distance £ away from 0 in the z-direction, the phase of the n'* component
wave will no longer by ¢, but ¢, + k& cos a,, where k = 2r/\ is the
free-space phase constant. In the case of the electric field, the product
of the complex conjugate of E, (the field at 0) with E’ (the field at 0') is

EX*E. = Ei 3 exp [—jea} 2 exp {jlen + kE cos a,)}
n=1 n=1 (4)

= E; 3, D exp {i(pm — va)} exp [jkE cos a..}.

n=1 m=1
Taking the average (that is, expectation) of both sides of equation
(4), the autocovariance function of the electric field is

Ry = (EXE2).
v &)
= B3 3 3 (exp {jlen — ¢2)})uv (oxp [kE 008 atn])us .

n=1 m=]1
The angular parentheses denote “the average of” the quantity they
enclose, and in this case may be thought of as an ensemble average
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over all the possible situations implied by the assumed statistics of
¢ and a. The right-hand side is written as the product of two separate
averages because of the statistical independence of ¢ and «. The first
of these averages is zero except when m = n, so that

Ry ®) = EE (exp [jkE 08 ca)dor ©)

- NE f " ple) exp {7kt cos a) de. )

In the particular case when the N waves can arrive from any
direction with equal probability,

p(a=% —T=2a =+, (8)
the spatial autocovariance function of the electric field becomes
Rg,(£) = (EXEl)., = NEJ(kf). (9)

The spatial autocovariance functions for the two components H,
and H, of the magnetic field can similarly be shown to be

Ru®) = (HYHI)., = %[Jo(kz) + k)] (10)
and
Rin®) = (YD), = 5 [0) — J,002)] (1)

for waves arriving from any direction with equal probability. J,( )
and J»( ) are, respectively, the zero- and second-order Bessel fune-
tions of the first kind. The autocovariance functions (9), (10), and
(11) are plotted in Fig. 3.

For the same probability density function p(a) of the equation (8)
it can be shown in a similar manner that the cross-correlations of
the field components are given by the following covariance functions.

RE,H:(E) = (E*.:H:>nv = 0 (12)
. _NE:
RE':HII(E) = (thH>nv =1 2y
RH,H.,(E) = (H*,H;).w = 0. (14)

These equations show that all three field components are uncorrelated
and therefore independent, since the fields are Gaussian at zero spatial

Ji(kE) = —(E.H}¥),, (13)
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Fig. 3— The normalized autocovariance functions pg,(£), px,(£), and pg,(£)
from equations (9), (10) and (11).

separation. Further, E,, H, and H,, H, are uncorrelated and inde-
pendent for all spatial separations, whereas E., H, are correlated—
except at spatial separations corresponding to the zeros of Ji( ), the
first-order Bessel function of the first kind. The normalized covari-
ance function for E. and H, is plotted in Fig. 4.

The autocovariance functions (9), (10), and (11) and the covari-
ance functions (12), (13), and (14) are for the particular case of
p(a) uniform in the interval —= to +=. The autocovariance and
covariance functions for any p(a) can be obtained from equation (7)
and similar equations, but those derived here are useful illustrations
as well as useful approximations in practice.

In any practical case, however, the complex field components E.,
H,, and H, cannot be measured. But their magnitude (that is, en-
velope or squared magnitude, that is, energy) can. Appendix B shows
that the normalized autocovariance function of the departure from
their mean of the squared magnitude of complex Gaussian random
variables, such as the field components E,, H,, and H,, is equal to the
square of the normalized autocovariance function of the complex
random variable itself. Taking the electric field E, as an example,
the normalized autocovariance function of the departure & | E; |* of
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the squared modulus from its mean is, from equation (9),

pﬁ[E.I’(E) = Jg(kf)- (15)
Similar normalized autocovariance functions and covariance fune-
tions for the squared magnitude of all three field components can be
obtained from equations (10) through (14), and they can be shown
to agree with the theoretical energy density correlations obtained by
Gilbert.? This agreement was to be expected since energy density is
derived from the squared magnitude of the field components; in addi-
tion, Gilbert used a theoretical model which is equivalent to that
used here with uniform p(«).

With regard to the envelope of each of the complex field compo-
nents, Appendix B also shows that the departure of the magnitude
of such complex random variables from their mean is deseribed by
a normalized autocovariance function which is to a good approxima-
tion equal to the square of the normalized autocovariance function
of the complex random variable itself. Thus, in the case of the electric
field component, E., again from equation (9),

poixa(®) = Jo(ks). (16)
(This quantity is also the normalized correlation coefficient of the
signal envelopes at the terminals of two vertical monopole antennas
£ apart on the mobile receiving vehicle which is traveling through an
isotropically scattered field.) Similar normalized autocovariance and
covariance functions for the magnitudes of all three components can
be obtained from equations (10) through (14).
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Fig. 4 — The normalized covariance function pg,x,(£), from equation (13).
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3.2 Experiment

3.2.1 Spatial Diversity

Only indirect experimental evidence is available at this time on
the spatial correlation of mobile-radio fields. In his measurements of
the predetection combining of the signals from several equally spaced
vertical monopole antennas, A. J. Rustako found that there was very
little difference between the cumulative distributions of the com-
bined amplitudes from four antennas spaced 1/4, 3/4, and 5/4 wave-
lengths apart.® Equation (16) indicates that the correlation coef-
ficients of the signal amplitudes at the antenna terminals at these
three separations are about 0.25, 0.06, and 0.03, respectively. Bren-
nan has shown that such correlations produce very little difference
in the combined signal from two channels,® and so the difference is
presumably even less with four channels combined.

3.2.2 Field Diversity

Equations (12), (13), and (14) show that all three field compo-
nents are uncorrelated (and therefore independent, because they are
complex Gaussian random variables) at zero separation. The possi-
bility of a “field diversity” system arising from this fact is exploited
in the energy density reception scheme from Pierce.? (An alternate
scheme, proposed by W. C. Jakes, would use predetection combining.*®
This has the advantage that the modulation is not affected.) W. C.-Y.
Lee has devised and constructed an energy-density antenna!! and
his analysis of the measurements? based on Gilbert’s isotropic
seattering model, show sufficient agreement with theory to indireectly
confirm equations (12), (13), and (14) at £ = 0.

3.2.3 Frequency Spectra

If the mobile receiving vehicle is moving with velocity V in the
x direction, the spatial displacement £ and the corresponding time
displacement r are related by

E=TVr. (17

Then all the spatial correlations derived in Section 3.1 can be trans-
formed into time correlations by using equation (17). The Fourier
transform of the time autocovariance function then yields the fre-
quency spectrum.

In the case of the signal at the terminals of a vertical monopole
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antenna in an isotropically scattered field, equations (9) and (17) give
the normalized time autocovariance function as

pz.(1) = Jo(kV7). (18)
The corresponding input spectrum (see Ref. 3, p. 104) is given by

S5.0) = [ ps.(s) exp (—jur) dr (19)
= U= 1St (20)

This spectrum is centered on the carrier frequency and is zero outside
the limits 4f,, on either side of the carrier, where

o= ¥ (21)

is the maximum Doppler frequency shift.

Gilbert®* has shown that the corresponding baseband output speec-
trum from a perfect square-law detector is given by the complete
elliptic integral,

Somf) = _;% KI[1 — (f/2f.)"7). (22)

This output spectrum can be obtained cither from the self-convolution
of the input spectrum of equation (20) or by taking the Fourier trans-
form of equation (15) expressed as a function of r by means of
equation (17). The spectrum of equation (22) also deseribes to good
approximation the baseband output spectrum from an envelope de-
tector (that is, half-wave linear rectifier). Thus,

Suza) = - KILL = (/200 23)

This is a consequence of the approximate equality of the spatial
autocovariance functions of equations (15) and (16).

Figure 5 shows input and baseband output speetra for the above
case of a vertical monopole antenna in an isotropically scattered
field. The sharp cutoff in the baseband spectrum at twice the maxi-
mum Doppler shift is observed to some extent in all measured mobile-
radio spectra.™ ® A small amount of spectral content will occur beyond
this cutoff in the case of an envelope detector'® because of the higher
order terms neglected in the analysis, and in all cases because of the
finite length of the time series used to compute the spectra. Again,
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Fig. 5—Input and baseband output spectra for a vertical monopole antenna
in an isotropically scattered field.

in all cases the spectral content at the very low frequency end of the
spectrum is mueh higher than that predicted by theory, owing to
the nonstationary character of mobile-radio fields (see Section VI).

But in some cases, such as the spectrum obtained by Rustako,® there
is reasonably good agreement between the general shape of the spec-
trum observed and that shown in Fig. 5b. Section IV shows that the
theoretical spectra are different, except for the occurrence of the cutoff,
if there is a significant directly transmitted component wave in addi-
tion to the scattered component waves. Most of the observed spectra
seem to be of this latter type.

The above method of deriving spectra, by way of the Fourier
transform of the autocovariance function, is not ideal. In all but the
simplest cases (for example, when 7 («) is uniform), direct integration
of equation (7) is often impossibly difficult. As an alternative, the
direct method (deseribed in the next section) which depends on asso-
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ciating a Doppler shift with the direction of arrival of each com-
ponent wave, is much simpler to apply and allows one to retain a
clear picture of the underlying physical processes.

IV. SIGNAL SPECTRUM AND ANGULAR PROBABILITY

There is a simple direct relationship between the signal spectrum
at the mobile receiver’s antenna terminals and the product g(a)p(a).
This is the product of the antenna’s azimuthal power gain function
g(e) and the probability density function p(«), the arrival angles of
the plane waves which comprise the field incident on the antenna.
Let us look at the use of the relationship for an omnidirectional an-
tenna, the antenna assembly for the Pierce enmergy density scheme,
and an azimuthally directive antenna.

4.1 The General Relation

The theoretical model proposed in Section 1.1 describes the field
incident on the mobile receiving antenna in terms of a random set of
vertically polarized plane waves incident horizontally which oceur
with probability density p(«), where « is the azimuth angle. Then,
because of the vehicle’s movement, each angle o (see Fig. 6) will be
associated with a Doppler shift f in frequency from the carrier fre-
quency, such that

f=1fn.cos a
where

¥
)

fm = 21

is the maximum Doppler shift at the vehicle speed V and carrier
wavelength A.

DIRECTION OF A
TYPICAL COMPONENT WAVE

// a
: DIRECTION OF VEHICLE,
(( P =,

SPEED V

S~ ANTENNA

Fig. 6 — Relative directions of the mobile vehicle and a typical component
plane wave,
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The spectrum of the signal v at the terminals of the receiving antenna
on the mobile vehicle will consist of a set of spectral lines which will
oceur at random in the range ==f,, about the carrier frequency f, . The
probability that one of these spectral lines will occur in the range from
f to § + df is given by the probability density function p,(f), which may
be obtained (see p. 33 of Ref. 3) from the probability density function
p(a) by equating the differential probabilities .

pu(f) ldf|l = {p(+a) + p(—a)} |de| (24)
since +a and —a give the same Doppler shift. Then, from equation
(23),

I S
fu V1 = F/In
{p(@) |a= cos—r0rrrm Tt pla) ]a-—cus"‘(f/fm)}‘ (25)

The signal spectrum S,(f), the average energy of the signal v in the
frequency range f to f + df, is given by p;(f) weighted by the power
gain g(a) of the antenna in the corresponding azimuthal direction a.
Thus

m() =

1
fm \/1 f/fm
" [?9(0‘)9(‘1) Inr— cos 1 (f/Im) + p(a}g(a) |a=-— cn!"‘tfffm)’ (26)

which is the desired general relation. (See Appendix C for a formal
proof.)

8.(1) =

1.2 Application of the General Relation

4.2.1 Omnadirectional Anlennas

The practical case of most frequent interest is that of a vertical
monopole antenna, which has a constant azimuthal gain function,
say g(a) = 1. Assuming that p(a) is uniform for all angles through-
out the range —= to +=, p(e) = (2x)~* and the signal spectrum at
the antenna terminals would be

S —
0 Tfm \/ L= 1/ln 0

for frequency shifts in the range =+f, about the carrier frequency f.,
and would be zero outside that range. The spectrum of equation (27)
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is identical to that of equation (20) which is for the electric field under
the same circumstances, an identity that was to have been expected.
The spectral shape of equation (27) is therefore that of Fig. 5a. The
corresponding receiver baseband output spectrum, assuming square-law
detection, would be that of Fig. 5b.

The baseband output spectrum is considerably different if, in addi-
tion to the uniformly scattered set of waves, there is a significant
wave transmitted directly from the transmitter to the receiver. If
the angle of arrival of the direct wave is «, the spectrum of the signal
at the terminals of an omnidirectional antenna would be that shown
in Fig. 7a. This is the basic scattered spectrum of equation (27)
together with a spectral line displaced from the carrier frequency
by fmcos a;.

The corresponding output spectrum from a receiver with a square-
law detector (or to good approximation if the detector is half-wave
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Fig. 7— Input and baseband output spectra for signals from an omnidirec-
tional antenna, when a uniformly scattered field plus a direct wave are incident.
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linear) may be obtained by convolving the above input spectrum
with itself. (See p. 255 of Ref. 3.) This yields a baseband output
spectrum of the form in Figure 7b, in which «; was chosen to be 60
degrees. In general, the high-frequency part of the baseband spectrum
ends in a shelf which cuts off at twice the maximum Doppler fre-
quency shift. (In the case of the half-wave linear detector there is a
small amount of energy at frequencies beyond the cutoff frequency.)

There are two peaks in the baseband output spectrum which occur at
f = fu(1 & cos a,). Such peaks, as well as the final shelf, are clearly in
evidence in Ossanna’s experimental spectra.' Figure 8 shows two more
experimental spectra, one where the direction to the transmitter was at
right angles to the path of the receiving vehicle, and the other where
the transmitter was directly ahead. The dashed curves are theoretical
spectra with the ratio of power in the direct wave to the total scattered
power adjusted arbitrarily. The theory apparently gives the basic form
of the experimental spectra, but there are differences in detail.

Of course, complete agreement of theory and experiment is not
to be expected. Apart from obvious changes, such as the speed of
the vehicle and its inclination to the transmitter direction, the p(a)
for the scattered waves and the magnitude of the direct wave will
change throughout the entire data run. This means that the time
series constituted by the output voltage of the receiver is not a sta-
tionary process, whereas the spectra are deduced on the assumption
that it is. Methods of approaching this problem of the nonstationarity
of mobile-radio data are discussed in Section VI, and methods of mak-
ing a more valid comparison of theory and experiment are suggested.

4.2.2 Vertical Loop Antennas

As a simple example of an azimuthally directional antenna, the
vertical loop is interesting because it forms part of the Pierce “total
field” antenna system. (See Ref. 2, pp. 14 and 15, where this arrange-
ment of a vertical monopole, together with two orthogonal vertical
loops, is discussed in terms of the vertical component of the electric
field and the two horizontal components of the magnitude field.)

Assume that the plane of loop 1 (see Fig. 9) lies in the direction
of travel and that the plane of loop 2 lies perpendicular to that di-
rection. Then the azimuthal power gain functions for the two orthog-
onal loops will be of the form

g.(a) = cos’ a (28)
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Fig. 8 — Comparison of theoretical (broken line) and experimental baseband
output spectra with transmitter (a) at right angles to, and (b) directly ahead
of, the vehicle path.

and
ga(a) = sin’® a, (29)

respectively.

If it is further assumed that the scattered waves are uniformly dis-
tributed in angle, that is, p(e) = (2#)%, and that there is no sig-
nificant direct wave. Then, using the general relation of equation
(26), the spectra of the signals at the terminals of the two loop
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Fig. 9— Plan view of Pierce antenna system, consisting of a vertical monopole
and two orthogonal vertical loops.

antennas will be

(I/1)" (30)

S.(f) = Ldme
» T V1 — f*/fn

and

sy = YLl (31)

Figure 10 shows these spectra with their corresponding baseband
output spectra, assuming square-law detection in the receiver.

The spectra of equations (30) and (31) could also have been ob-
tained from the autocovariance functions of equations (10) and (11)
by substituting equation (17) and taking their Fourier transforms.
However, the general relation is much simpler to use and indeed is
the only reasonable method to use in cases where p(a) and g(a) are
other than of the simplest functional form. In addition, the general
relation preserves the physical description of the problem. Thus the
shapes of the spectra in Fig. 10a have a straightforward explanation
in terms of the antenna patterns emphasizing the Doppler shifts
resulting from waves arriving from some directions and deemphasizing
others—which is precisely the meaning of the general relation of
equation (26).

4.2.3 Beam Antennas

The general relation of equation (26) gives a simple and direct
solution for a beam antenna. The use of such highly directive antennas
in mobile radio was suggested by W. C. Jakes*® with a view to reduc-
ing the spectral width, and hence the rate of fading, of the received
signal. The general relation shows immediately that such a reduction
in spectral width does indeed oceur, and gives the precise nature of
that reduction.
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Consider the idealized beam antenna pattern shown in Fig. 11. The
power gain function g(e) in this case can be considered to be unity
over the beamwidth g and zero in all other directions. If it is again
assumed that the scattered waves are uniformly distributed in angle
and that there is no significant direct wave, the effect of the antenna
pattern on the spectrum of the signal at the antenna terminals ecan
be thought of in terms of the pattern being a sectoral slice of a ficti-
tious omnidirectional pattern. Hence the spectrum for the beam an-
tenna is a slice taken from the spectrum for an omnidirectional
pattern. See equation (27) and Fig. 5a.

When the beam antenna is directed broadside to the direction of
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Fig. 10 — Receiver input and baseband output spectra for the two orthogonal
loop antennas of Fig. 9.
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Fig. 11 — Receiver input spectra for an idealized beam antenna used in a
uniformly secattered field. (a) Beam antenna pattern. (b) Spectrum for antenna
directed broadside. (c) Spectrum for antenna directed straight ahead.

vehicle travel, the spectrum of the signal at the antenna terminals
will be that shown in Fig. 11b, where the dashed curve shows the
“remainder” of the omnidirectional spectrum. The spectrum is almost
flat and is 2f,,sin(8/2) wide.

When the beam antenna is pointed straight ahead, along the direc-
tion of vehicle travel, the spectrum is that shown in Fig. 11c. Instead
of being centered on the carrier frequency, as in the broadside case,
the spectrum occurs at the extreme right of the omnidirectional spec-
trum, and is f,,[1 — cos(3/2) ] wide.

Thus it is apparent that the use of highly directive antennas in
mobile radio will lead to a reduction in spectral width. W. C.-Y. Lee
has confirmed this experimentally, using an array antenna at 836
MHz in a suburban environment.’* Lee derived from the measured
data the rate of crossing of the signal at a certain level and plotted
this against antenna beamwidth. Rice has shown that for a narrow-
band random signal which has a symmetrical spectrum about the
carrier frequency, the rate of signal crossing at a certain level is
just the probability density at that level multiplied by the square
root of the second moment of the spectrum about the carrier fre-
quency.* In this way the level crossing rate at a particular level is
a measure of the width of the spectrum of the fading signal.

The sectoral beam pattern assumed in the early part of this section
never occurs in practice. It is worth emphasizing this rather obvious
point in connection with calculating spectral second moments. Because,
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even though the antenna sidelobe level might be uniformly low, there
will be spectral content throughout the entire range of f, = f, . Also,
the basic omnidirectional spectrum emphasizes the contributions at
the extremes of this range. Hence calculations of the spectral second
moments might well be in error if they are based on the assumption
that the side-lobe level is zero.

V. CORRELATION BETWEEN SIGNALS OF DIFFERENT FREQUENCIES

The problem of correlating two signals of slightly different fre-
quencies occurs in mobile radio when questions of maximum usable
bandwidth, or the use of a pilot signal at a frequency other than
the carrier frequency, arise. Let us show that the covariance of two
signals as a function of their frequency separation is simply the
characteristic function of the probability density function of the
time delays suffered by the component plane waves which are as-
sumed to compose the mobile radio field.

5.1 Theory

Suppose that the transmitted signal contains two unmodulated
signals of frequencies w, and w, , whose difference Aw = w, — w, is small
enough not to violate the following assumptions. Assume that the two
signals take exactly the same time to travel from transmitter to mobile
receiver along any one of the scattering paths assumed in the model in
Section I. This assumption implies that propagation along all paths is
by way of freespace type waves (which do not suffer dispersion), and
that any phase changes experienced at reflecting or diffracting objects
are independent of frequency. Associate a time of travel f, with the
n'* component wave, and define a time delay A¢ in comparison with
the shortest possible time of travel ¢, such that

Al, = ¢, — t,. (32)

To preserve the assumption made in all previous sections that the
phases of the component waves are random and equally probable
throughout 0 to 2 it is necessary that the average magnitude of the
time delay difference between the nt and m®™ waves, assumed to be
independent, be

<| tn - tm l)av > l/fr: (33)

where f, is a frequency in the neighborhood of f; and f,.



980) THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1968

The electric fields at the two frequencies may be written as
N
E, = E, Z exp {ju,(t — 1)}
n=1

E, = Eoz ,;1 exp {ng(t - i-"n);

where Ey is the amplitude at frequency f; of all the waves, and
similarly Eg. is the common amplitude at f,. Forming the complex
product

N N
E%E, = EXE,, exp [jlw. — w))t} E 2 exp | —jlwal, — wty)}
1

n=1 m=

and taking the expectation of both sides,

(BXEy).e = EgiEq, exp {§lwe — @)t} ; (exp {—jlw, — @)t ) (34)

since it has been assumed that the time delays are independent, and
therefore that
{exp [ —j(wsl, — wit)})ey = 0 for m = n

as a consequence of inequality (33). The covariance of the two fields
as a function of their frequency separation Aw is therefore

RIZ(Aw) = (E"{E2>“
= NEEo, exp {j Awt} exp {—j Aot Hexp {—] Aw At}),,

where the subscript 7 has been dropped on Atf, because the average is
the same for any n. The normalized magnitude of B,,(Aw) is:

| pi2(Aw) | = {exp {—7 Aw At})., (35)
is simply the characteristic function, with negative argument, of the
probability density function for the time delays At. (See Ref. 3, p. 50.)

As an example, suppose that the time delays are exponentially
distributed, so that the probability density function of At is

1 Al
p(At) = 7T ©xp {_T} for 0 2 AtE + (36)

where 7' is a measure of the spread of the time delays. Then the
normalized magnitude of the covariance function in equation (35)
bhecomes

| pra(Bew) | = [1 4+ (AaT)*] 7, (37)
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which is shown in Fig. 12. It is apparent that the correlation falls off
significantly for frequency separations Ae > 1/7, the inverse of the
measure of the spread in time delays.

5.2 Experiment

Aside from its mathematical convenience, the exponential distribu-
tion of time delays seems physically plausible on the grounds that
the shorter delays appear more likely to occur than the longer delays.
Indeed, the pulse observations made by Young and Lacy at a fre-
quency of 450 MHz in New York City support this contention.?®

Ossanna has computed the envelope correlations from measure-
ments at 860 MHz in a suburban environment for two-carrier fre-
quency separations of 0.1, 0.5, 1.0, and 2.0 MHz.2®* The corresponding
covariances are shown as circles in Fig. 12, where it has been as-
sumed that T = 1/4 psec. A comparison of these experimental points
with the theoretical curve indicates that an exponential distribution
of time delays is a reasonably good assumption, and that in the
suburban environment where the experiments were performed the
time-delay spread T is about 1/4 psec.

In contrast, Young and Lacy’s pulse measurements indicate a
time-delay spread about 5 psee, but with an approximately exponen-
tial distribution. The reasons for the difference in time-delay spreads
appears to result from the different environments in which the ex-
periments were performed, not to the different frequencies, because
their difference is not great. Thus in a suburban environment the
component waves are likely to have been redirected by objects within
a few hundred feet of the mobile receiver, whereas in New York City

1.00 T
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Fig. 12— Normalized covariance of two signals as a function of their frequency
separation, assuming an exponential distribution of time delays with delay
spread 7. The circles are Ossanna'’s experimental points.
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the range of these objects can reasonably be put at many thousands
of feet.

5.3 Significance of the Random Time Delays

The immediate benefit of knowing the probability distribution of
the time delays of the component waves is that it enables one to
deduce the “coherent bandwidth” for that particular system. But
the significance of the time delays is much more than this, in that
it emerges as a basic characteristic of the system along with the
probability distribution of the angles of arrival of the component
plane waves.

Indeed, it would appear that a knowledge of the joint distribution
p(a,At) of the angles of arrival « and the delay times At provides
an almost complete description of the mobile radio field; hence, of
the mobile radio signals sensed by antennas moving through this field.

Thus, integration of the joint distribution with respect to « yields
the distribution of time delays. Then if the standard deviation of
the time delays is large compared with a period of the carrier fre-
quency, the component waves may be said to be completely ran-
domly phased and their phases and angles of arrival to be inde-
pendent. The results obtained in Sections II, III, and IV would then
follow, because they are based solely on the knowledge of p(«) and the
assumptions that the phase is completely random and independent
of the angle of arrival.

An interesting sidelight is that the cross-covariance of two signals
of different frequencies, one shifted in time by r from the other,
depends on the joint distribution p(a, At). The Fourier transform
of this cross-covariance yields the cross-spectrum of the two fre-
quency-separated signals.

Tt is tempting to assume that « and At are independent, thus mak-
ing the calculation much simpler. But this does not yield answers
that accord with experiment; so one must conclude that « and At
are not independent. This also seems a reasonable conclusion on
physical grounds, since it is likely that the shortest time delays will
be associated with angles of arrival from the general area of the
transmitter, and that the longest delays will be associated with the
opposite direction.

VI, THE NONSTATIONARY CHARACTER OF MOBILE RADIO SIGNALS

A perennial difficulty in the analysis of mobile-radio data is its
nonstationary character. This makes both the analysis arbitrary and
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its interpretation uncertain. This section attempts to meet this dif-
ficulty directly, rather than trying to find sections of data that “look”
stationary or attempting to “doctor” data to that same end before
it is analyzed.

The data chosen for analysis were those obtained by Rustako on
a single omnidirectional antenna at 836 MHz along Sherwood Drive,
a suburban street approximately 2 miles from the transmitter and
running at an angle of about 48° to the transmitter direction.® The
choice of data was made on the grounds that Rustako’s computed
output spectra most closely resembled the shape of the theoretical
output spectrum of Fig. 5b which is for a completely scattered field
with no significant directly transmitted component.

Two tests were performed on the data, one to determine the proba-
bility distribution of the envelope and the other to determine its
time correlation by using Kolmogorov’s structure function.

6.1 The Probability Distribution

6.1.1 Theory for a Stationary Process

According to the theory of Section 2.1, if the field incident on the
mobile receiver is of the scattered type, each component wave being
independent and randomly phased, then the probability density func-
tion (p.d.f.) of the envelope R is Rayleigh, that is,

2

p(R) = gg- exp {—{:—2} for 0 SR+ = (38)

which has the corresponding cumulative distribution function

R2
P(R) = f "p(R)dR = 1 — exp {_?}. (39)
0
This distribution has a root-mean-square value

VR =g¢ (40)

a mean value

(R)., = —? ¢ = 0.8860 (41)

and a most probable value (or “mode”)

R Il!:ull = 715 g = 0'70761 (42)
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A convenient method of testing whether or not a given set of statistical
data follow an assumed distribution is as follows.'” First the histogram
of the data (that is, relative frequency diagram), which is the practical
approximation to the probability density function, is obtained. This
is then summed point by point to give the cumulative frequency dia-
gram, which is the practical approximation or estimate P(R) of the
cumulative distribution function P(R). Then P(R) is plotted against
P(R). If the two are identical for all R, then the resulting plot will be
a straight line from (0, 0) to (1, 1). If not, the departure of the plot
from the straight line is a measure of the departure of P(R) from P(R).

In analyzing Rustako’s data the question to be answered was how
closely the data followed a Rayleigh distribution. The appropriate
P(R) is then that of equation (39); and the value of & can be ob-
tained from the maximum of the histogram with the aid of equation
(42). The ahove arguments assume that the data is a stationary

process.

6.1.2 Theory for a Nonslationary Process

If the theory of Section 2.1 is modified slightly to take account
of the undoubted fact that either the number or the magnitude of
the component waves will vary as the vehicle moves along its path
by normalizing to the local mean, and if the assumption that the
field is completely scattered is retained, then the expected distribution
of the envelope will again be Rayleigh. However, the root-mean-
square value ¢ will no longer be a constant, but will vary with time
in some manner o(f). The envelope can now be classed as a non-
stationary Rayleigh process.

It is possible to estimate o(¢) from the record by computing the
“Jocal” mean (R),y (t); then from equation (41)

(R)oo(f) = 0.8860(t). 43)
Hence, writing the new random variable
. B _0886R w

o) (R)(l)
which in effect has a root-mean-square value of unity. The r process
will be a stationary Rayleigh process with a p.d.f.

p(r) = 2rexp {—r'}.

Equations (43) and (44), in effect, remove the nonstationary effects
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from the statistics. The meaning of “local” is explained further in the
next section.

6.1.3 Analysis

Rustako’s data, which had been converted to digital form at 500
samples per second, was taken in sets of 4000 points at a time. Notice
that such a length of data contains approximately 200 fading cycles.

Each set was analyzed, first of all, on the assumption that it was
stationary, by the method outlined in Section 6.1.1. To obtain the
histogram, the amplitude range between the lowest and the highest
value was divided into 50 equal slices. The P(R) versus P(R) plots
for three sets of data are shown on the left side of Fig. 13. Each point
corresponding to a partiuclar slice level. The three sets of data were
chosen to illustrate where P(R) is always greater than P(R), where
P(R) is always less than P(R), and where they are approximately equal.
On the assumption that all three sets of data are stationary it would
have to be said that the first two cases are definitely non-Rayleigh
while the third case is.

Next, the same sets of data were normalized by the method outlined
in Section 6.1.2. The local mean for every point was obtained by averag-
ing the 200 points symmetrically adjacent to that point. The resulting
normalized random variable was then treated in exactly the same way
as the unnormalized random variable. The right side of Fig. 13 shows
plots of P(r) versus P(r). It can be seen that in the first two cases the
normalized random variable is much more closely Rayleigh distributed
than is the unnormalized random variable. The third case is interesting
because, although the normalization was not necessary to reduce the
data to a stationary Rayleigh process, it demonstrates that the tech-
nique of normalization itself does not significantly impair the original
process.

In conelusion, it ean he said that the technique of normalizing
a nonstationary Rayleigh process by way of its running mean can
be used to determine whether or not the process is in fact Rayleigh.
But it must be emphasized that the technique cannot be applied to
processes that are non-Rayleigh. Tt is certainly possible, however,
that different techniques along these same lines might apply to dif-
ferent processes, although it would appear that some knowledge of
the expected distribution is essential. The Rayleigh process is one of
the simplest to handle because it is determined by a single parameter.
In the example used here the Rayleigh process was clearly indicated
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by the theory, and the analysis amounts to a positive confirmation
of its applicability.

ﬁf2 Using Kolmogorov's Structure Function

Tartarski'® has described the value of using a “structure function”
in specifying random variables which are not statistically stationary.
(The technique was first used by Kolmogorov to deseribe meteroro-
logical quantities.) The structure function might be of value in
analyzing nonstationary mobile radio data.

| 6.2.1 Definition and Properties

The simplest type of structure function, D;(r) of the real random
variable f(¢), is defined by

Dy(r) = ([t + ) — JOF ) (45)
where the angular parentheses denote a time average. This should be
cbmpared with the more commonly used autocovariance function,
defined for a stationary random variable whose mean is zero by

Ry(r) = {f¢ + 7)f®))us - (46)
Thus the structure function for a stationary random variable which
can be written in terms of the autocovariance function is

Dy(r) = 2[R;(0) — R,(7)]. (47)

As an example, the structure function for a stationary random variable
th a Gaussian autocovariance function, exp {—r°/72} in which =, is
constant, is depicted by the solid line in Fig. 14. The equation of this
solid line is
Dy(r) = 2[1 — exp {—7"/73}].

3
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Fig. 14 —Structure functions for stationary (solid line) and nonstationary
(dashed line) random variables.
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Now, if the random variable is nonstationary in that it has, say,
a slowly varying mean value, then the structure function would be
modified in some way such as that shown dashed in Fig. 14. This
dashed portion would very likely be indeterminate, so that the cor-
responding autocovariance function would be indeterminate for all =.
Hence the value of working, at least initially, with the structure
function: if the random variable is stationary, that will immediately
be apparent in that D;(r) will approach a horizontal asymptote for
large =; and if it is nonstationary, the portion for small r can be

relied on.
The dashed portion of Fig. 14 can be shown to correspond to an

increase in low-frequency spectral energy compared with the station-

ary case.'s

6.2.2 A Structure Function Compuled from the Data

The solid line in Fig. 15 shows the structure funetion for Rustako’s
Sherwood Drive data, computed from the definition of equation (45).
The data, again consisting of 4000 points, roughly straddled that
which gave the first two probability plots of Fig. 13. The structure
function is shown out to a time separation = of 50 data points, or

100 msecs.
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Fig. 15 —Structure function computed for Rustako’s data (solid line). The
dashed line is the theoretical structure function for a stationary random variable.
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The dashed curve is a theoretical structure function for an assumed
stationary process with an auto-covariance function of the form
J2(27f,.7), where f,, is the maximum Doppler shift. This autocovariance
function, which is derived from equations (16) and (17), is for the
departure of the signal envelope from its mean value for the case of
an omnidirectional antenna in a uniformly scattered field. The theoret-
ical and experimental structure functions were arbitrarily made equal
at the first maximum.

The experimental structure funetion, which is typical of many that
were obtained, exhibits some of the features that were expected. The
- initial part of the curve, for small 7, closely follows the theoretical
curve, and the quasiperiodic nature of the curve for large r is also
evident. In this region the experimental curve rises systematically
above the theoretical curve, as was to be expected for nonstationary
data.

This upward trend of the experimental structure function for large
r corresponds to the repeated observation of baseband low-frequency
content at a significantly higher level than the theory predicts.

If this large-scale trend in the structure function were removed,
then the modified structure function should agree with the theoretical
structure funection, provided that the basic assumptions of the theory
are sound. The curves do differ, both in the amplitude and the period
of the quasi-periodic variation. However, this might well result from
the wrong choice of p(a), and not to a basic flaw in the theory.

It is evident that the structure function does afford a method of
analyzing nonstationary data. The effect of large-scale variations
shows up in the structure function and can be removed at that point,
rather than by tampering in an arbitrary manner with the original
data. Then the modified structure function can be compared with
theoretical forms which are appropriate to stationary data.

VII. CONCLUSIONS

The theory presented in this paper attempts to explain the statis-
tical behavior of fields and signals encountered in mobile radio in
terms of a set of independent plane waves, redirected by seattering
and reflecting obstacles, and incident horizontally on the mobile
receiving vehicle. These waves can be described statistieally by the
joint probability density function p(«, At) such that the probability
of a wave arriving at the azimuthal angle « with a time delay At is
Pla, At)ded(Al).
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At ultrahigh frequencies and above, in urban and suburban en-
vironments, the spread in the magnitudes of the time delays is suf-
ficiently large, compared with the radio-frequency period for the
waves, to be considered randomly phased, in which case the follow-
ing conclusions apply.

The field components are Gaussian, in the sense that their real
and imaginary parts are independent zero-mean Gaussian random
variables of equal variance. Thus the envelope of a signal derived
from such a field by an antenna will be Rayleigh distributed, unless
there is a significant nonscattered wave arriving directly from the
transmitter, in which case the envelope will be Rice distributed.

The spatial correlation of the field components may be derived
from the probability density function p(a). The spectrum of the
signal at the antenna terminals may be derived from the product of
p(e) with g(z), the azimuthal gain function of the antenna. The
coherence of two radio frequencies, as a function of their frequency
separation, may be derived from the probability density function of
the time delays p(At).

A brief examination of available experiments reveals that simple
forms of both p(a) and p(At) give theoretical results which agree
broadly with experiment. We do not claim detailed agreement, nor
does this seem possible until more complete experimental information
is available. It does appear, however, that it is essential to take ac-
count of the nonstationary character of the signals obtained in mobile
radio when attempting such a comparison.

The theoretical approach we have taken is midway between a
purely phenomenological one, based on a complete catalog of the
statistical characteristics of mobile-radio signals received under a
variety of circumstances, and a purely analytical one in which the
transmission environment is specified in detail. The phenomenological
approach would be incomplete, in that it would not provide knowledge
of why the signals have the character observed. The analytical ap-
proach is impossibly difficult to execute. Our approach, which seeks
to describe the mobile-radio fields in terms of the compact (though
not necessarily simple) quantity p(e, At), does provide the system
designer with information which he can use to advantage in a straight-
forward way. The following is an example to illustrate this claim.

For example, suppose that experiments in a particular environ-
ment have shown that p(a) is roughly uniform and that p(atf) is
approximately exponential with parameter T such that T is very
large compared with the period of the proposed carrier frequency of
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the mobile radio system. Then it is known that if an antenna with
uniform gain in azimuth is used on the receiving vehicle the received
signal will be a Rayleigh distributed fluctuating quantity with a
baseband spectrum approximately uniform out to a frequency 2V/A,
where V is the vehicle speed and A is the carrier wavelength.

This system can be improved in a number of ways. The depth of
fading, as Rustako has demonstrated,® can be reduced by using a
number of such antennas separated by a sufficient distance for the
signals to be essentially uncorrelated. The signals are then brought
to a common phase, at which point they are combined before detec-
tion. The resulting signal is therefore the sum of a number of in-
dependent, Rayleigh distributed amplitudes, which for a large num-
ber will approach a Gaussian distribution with a nonzero mean.

Furthermore, the ratio of the root-mean-square fluctuation to the
mean of the combined signal will decrease as the square root of the
number of signals combined (by an approximate application of the
Central Limit Theorem). Alternatively, the rate of fading, as Lee has
demonstrated,** can be reduced by using directional antennas, which
give a reduced spectral width of the fading* and hence a reduction
in its rate.

W. C. Jakes has suggested a system, particularly suited for use at
microwave frequencies, which combines the advantages of both a
reduced depth and a reduced rate of fading.!® The system consists of
a number of directive antennas mounted on a single mobile unit and
pointing in different azimuthal directions. If the signals from the dif-
ferent antennas are brought to a common phase and then combined
before detection, the resulting signal will not only be considerably
reduced in bandwidth compared with the case if an omnidirectional
antenna had been used, but its depth of fading will also be reduced
according to the square root of the number of antennas used. The
widest coherent bandwidth that can be transmitted in the situation
assumed is about 7.
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APPENDIX A

On the Correlation of the Real and Imaginary Parts
of the Field Components

Tt is important to know the precise conditions under which the six
real random variables comprising the real and imaginary parts of
the three field components of equations (1), (2), and (3) are un-
correlated. Thus

N

N
E, =K, Z cos ¢, + jl,
n=1

sin ¢,
n=1
B X . B, . .
H, = —° Y sina, cosg, — j— 2 sina,sing,
1’ n=1 n n=1
B& B & )
H, =" cosa, coseg, + j— D, cosa,sine, .
N not T a=1

Denoting the real and imaginary parts of each field component by
the superseripts (r) and (i), the correlation coefficient of the real
and imaginary parts of the electric field, is

N N
(ECEY,. = Eb 2 2 (cos g, sing,), =0

n=1 m=1]1

since the p,'s are independent and rectangularly distributed through-
out 0 to 2.
Similarly,

M-
™M-

. v,
(HPHM),, = =3 (sin a, sin a,, cos @, si @) = 0

=
"
-
E

I

and

N

N ]
(HH). = —3 > 2 (cos a, cos @, €Os ¢, Sin @, ) = 0

N n=1m=1

with the additional assumption that the ¢,’s and «,’s are statistically
independent. It can also be shown, based on the foregoing assump-
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tions, that the correlation coecfficient for any component real part
and any component imaginary part is zero.

Notice that the above correlation coefficients are zero whatever
the probability density function p(e) is of the «,’s. Where pla) is
important is in the correlation coefficients for the component real
parts with each other and for the component imaginary parts with
each other. For example,

v

D N N .
(EXHY,, = =2 3 > (sin a, oS ¢, COS ¢ )u
n

n=1 m=1
is zero if the further assumption is made that p(a) is rectangular
throughout —= to +=. Then the correlation coefficient is zero for any
pair of component real parts and for any pair of component imaginary
parts,

APPENDIX B
Correlation of Fields—Their Magnitudes and Squared Magnitudes

Section 2.1 and Appendix A show that under certain conditions the
fields in mobile radio are “Gaussian fields,” which means that a
typical field component F (either an electrie or magnetic component)
may be represented by

F=ux+ijy

where x and y are real, independent, zero-mean (Gaussian random
variables of equal variance. Thus

@ = Whw =0
(e = W = &
and since both x and y are Gaussian distributed, their independence
is implied by
{@y)ue = 0.

The theory in the main text is concerned with finding the covariance
(F*F),, of two such Gaussian fields, where F, and F, may be two field
components separated in space, in time, in frequency, or in all three.
Thus

Fo=2a + jn
Fy = + jb’z
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and

Rp = (F*{Fz)w = (-7'511:2)" + (WiYoer + j((ﬁyz)u — {(ZTaY1)av)-

If, as is most often the case, all real parts are uncorrelated with all
imaginary parts,

(xlyﬂ)ﬂ' = <x2yl)nv = 0
and

Ry = (F4Fs). = (FiF$)e = (71 T2)ar + (Y1 Y2)av (48)

is wholly real.

In practice it is not possible to measure the correlation of the
complex fields. But what can be measured is the correlation of their
magnitudes (that is, envelopes)

A=|F|= VFFT
and the correlation of their squared magnitudes (that is, energies)
A* = |F|? = FF* = 2* + "

The relation between the autocovariance functions Rp, R4, and Ru.

is as follows.
Consider first the autocovariance funetion for squared magnitude

RA' = (I FI |2 [ FE lz)nv = (FIF’sFZF‘g%w

= (2220 + @YD + @Y2)ar + (@2YDav -

To evaluate the right-hand side one may use the result that if z,, .. .,
x4 are real, zero-mean Gaussian random variables (see Ref. 3, p. 168),

(20T ey = (T1Z2)ar(TaTa)ew F (T1Z)an(@aTa)ay + (T1T4)urlTaTa)av -
Then, typically,
(#2220 = @B TaToey = 0 + 2({@i22)ev)’
and
(x?yg av — (xlxlylyl>.v = ¢
so that
Ry = 4¢* + 2[(2:22)a0)® + (1102)er)’]: (49)

Now, in most cases

(xl:cE)lv = (yly'-')nv . (50)
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For example (48) and (50) can be shown to follow if F, and F, are the
same field component, but do not hold if F, is E, and F, is H! .
Then equations (48) and (49) combined give

RA: = 4:0"i + R’E, (51)
or from equations (48) and (50)
RA’ = 40’4(1 + Pz), (52)

where p is the normalized autocovariance function of the a and vy
random processes.

The corresponding result for the autocovariance function of the
magnitudes (see p. 59 of Ref. 13) is

(Ardo)ue = (|F,| |Fal)a
o*2E(p) — (1 — p")K(p)), (53)

where K and E are the complete elliptic integrals of the first and
second kind. In series form

R,

R, = gm + 0°/4 + p'/64 + -+ ) (54)

so that to a good approximation, neglecting powers of p higher than
the second,

R, = ’5’ (1 + p*/4), (55)
which has the same form as equation (52).
Finally, in terms of the field autocovariance function,

~T 2 R;)
RA =2U(1 + 160’4 * (56)

Both autocovariance functions R,. and R, take on a much simpler
form when normalized in the following way. Define the normalized
autocovariance function of the departure 84 of the squared magnitude
A? from its mean as

(4] - ADAE — A
V(A2 — A (42 — D)),
Then from equation (52)

(57)

Pias =

Pias = p. (58)
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Defining the normalized autocovariance function of the departure
34 of the magnitude A from its mean in a similar manner, equation
(54) gives

b = g O P SO, (6

or to a good approximation
pss == p. (60)

Equations (48) and (50) show that p is the normalized form of the
autocovariance function Ry of the complex field component F.

APPENDIX C

Derivation of Equation 26

The complex amplitude of the received signal appearing at the
antenna terminals may be written in the form

N

v = H, D ala,) exp {jea|

n=0
where E, is the common amplitude of the N azimuthal plane waves
incident on the mobile receiving antenna. The phase of each wave is
¢n, and a(a) is the voltage response at the antenna terminals owing
to a unit-amplitude plane wave arriving at the azimuthal angle .
At another point a distance ¢ away (see Fig. 1) the signal at the
antenna terminals would be

N
v = E, ; a(a,) exp {jlen + k& cosa,)}.

Forming the complex product v*»” and taking its expected value to
yield the spatial autocovariance function of the two signals, namely

R,(&) = @0*)u

= |E, |’ E Z (a*(a)ala,,) exp {jkE cos am})av-(exp {j(em — @n) }av

n=1 m=1
where it has been assumed that the phases and angles of arrival of
the component waves are independent. Making the further assump-
tion that the phases are equiprobable throughout the range 0 to 2m,

RO =N |E [ pee e ke cosal da (6D
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where p(a) is the probability density funetion of the component plane
waves, and

g(a) = a*(a)a(e) = |a(a)|
is the azimuthal power gain function of the antenna.

The temporal autocovariance function of v ean be derived from
equation (61) for a receiver moving with constant velocity V' by
making the substitution ¢ = V7, where = is a displacement in time.
Then

R.(r) = [ " p(@)g(@) exp |junr cos a} da (62)

where w, = 2rf, with f, = V/X\ the maximum Doppler shift, and
N |E,|* has been set equal to unity. The spectrum of the signal at the
antenna terminals is given by the Fourier transform of the temporal
autocovariance function of equation (62) and is

S.) = [ Rx) exp | —j2efr) dr
- (©3)

- f_ " dr f_ " dep(@)g(a) exp [j(eom cos @ — 2)7]

where f = /2 is the shift in frequency from the carrier frequeney.
Reversing the order of integration in equation (63), the integra-
tion w.r.t. = yields a Dirac §-function, thus

8.0 = [ plegfe) 501 cosa = ) da. (64
Now writing
hMa) = [, cosa — | (65)
it may be noticed that the -function of a function may be written
in the form!®
_ 5(:1 o — a,)
where the «, are all the values of « for which h({a) = 0, and the prime
denotes differentiation w.r.t. «. Hence, from equations (64), (65), and
(66) the spectrum of the signal at the antenna terminals is

~ 1
R ARV e T

1P@g(@) |- cos—+ s T Pla)gla) | am=cos=1r7sm }
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which is equation (26). Notice that since the angle of arrival & must
be real, the frequency shift f must lie in the range +fn. .

APPENDIX D

Random Frequency Modulation of the Carrier

Since frequency modulation is often used in mobile radio systems
it is pertinent to inquire what will be the nature of the received audio
signal when a single unmodulated frequency is transmitted. The phase
of the received signal is changing with time in a random manner;
hence its instantaneous frequency is random.

It has been shown, based on the work of Rice,* that the p.d.f. of
the time-rate of change of phase ¢ (the instantaneous frequency) for
narrowband Gaussian random noise with an amplitude spectrum
which is symmetrical about the carrier frequency, is

N — 1 _b_2 h 2 *

P(")‘z[bo(“sz”)] (67)
where by and b, are the zero®™ and second moments, respectively,
about the carrier frequency of the amplitude spectrum S(f). Notice
that it has been assumed that there is no constant sinusoid present
in the noise. It has also been shown2® that the conditional p.d.f.
p(¢|r), which is the density of the instantaneous frequency given
that the normalized envelope r is a certain value, is

T "
p(8' [r) = \/gu,’, exp{ 20;2} (68)

which is a Gaussian distribution with zero mean and standard devia-

tion
r— 1 fﬁ
agp = r 2b0 (69)

The above equations can be applied to the case of a mobile radio
signal derived from an omnidirectional antenna in a uniformly

scattered field.
The appropriate amplitude specturm is that of equation (27) and

yields the moments,

bo= [ S(af=1 (70)
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and

b = o [ £S0) df = 1/ @)

where w,, i8 the maximum Doppler frequency shift in radians per second.
Equations (67) and (68) then become

r2\37]-%
o) = | 202(1 + 22| (72
and
, _ 1 _”?
p(ﬂ |r) = ‘\/ga'ﬁ exp{ 20_;2} (73)
with
of = (1/2) %= (74)

The p.d.f. of equation (72) has a rather sharp maximum at ¢ = 0,
and falls to about 0.2 of this maximum value at ¢ = Zuw,, . For large
instantaneous frequency deviations the p.d.f. behaves asymptotically
as the inverse cube of the frequency. In practical terms this p.d.f. is
that of the amplitude of the output of a frequency discriminator in the
receiver for a single frequency transmitted.

The conditional p.d.f. of equation (73), which is Gaussian in form,
can also be interpreted as the p.d.f. of the amplitude of the diseriminator
output. But this is the p.d.f. of the frequency deviations measured only
when the envelope amplitude is in the neighborhood of a particular
level r, which is the envelope normalized by its r.m.s. value. In the
particular example chosen the envelope has a Rayleigh distribution.

When r = 1 the conditional p.d.f. of the frequency deviations has a
spread of the order of the maximum Doppler frequency shift w, . The
spread will be 10 w,, when r = {5, the probability that r = {7 being
0.01. Similarly the spread will be 100 w,, when r = 1}, the probability
that r = 1§ being 0.0001. Thus the wider ranges of random-frequency
excursion are associated with only very small fractions of the total time.
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