
Fields and waves in nature and

engineering — the big picture: Copyright ©2021 Reserved — no parts of this

set of lecture notes (Lects. 1-39) may be re-

produced without permission from the author.Fundamental building blocks of matter — electrons and protons at atomic

scales — interact with one another gravitationally and via “electromagnetic”

forces. These interactions are most conveniently described in terms of suit-

ably defined “vector fields” that permeate space and time, or simply the space-

time (x, y, z, t) ≡ (r, t). Interactions attributed to particle masses can be

formulated by gravitational fields g(r, t) specified in reference frames where

spatial coordinates r = (x, y, z) are defined. Far stronger interactions at-

tributed to particle charges, on the other hand, are formulated in terms of

a pair of vector fields, E(r, t) and B(r, t), known as electric and magnetic

fields, respectively.

Electric and magnetic fields:

A particle with charge q and mass m as well as position and velocity vectors

r and v = dr
dt specified at an instant t within a measurement frame (or “lab”

frame) will be accelerated in accordance with

m
dv

dt
= q(E(r, t) + v ×B(r, t)), (1)
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which is Newton’s 2nd law of motion1 for a particle under the influence of

Lorentz force

F = q(E + v ×B). (2)

In view of (1), the operational definitions of fields E(r, t) and B(r, t) arise

from particle acceleration a = dv
dt

that can be measured in the lab frame:

the electric field E is evidently force per unit stationary charge (i.e., v = 0)

whereas field B describes an additional force per charge in transport (i.e.,

qv) that acts in a direction perpendicular to v.

There are important differences between gravitational and electromag-

netic interactions: Gravitational interactions are always attractive indicating

that particle masses m that generate the gravitational field g(r, t) must all

have the same algebraic sign (taken to be positive by convention). Electro-

magnetic interactions, on the other hand, are attractive or repulsive depend-

ing on particle charges q which can be positive or negative. By convention

a positive charge q = e ≈ 1.6 × 10−19 C is attributed to the fundamental

particle know as proton, while, again by convention, q = −e for an electron,

the sole companion of the proton within a hydrogen atom2. Protons and

electrons are charged elementary building blocks3 of all atoms (hydrogen as

1Valid so long as |v| ≪ c where c is the speed of light in vacuum.
2Hydrogen atom exists as a consequence of mutual attraction between proton and electron counterbal-

anced by quantum mechanical constraints on allowed energy states — the constraints include the influence
of short-lived virtual particle/anti-particle pairs interacting with the proton and electron in a sporadic
manner.

3Atoms can also contain in their nuclei varying numbers of an uncharged particle known as the neutron

which is responsible for different isotopes of chemical elements (e.g., the hydrogen isotope known as
deuterium contains a neutron in addition to a proton and an electron). While neutrons have no net
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well as atoms of heavier elements) that constitute the matter around us. In a

collection of fundamental particles the total mass is always a monotonically

increasing function of the number of particles. However, that is not the case

with total charge since individual particle charges can be positive or nega-

tive. In fact, the net charge density ρ(r, t) found in macroscopic amounts of

matter is typically close to zero as a result of having nearly equal numbers of

protons and electrons in ordinary matter composed of charge-neutral atoms

and molecules4.

charge, they consist of charged sub-nuclear particles known as up (2
3
e) and down (−1

3
e) quarks whose

motions within the neutron establish currents and a magnetic moment.
4The reason why intrinsically weaker gravity becomes dominant in the macro world.
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Fields are relative:

Physical laws that we use today to describe our surroundings have been

developed to have identical forms in all reference frames in uniform motion

with respect to one another. For instance, Lorentz force law on a charge q is

F = q(E + v ×B) and F′ = q(E′ + v′ ×B′) (3)

in terms of unprimed and primed variables measured in two reference frames.

Moreover, particle charge q and the speed of light c are assigned invariant5

values in reference frames in relative motion (thus q′ and c′ are unnecessary

to invoke in physical models). The ramifications of these restrictions con-

stituting the special theory of relativity (first described by Einstein in

1905 and covered at UIUC in PHYS 325) are in full accord with experimen-

tal measurements. They are also well matched by Newtonian relations

(approximate but more intuitive laws of dynamics covered in PHYS 211) if

and when the relative speed of primed and unprimed frames is negligible

compared to the speed of light c.

Since in Newtonian descriptions mass m and acceleration dv
dt have invari-

ant values in all reference frames, it follows that if and when |v′ − v| ≪ c,

then F′ = F, in which case (3) implies

E′ + v′ ×B′ = E + v ×B. (4)

5Other “relativistic invariants” between different reference frames include particle (rest) masses and the

so-called “spacetime interval”
√

t2 − L2/c2 =
√

t′2 − L′2/c2 between two events ocurring at two locations
and two times separated by a distance L and time-delay t, respectively. Relativistic invariants are the
most prized physical quantitites to focus on in relativistic models (simply because they remain fixed in all
reference frames). Note that distances L 6= L′ and time-delays t 6= t′ are not relativistic invariants!
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Then, for a stationary charge in the primed frame, we have v′ = 0 and

E′ = E + v ×B, (5)

which indicates that force per unit stationary charge in the primed frame

— i.e., the electric field in the primed frame — is a linear combination of

electrical and magnetic forces exerted on the same charge as seen from an-

other reference frame (unprimed) where the charge appears to have a vector

velocity v.

Thus, electric and magnetic fields needed in the formulation of charged

particle interactions are not unrelated to one another — rather, they intermix

in a manner that depends on the reference frame6 being used for analysis

purposes. Note that charges q which are stationary in one reference frame

(and therefore carry no electrical current) will appear to be in motion in

another frame and thus carry electrical currents I. It must therefore be

evident that the equations for E and B in any reference frame must be cross-

coupled and depend on both charge and current densities that are measured

in the same frame.
6Given E and B measured in the lab, E′ and B′ measured by an observer moving through the lab

with a constant velocity v are well approximated by E′ ≈ E + v × B and B′ ≈ B − v×E

c2
so long as

|v| ≪ c = 3× 108 m/s, the speed of light in free space (shown by relativistic analysis discussed in PHYS
225 — exact transformation formulae are E′

‖ = E‖, B
′
‖ = B‖, E

′
⊥ = γ(E⊥+v×B⊥), B′

⊥ = γ(B⊥− v×E⊥

c2
),

where γ = 1
√

1− v
2

c
2

).
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Maxwell’s field equations:

The required set of coupled equations governing E and B was “discovered” in

1864 by James Clerk Maxwell to be (first introduced in PHYS 212 in integral

form and discussed throughout this course)

∇ · E = ρ
ǫo

Divergence eqn’s ∇ ·B = 0

∇× E = −∂B
∂t

Curl eqn’s ∇×B = µoJ + µoǫo
∂E
∂t

where

µo ≡ 4π × 10−7 H

m
and ǫo =

1

µoc2
≈ 1

36π × 109
F

m

in mksA units and

c =
1√
µoǫo

≈ 3× 108
m

s

is the speed of light in free space. Furthermore ρ = ρ(r, t) refers to the net

charge density and J = J(r, t) to the current density in the measurement

frame, whereas ∇ ·E and ∇×E refer to the divergence and curl of vector

field E generated by partial differentiation of the orthogonal components of

E (concepts introduced in MATH 241 and reviewed in Lecture 4).
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Solutions of Maxwell’s equations — waves and static fields (AC/DC):

Maxwell’s partial differential equations shown above, describing the coupled

dynamics of electric and magnetic fields E and B in response to space and

time varying source fields ρ and J, require an extended study to appreciate

their full ramifications and predictions. All predictions of these equations

have been experimentally verified and it has been found out that everything

that is known and observed about electricity and magnetism can be explained

in terms of these equations and their quantized forms.

One of their predictions, derived specifically in Lecture 18, is that they

support traveling wave solutions of the form

E(r, t) ∝ B(r, t) ∝ cos(2πf(t− z

c
)) (6)

in regions where J = ρ = 0. These are co-sinusoidal field perturbations hav-

ing oscillation frequencies f , oscillation periods T = 1
f
, wavelengths λ = c

f
,

and they travel in 3D space with the speed of light c in free space. Since

Maxwell’s equations are linear, superpositions of co-sinusoidal waves with

different wavelengths provide additional solutions — these can have arbi-

trary spatial variations and still travel at a fixed speed c. Any such field

perturbation will travel across a region of size L during a time interval L/c

as illustrated in the margin.

t = 0

L
(a)

t = L/2c

L
(b)

c

c

t = L/c

L
(c)

c

Another prediction of Maxwell’s equations is that fields established by

static — i.e., non-time-varying — charge and current densities ρ = ρ(r) and

J = J(r) satisfy two separate sets of decoupled equations
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Electrostatics Magnetostatics

∇ · E = ρ
ǫo

Divergence eqn’s ∇ ·B = 0

∇×E = 0 Curl eqn’s ∇×B = µoJ

shown in the left and right columns above — these were obtained by sim-

ply setting the terms ∂E/∂t and ∂B/∂t in the curl equations to zero. In-

dependent “curl-free” static electric fields E(r) and “divergence-free” static

magnetic fields B(r) satisfying these simplified equations are naturally far

easier to determine than the coupled dynamic fields E(r, t) and B(r, t) to be

encountered in response to time-varying sources ρ(r, t) and J(r, t).

Quasi-static fields:

Even though in practical cases of interest (in physics and engineering) time-

varying sources are the “rule” and static sources an “exception”, learning to

solve the simplified set of electrostatics and magnetostatics equations turns

out to be invaluable. The reason is, static solutions often provide accurate

approximations — known as quasi-static approximation — for time-varying

field problems involving slowly-varying sources ρ(r, t) and J(r, t).

More specifically, if the source variation period T is much longer than the

travel time L/c of field perturbations across a region of size L, that is, if

T ≫ L

c
, (7)
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then field calculations for the entire region can be done statically using the

instantaneous (as opposed to retarded or previous) values of field sources

ρ and J. This is true because under the given condition source strengths

will remain nearly constant over time intervals needed to communicate the

new fields to the most distant corners of the region of interest. We can also

t = 0

L
(a)

t = L/2c

L
(b)

c

c

t = L/c

L
(c)

c

re-state the same inequality (7) as

L ≪ cT =
c

f
= λ (8)

using the definition of wavelength λ introduced earlier. The indication is

then, any system with a physical size L that is small in terms of wavelength

λ of the applied field variations can be analyzed quasi-statically by starting

from Maxwell’s static equations.

Fields and circuits:

Lumped circuit analysis techniques introduced in ECE 110 and 210 constitute

practical applications of the quasi-static approach suitable for “electrically

small circuits” consisting of capacitors, inductors, and resistors and slowly

varying AC sources. By contrast, the analysis of “electrically large circuits”

with physical dimensions L approaching or exceeding λ requires taking a

proper account of propagation time delays L/c in the system by developing

a distributed circuit approach based on the full set of Maxwell’s equations.

One practical application area where this need is most acute nowadays

is in chip (integrated circuit) design and packaging suitable for high-speed
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computing7. While the physical dimensions of electronic chips and micro-

circuits are generally very small, such elements can still be electrically large

in the sense that L ∼ λ because of reduced wavelengths λ at high clock

speeds f = 1/T . Thus, even the computer engineers (CompE’s) amongst us

need to understand and learn how to mitigate (and take advantage of) the

ramifications of Maxwell’s equations.

7E.g., Taflove, “Why study electromagnetics”, IEEE APM, 44, 132, 2002.
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Details and study plan:

So much for the big picture about fields and waves encountered in nature

and engineering systems and circuits. Working details of how fields and wave

effects can be computed and characterized will be provided in the remaining

parts of these notes.

Over the course of 39 lectures we will develop and study, in succession,

the equations and applications of electrostatics (Lectures 1-11), magnetism

(Lectures 12-15), and electromagnetics (Lectures 16-39) with a focus on time

varying (quasi-static as well as wave-like) phenomena.

ECE 329:

We start by finding out how the equations of electrostatics arise from the

familiar Coulomb’s law (like charges repel, unlike charges attract) and the

idea of field superpositions. We learn to solve electrostatic problems using the

notion of electrostatic potential (voltage) and develop the notions of polariza-

tion, conduction, charge continuity, and capacitance in quasi-static settings

of practical importance.

Next we learn how magnetic fields arise from charges in motion (a relative

concept depending on the reference frame of the observer) and develop the

governing laws of magnetostatics (also an extension of Coulomb’s law seen

from different reference frames). The vector potential is introduced for mag-

netic field calculations from prescribed current configurations, and notions

of magnetization and inductance are subsequently developed and applied in

11



quasi-static settings.

Just like time-varying electric fields imply time-varying charge densities

(or vice versa) in electro-quasi-statics (EQS), time-varying currents imply

time-varying magnetic flux in magneto-quasi-statics (MQS). We also learn

that time-varying magnetic-flux is accompanied by time varying electric fields

— a key finding of Faraday’s called induced field with paradigm shifting

ramifications and applications — and requires the modification of curl-free

electric field condition into a dynamic equation known as Faraday’s law.

Finally, the full set of Maxwell’s equations is reached after adding a

time-varying electric field term to the curl equation of magnetostatics. This

change, first introduced by Maxwell in order to make sure that the govern-

ing equations of electricity and magnetism are consistent with conservation

of charge, acknowledges the two-way coupling and feedback between electric

and magnetic fields: time-varying magnetic fields induce time-varying elec-

tric fields — Faraday effect — and time-varying electric fields in turn induce

time-varying magnetic fields (call it the “Maxwell effect”) in order to sustain

electromagnetic field variations in regions far away from charges and current

loops — that is the way nature seems to work (and here we are to observe

all that thanks to Maxwell effect allowing us to be here).

A study of wave solutions of Maxwell’s equations follows, including plane

TEM waves in free space, linear and circular polarized waves, waves in con-

ducting media, normal incidence of waves on planar interfaces of homoge-

neous regions, energy and momentum transfer, guided waves in two-wire

transmission-line (TL) systems, transient response on TL circuits, resonant
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oscillations in TL cavities, sinusoidal steady-state analysis of TL’s and dis-

tributed circuits, Smith Chart applications, and finally losses in TL systems.

That is the full scope of the 39 lectures of ECE 329 — the course ends

with an intensive study of distributed circuit concepts based on transmission

lines, a study that complements the lumped circuit techniques examined and

mastered in earlier courses.

ECE 329 is only the first half of our first-pass study of the fields and waves

topics essential in electrical engineering education. Important topics such as

radiation and antennas (generation details of electromagnetic waves by time-

varying currents) and dispersion (frequency dependence of wave propagation

speeds in material media) are barely mentioned or not at all in ECE 329.

These constitute the main topics of the follow-on course, ECE 350.

ECE 350:

ECE 350 starts with the discussion of electromagnetic radiation theory and

transmission antennas, continues with propagation and wave guidance ef-

fects (including dispersion, phase and group velocities, Doppler shifts, oblique

incidence, evanescence and tunneling effects, guided modes in parallel-plate,

rectangular, and dielectric slab waveguides), treats cavity fluctuations (in-

cluding resonant modes, blackbody radiation in 3D cavities, thermal noise),

and concludes with a discussion of antenna reception (including effective area,

available power, link equations).
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Beyond ECE 329 and 350:

Students having gone through ECE 329 and 350 will find themselves ready to

encounter higher level courses in our curriculum focusing on different applica-

tion areas and frequency regimes of the implications of Maxwell’s equations.

It is a life-long endeavor to master these relationships which have precipitated

the scientific upheavals of the 20th century (relativity and quantum mechan-

ics) and have remained intact and essential despite the upheavals unlike most

aspects of classical physics. Our high speed electronics and communication

networks and devices are intrinsically and fundamentally based on fields and

wave concepts. Progress and innovation in these areas will require a deep

understanding of fields and waves and how they interact with novel materials

and structures.

Learn the basics and then go and invent the next thing!
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ECE 329 Lecture Notes — Summer 09/11/21, Erhan Kudeki Copyright ©2021 Reserved — no parts of this

set of lecture notes (Lects. 1-39) may be re-

produced without permission from the author.

1 Vector fields and Lorentz force

• Interactions between charged particles can be described and modeled8

in terms of electric and magnetic fields just like gravity can be

formulated in terms of gravitational fields of massive bodies.

– In general, charge carrier dynamics and electromagnetic field vari-

ations9 account for all electric and magnetic phenomena observed

in nature and engineering applications.

• Electric and magnetic fields E and B generated by charge carriers —

electrons and protons at microscopic scales — permeate all space with

proper time delays, and combine additively.

-2 -1 1 2
x

-2

-1

1

2

y

– Consequently we associate with each location of space having Carte-

sian coordinates

(x, y, z) ≡ r

a pair of time-dependent vectors

E(r, t) = (Ex(r, t), Ey(r, t), Ez(r, t))

8Interactions can also be formulated in terms of past locations (i.e., trajectories) of charge carriers.
Unless the charge carriers are stationary — i.e., their past and present locations are the same — this
formulation becomes impractically complicated compared to field based descriptions.

9Time-varying fields can exist even in the absence of charge carriers as we will find out in this course
— light propagation in vacuum is a familiar example of this.
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and

B(r, t) = (Bx(r, t), By(r, t), Bz(r, t))

that we refer to as E and B for brevity (dependence on position

r and time t is implied). Maxwell’s equations:

∇ · E =
ρ

ǫo
∇ ·B = 0

∇×E = −∂B

∂t

∇×B = µoJ+ µoǫo
∂E

∂t
.

such that

F = q(E+ v ×B),

with

µo ≡ 4π × 10−7
H

m
,

and

ǫo =
1

µoc2
≈ 1

36π × 109
F

m
,

in mksA units, where

c =
1√
µoǫo

≈ 3× 108
m

s

is the speed of light in free space.

(In Gaussian-cgs units B

c
is used

in place of B above, while ǫo = 1

4π

and µo = 1

ǫoc
2 = 4π

c
2 .)

• Field vectors E and B and electric charge and current densities ρ and

J — describing the distribution and motions of charge carriers — are

related by (i.e., satisfy) a coupled set of linear constraints known as

Maxwell’s equations, shown in the margin.

– Maxwell’s equations are expressed in terms of divergence and curl

of field vectors — recall MATH 241 — or, equivalently, in terms

of closed surface and line integrals of the fields enclosing arbitrary

volumes V and surfaces S in 3D space, as you have first seen in

PHYS 212.

◦ Maxwell’s equations were “discovered” as a consequence of ex-

perimental and theoretical studies led by 19th century scien-

tists including Gauss, Ampere, Faraday, and Maxwell.

They remain intact and essential despite the scientific upheavals

(paradigm shifts) of 20th century: relativity and quantum physics10.

10Fields are are utilized in different ways in classical and quantum electrodynamics, but Maxwell’s field
equations remain the same under both paradigms. Relativity theory is an updated model of space and
time relations developed to achieve consistency with the implications of Maxwell’s equations.
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Given the charge and current densities ρ and J, Maxwell’s equations can be

solved for the fields E and B.

• Field solutions E and B in turn determine how a “test charge” q with

mass m, position r, and velocity v ≡ ṙ = dr
dt

accelerates in accordance

with Lorentz force Lorentz

forceF = q(E + v ×B)

and Newton’s 2nd law F = d
dt
mv (in classical electrodynamics). As

such Units in mksA sys-
tem:

– q[=]C=sA,

– E[=]N/C=V/m,

– B[=]V.s/m2=Wb/m2=T,

– ρ[=]C/m3,

– J[=]A/m2,

where
C, N, V, Wb, and T
are abbreviations for
Coulombs, Newtons, Volts, We-

bers , and Teslas,
respectively.

Charge q is quantized in units of
e = 1.602× 10−19 C, a relativistic
invariant.

– electric field E at any location r is the vector force per stationary

(i.e., v = 0) unit charge (i.e., q = 1 C),

– magnetic field B describes an additional force per unit charge

which is experienced by charges in motion (v 6= 0) in the reference

frame — typically called the “lab frame” — where E and v are

measured.

Since Lorentz force equation has the same form in all inertial reference

frames11 (like all laws of physics, including Maxwell’s equations) while the

charge velocity v is clearly frame-of-reference dependent, it follows that the

values of fields E and B must also be dependent on the reference frame12.

11Coordinate systems in which particles not subjected to any force — or, if general relativistic effects
are to be retained, particles subjected to gravitational forces only — follow linearly varying trajectories.

12Given E and B measured in the lab, E′ and B′ measured by an observer moving through the lab
with a constant velocity v are well approximated by E′ ≈ E + v × B and B′ ≈ B − v×E

c2
so long as

|v| ≪ c = 3× 108 m/s, the speed of light in free space.
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• Charge carrier positions r, velocities ṙ, and accelerations r̈ = F
m

, as well

as forces F, fields E and B, and current density J are all described, in

general, in terms of 3D vectors.

• In Cartesian coordinates such vectors and vector functions (of posi-

tion r and/or time t) can be expressed in terms of mutually orthog-

onal unit vectors x̂, ŷ, and ẑ as in

r = (x, y, z) = xx̂+yŷ+zẑ and E = (Ex, Ey, Ez) = Exx̂+Eyŷ+Ezẑ etc.,

where

– |r| ≡
√

x2 + y2 + z2 and |E| ≡
√

E2
x + E2

y + E2
z etc., are vector

magnitudes,

– r̂ ≡ r
|r| and Ê ≡ E

|E| etc., are associated unit vectors,

– with dot products

◦ r̂ · r̂ = 1, Ê · Ê = 1, x̂ · x̂ = 1, etc., but

◦ x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0

– and cross products

x

y

z

x̂

ŷ

ẑ

r = (x, y, z)

UNIT VECTORS AND A POSITION
VECTOR IN RIGHT-HANDED
CARETESIAN COORDINATES 

= xx̂ + yŷ + zẑ

◦ x̂× ŷ = ẑ,

◦ ŷ × ẑ = x̂,

◦ ẑ × x̂ = ŷ,

adopting a right-handed convention (see the margin note in

the next page).
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• Recall that Right handed con-
vention: cross product vec-
tor points in the direction indi-
cated by the thumb of your right

hand when you rotate your fin-
gers from vector A toward vector
B through angle θ you decide to
use.

– Dot product A ·B is defined as |A| times |B| times the cosine of

angle θ between A and B.

A = |A|â

B = |B|b̂

|B| sin θ

|B| cos θ

θ

A · B = |A||B| cos θ

A× B = |A||B| sin θâ × n̂

â
n̂

CROSS PRODUCT: right-handed 
perpendicular area vector of 
the parallelogram formed
by co-planar vectors

DOT PRODUCT:product of 
projected vector lengths

x

y

z

x̂

ŷ

ẑ

r = (x, y, z)

UNIT VECTORS AND A POSITION
VECTOR IN RIGHT-HANDED
CARETESIAN COORDINATES 

= xx̂ + yŷ + zẑ

◦ Thus dot product is zero when angle θ is 90◦, as in the case

of x̂ and ŷ, etc.

– Cross product A × B is defined as a vector with a magnitude

|A| times |B| times the sine of angle θ between A and B and a

direction orthogonal to both A and B in a right-handed sense

(see margin note) .

◦ Thus cross product is zero when the vectors cross multiplied

are collinear (θ = 0◦) or anti-linear (θ = 180◦).

Example 1: Given the vectors v = (5, 10, 0) and B = (0, 0, 2) compute the cross and
dot products v ×B and v ·B.

Solution: Since we can also write v = 5x̂+ 10ŷ and B = 2ẑ, it follows that

v ×B = (5x̂+ 10ŷ)× 2ẑ = 10x̂× ẑ + 20ŷ × ẑ = −10ŷ + 20x̂.

Alternatively, using the well known determinant method for cross products,

v×B =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

5 10 0

0 0 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= x̂(10 ·2−0 ·0)− ŷ(5 ·2−0 ·0)+ ẑ(5 ·0−10 ·0) = 20x̂−10ŷ.
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Also, v ·B = (5, 10, 0) · (0, 0, 2) = 5 · 0 + 10 · 0 + 0 · 2 = 0.

Having three non-colinear
force measurements Fi cor-
responding to three distinct
test particle velocities vi is
sufficient to determine the
fields E and B at any location
in space produced by distant
sources as illustrated by this
example.

x

y

z

F1 = 2x̂

v1 = 0

x

y

z

F2 = 2x̂ − 6ẑ

v2 = 2ŷ

x

y

z

F3 = 2x̂ + 9ŷv3 = 3ẑ

Example 2: A particle with charge q = 1 C passing through the origin r = (x, y, z) =
0 of the lab frame is observed to accelerate with forces

F1 = 2x̂, F2 = 2x̂− 6ẑ, F3 = 2x̂+ 9ŷN

when the velocity of the particle is

v1 = 0, v2 = 2ŷ, v3 = 3ẑ
m

s
,

in turns. Use the Lorentz force equation

F = q(E+ v ×B)

to determine the fields E and B at the origin.

Solution: Using the Lorentz force formula first with F = F1 and v =v1, we note that

2x̂ = (1)(E+ 0×B),

which implies that

E = 2x̂
N

C
= 2x̂

V

m
.

Next, we use

v ×B =
F

q
−E =

F

q
− 2x̂

with F2 = 2x̂− 6ẑ and v2 = 2ŷ, as well as E = 2x̂ V/m, to obtain

2ŷ ×B = −6ẑ ⇒ ŷ ×B = −3ẑ;
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likewise, with F3 = 2x̂+ 9ŷ and v3 = 3ẑ,

3ẑ ×B = 9ŷ ⇒ ẑ ×B = 3ŷ.

Substitute B = Bxx̂ +Byŷ +Bz ẑ in above relations to obtain

ŷ × (Bxx̂+ Byŷ + Bzẑ) = −Bxẑ +Bzx̂ = −3ẑ

and
ẑ × (Bxx̂+Byŷ + Bzẑ) = Bxŷ − Byx̂ = 3ŷ.

Matching the coefficients of x̂, ŷ, and ẑ in each of these relations we find that

Bx = 3
Wb

m2
, and By = Bz = 0.

Hence, vector

B = 3x̂
Wb

m2
.

x

y

z

F1 = 2x̂

v1 = 0

x

y

z

F2 = 2x̂ − 6ẑ

v2 = 2ŷ

x

y

z

F3 = 2x̂ + 9ŷv3 = 3ẑ

• In your first homework you will be asked to do a sequence of vector

exercises, including problems on volume, surface, and line integrals of

vector or scalar functions of space (i.e., “fields”). These problems should

be worked out with the help of your PHYS 212 and/or MATH 241 texts

and notes.

– This course assumes a background of PHYS 212 and MATH

241 (on electromagnetic fields and vector calculus) as well
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as ECE 210 (lumped circuits and linear systems con-

cepts including time- and frequency-domain approaches

and phasors).

• The main objective of the course is to build up a firm understand-

ing of electromagnetic field concepts introduced in PHYS 212,

and to learn how to use Maxwell’s equations under static and

time-varying conditions associated with unguided (i.e., wireless) and

guided (mainly transmission lines) electromagnetic waves. The study Prerequisites:

MATH 241

PHYS 212

ECE 210

Follow-on:

ECE 350

of guided waves is the key to extend the familiar lumped-circuit

concepts into the realm of distributed circuits. This is the first half

of a sequence of core electromagnetics courses in our curriculum, the

second course being the 3-of-5 elective ECE 350.

– Topical outline:

1. Static electric fields, potential, polarization, quasi-

static applications (10 lectures)

2. Static currents and magnetic fields (3 lectures)

3. Time-varying fields and Maxwell’s eqns (4 lectures)

4. Plane wave solutions of Maxwell’s eqns (9 lectures)

5. Guided waves in transmission lines and distributed

circuits (13 lectures)
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2 Static electric fields — Coulomb’s and Gauss’s

laws

Static electric fields E(r) are produced by static (non-time-varying) distri-

bution of charges and obey and the electrostatic laws shown in the margin

where ρ(r) denotes the net charge density in 3D volume. Over the next few Laws of

electrostatics:

∇ · E = ρ/ǫo
∇×E = 0

lectures we will find out how these laws emerge from Coulomb’s law.

At the most elementary level, each stationary point charge (electron or

proton) Q is surrounded by its radially directed electrostatic field E given

by Coulomb’s law, and in the presence of multiple charges the field vectors

of all the charges are added vectorially (linear superposition holds) to obtain

a superposition field E.

• Coulomb’s law specifies the electric field of a stationary charge Q at

the origin as

E(r) =
Q

4πǫor2
r̂

as a function of position vector r = (x, y, z), where ǫo ≈ 1
36π×109

F/m

is a scaling constant known as permittivity of free space,

r = |r| =
√

x2 + y2 + z2

is radial distance from the charge, and r̂ = r
r radial unit vector pointing

away from the charge.

r = |r|r̂

Q

q

r̂

Force exerted by Q on q:

F = qE

E =
Q

4πǫo|r|2
r̂

with electric field

With multiple Q’s superpose
multiple E’s

x

y

z

– This Coulomb field E(r) will exert a force F = qE(r) on any

1



stationary “test charge” q brought within distance r of Q (see

figure in the margin). If qQ > 0, force F is

repulsive (directed along

r̂), if qQ < 0 it is at-

tractive — like charges

repel, unlike charges at-

tract.

The existence of a Coulomb field accompanying each charge carrier in its rest

frame1 is taken to be a fundamental property of charge carriers (established

by measurements).

• When multiple static charges Qn are present in a region, the force

on a stationary test charge q can be described as qE in terms of a

superposition field

E =
∑

n

Qn

4πǫor2n
r̂n

written in terms of the magnitudes and directions of vectors rn pointing

from each Qn to q.

– Equivalently, we can write

q

x

y

z

r − rn Qn

rnr

Position vectors of charges
are referenced with respect
to a common origin O

O

E(r) =
∑

n

Qn

4πǫo|r− rn|2
r− rn

|r− rn|
,

where r and rn now denote the locations of q and Qn with re-

spect to a common origin — this form is more convenient when

static electric field E is to be calculated for an arbitrary location

r (independent of the test charge notion).
1In non-inertial rest frames charge carriers will also produce an additional field proportional to the

acceleration of free particles observed in such frames (e.g., Boyer, Am. J. Phys., 47, 129, 1979; Gupta
and Padmanabhan, Phys. Rev. D, 57, 7241, 1998).
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Example 1: Charges Q1 = 4πǫo and Q2 = −2Q1 are located at coordinates r1 =
(1, 0, 0) = x̂ and r2 = (0, 1, 0) = ŷ, respectively. What is the expression for E(r)
and what is the explicit value of vector E(0)?

Solution: Field E due to Q1 and Q2 at an arbitrary point r can be obtained as

E(r) =
Q1(r− r1)

4πǫo|r− r1|3
+

Q2(r− r2)

4πǫo|r− r2|3

=
(r− x̂)

|r− x̂|3 −
2(r− ŷ)

|r− ŷ|3 =
(x− 1, y, z)

|(x− 1, y, z)|3 −
2(x, y − 1, z)

|(x, y − 1, z)|3 V/m.

At the origin where r = (0, 0, 0), this result gives

E(0, 0, 0) =
(−1, 0, 0)

|(−1, 0, 0)|3 −
2(0,−1, 0)

|(0,−1, 0)|3 = −x̂+ 2ŷV/m.

-2 -1 1 2
x

-2

-1

1

2

y

Field map of a dipole plus a

negative charge

-10 -5 5 10
x

-10

-5

5

10

y• The vector map shown in the margin depicts samples of unit vec-

tors Ê(r) ≡ E(r)
|E(r)| for the field E(r) obtained in Example 1 on a suit-

able grid established on xy-plane — such plots are useful or visualiza-

tion purposes. Note that arrows emanate out of the positive charge at

(x, y) = (1, 0) and converge upon the negative charge at (x, y) = (0, 1).

– Electrostatic fields can be alternatively visualized in terms of so-

called field lines or flux lines, continuous curves which are drawn

tangential to unit vectors Ê(r) at every position r. Try tracing

out the flux lines over the vector map shown in the margin!
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• According to Coulomb’s law, electrostatic field of a charge Q placed at

the origin points out in the radial direction r̂ away from the origin and

has a magnitude

Er =
Q

4πǫor2

that depends on radial distance r, but it does not depend on direction

r̂. The product of Er with ǫo and the surface area of a sphere at radius

r, namely, S = 4πr2, yields

ǫoErS = Q

independent of the radius of the sphere. Let’s re-write the same result

as

Q

∮
S
E · dS =

Q

ǫo

S

E, dS

Q

∮
S′ E · dS =

Q

ǫo

S
′

E, dS

Q

∮
S′′′ E · dS = 0

S
′′′

E, dS

Surface integral depends
only on the net amount of
charge contained within
the surface --- charges
outside the surface don’t
matter; surface shape doesn’t
matter; also charge motion
within the surface does not
matter.

(a)

(b)

(d)

Q

∮
S′′ E · dS =

Q

ǫo

S
′′

E, dS

(c)

ǫo

∮

S

E · dS = Q,

where

– the “closed surface integral”
∮

S E · dS is called the flux of E over

surface S bounding the volume V = 4π
3
r3,

– which in turn denotes the limiting value of the sum of dot products

Ej ·∆Sj computed over all surface elements of S having incremen-

tal areas |∆Sj| and unit vectors ∆Sj/|∆Sj| pointing away from

volume V — the limiting value is obtained as all |∆Sj| approach

zero (i.e., with increasingly finer subdivision of S into |∆Sj| ele-

ments).
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Although we obtained the equality ǫo
∮

S E ·dS = Q above only for a spherical

surface S centered about charge Q, we can easily convince ourselves — see the

sketches on the right — that the equality should hold even when we distort

the shape of surface S and/or displace Q away from the center so long as

we do not move Q outside of S. All such variations are permitted because

of inverse r-square dependence of the Coulomb’s law and additive nature of

fields, and if Q is moved outside the surface then the surface integral (flux)

simply goes to zero.

• Hence, given an arbitrary shaped volume V enclosed by an arbitrary

shaped surface S and including a net electrical charge QV , and defining

a displacement field Displacement

D = ǫoE[=] Fm
V
m = C

m2D ≡ ǫoE,

we obtain
∮

S

D · dS = QV , Gauss’s law

a constraint known as Gauss’s law. At this stage, the introduction of Gauss’s law

D is simply a notational convenience.

Gauss’s law offers an alternative to implementing an explicit sum of Coulomb

fields for calculating static field distributions E or D = ǫoE — the alternative

method can be used when charge distributions have simplifying symmetry

properties as will be illustrated in the next set of examples.

Also, later on we will learn that Gauss’s law is valid even when charges

QV within volume V are non-static (i.e., in motion), a condition under which

Coulomb’s law is no longer valid.
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x

y

z

r = r(x̂ cos φ + ŷ sin φ)
φ

∆z =
Q

λ

Q point charge in C

λ charge density in C/m

Example 2: Charged particles Q are located uniformly along the z-axis with an
average line density of λ C/m extending from z = −∞ to +∞. We will compute
the electrostatic field E of this charge distribution at a distance r from z-axis.

Having an average charge density of λ C/m implies that individual charges Q
are spaced from one another by a distance ∆z = Q

λ
along the z-axis. Assuming

that charge locations are z = n∆z, where n is any integer, and using Coulomb’s
law, we find that

E(r) =
∞
∑

n=−∞

Q

4πǫo|r− ẑn∆z|2
r− ẑn∆z

|r− ẑn∆z| =
∞
∑

n=−∞

λ∆z(r− ẑn∆z)

4πǫo|r− ẑn∆z|3 ,

which, for position r = r(x̂ cosφ + ŷ sinφ) on xy-plane, at a distance r to the
z-axis, reduces to

E =
∞
∑

n=−∞

λr(x̂ cosφ+ ŷ sinφ)

4πǫo(r2 + n2∆z2)3/2
∆z (microscopic field)

because the ẑ component of E proportional to n∆z cancels out (as a result of
summation) due to symmetry in n. This field is “purely radial” in the direction

r̂ ≡ x̂ cosφ+ ŷ sinφ

perpendicular to z-axis, and it can be evaluated, for r ≫ ∆z, as an integral
(remember that sums of infinitesimals are in effect definite integrals)

r̂

∫ ∞

−∞

λr

4πǫo(r2 + z2)3/2
dz = r̂

λr

4πǫo

∫ ∞

−∞

dz

(r2 + z2)3/2
︸ ︷︷ ︸

= r̂
λ

2πǫor
. (macroscopic

2/r2 field)
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• The result

E = r̂
λ

2πǫor

obtained above, valid for r ≫ ∆z, and labelled as macroscopic

field , also represents at any r (and z) the space average of the mi-

croscopic field taken over small volumes having dimensions of many

∆z’s (inter-particle separations).

– In such a spatial average the rapidly varying structure of micro-

scopic field (in particular at small r, caused by the discrete nature

of charge distribution) is smoothed out as if electrical charge were

distributed in space with a continuous density of λ C/m.

– In realistic applications involving colossal numbers of charge car-

riers (of the order of 1023 in macroscopic chunks of solids) it is

practical (and desirable) to focus our attention on macroscopic

rather than microscopic fields.

We next illustrate how to obtain the macroscopic field E = r̂ λ
2πǫor

directly by using Gauss’s law.

7



λ

r

L

z

S

Er =
λ

2πǫor

x

y

φ

Solution using Gauss’s law: We first notice that macroscopic electric field of a
charge distribution along the z-axis having an average charge density of λ C/m
should be pointing in radial direction r̂ away from the z-axis (why?).

Also its magnitude Er should be independent of azimuth angle φ by symmetry.

As a consequence, we can apply Gauss’s law
∮

S

D · dS = QV

as
ǫoEr2πrL = λL

over the surface S of a cylindrical volume V of some length L and radius r
centered about the z-axis as shown in the margin — notice that our “clever”
choice of surface S in this problem resulted in the evaluation of the flux integral
in Gauss’s law without doing any calculus.

Clearly, this leads to (as obtained before using a line integral)

Er =
λ

2πǫor
and E =

λ

2πǫor
r̂.
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3 Gauss’s law and static charge densities

We continue with examples illustrating the use of Gauss’s law in macroscopic

field calculations:

ρS

Ex(x) =
ρs

2ǫo

A

z
S

x

y

Ex(x)

ρs

2ǫo

sgn(x)

x

Example 1: Point charges Q are distributed over x = 0 plane with an average surface
charge density of ρs C/m2. Determine the macroscopic electric field E of this
charge distribution using Gauss’s law.

Solution: First, invoking Coulomb’s law, we convince ourselves that the field produced
by surface charge density ρs C/m2 on x = 0 plane will be of the form E = x̂Ex(x)
where Ex(x) is an odd function of x because y- and z-components of the field will
cancel out due to the symmetry of the charge distribution. In that case we can
apply Gauss’s law over a cylindrical integration surface S having circular caps of
area A parallel to x = 0, and obtain

∮

S

D · dS = QV ⇒ ǫoEx(x)A− ǫoEx(−x)A = Aρs,

which leads, with Ex(−x) = −Ex(x), to

Ex(x) =
ρs
2ǫo

for x > 0.

Hence, in vector form

E = x̂
ρs
2ǫo

sgn(x),

where sgn(x) is the signum function, equal to ±1 for x ≷ 0.

Note that the macroscopic field calculated above is discontinuous at x = 0 plane
containing the surface charge ρs, and points away from the same surface on both
sides.

1



ρ

Ex(x) =
ρx

ǫo

A

z

x

W

2
−

W

2

Ex(x) ρW

2ǫo

−

W

2

W

2
x

y

Example 2: Point charges Q are distributed throughout an infinite slab of width W
located over −W

2 < x < W
2 with an average charge density of ρ C/m3. Determine

the macroscopic electric field E of the charged slab inside and outside.

Solution: Symmetry arguments based on Coulomb’s law once again indicates that we
expect a solution of the form E = x̂Ex(x) where Ex(x) is an odd function of x.

In that case, applying Gauss’s law with a cylindrical surface S having circular caps
of area A parallel to x = 0 extending between −x and x < W

2 , we obtain
∮

S

D · dS = QV ⇒ ǫoEx(x)A− ǫoEx(−x)A = ρ2xA,

which leads, with Ex(−x) = −Ex(x), to

Ex(x) =
ρx

ǫo
for 0 < x <

W

2
.

For x > W
2

,
∮

S

D · dS = QV ⇒ ǫoEx(x)A− ǫoEx(−x)A = AWρ,

leading to

Ex(x) =
ρW

2ǫo
for x >

W

2
.

These results can be combined as

E = x̂Ex(x) =











−x̂ρW
2ǫo

, for x < −W
2

x̂ρx
ǫo
, for − W

2
< x < W

2

x̂ρW
2ǫo

, for x > W
2 .

2



Note that the field solution depicted in the margin in terms of Ex(x) plot is a con-
tinuous function of x as opposed to the discontinuous Ex(x) solution obtained in
Example 1 for the macroscopic field of a surface charge.

• In future calculations of electrostatic fields, we can use our previous

results, namely

– Coulomb field

E = r̂
Q

4πǫor2
of a point charge Q,

– Field

E = r̂
λ

2πǫor
of constant line density λ,

– Field

E = x̂
ρs
2ǫo

sgn(x) of constant surface density ρs,

– Field

E = x̂
ρx

ǫo
of constant volume density ρ

as building blocks — that is, the above field equations can be super-

posed to determine the field structure of charge distributions ρ(x, y, z)

that can be expressed as superpositions of simpler charge distributions

with known field structures. Some examples...

3



Example 3: Consider a pair of surface charges ρs > 0 and −ρs C/m2 of equal mag-
nitudes placed on x = −W

2
and x = W

2
surfaces. Determine the electric field of

this charge distribution depicted in the margin.

Solution: The field of charge density ρs C/m2 on x = −W
2 plane should be

E+ = x̂
ρs
2ǫo

sgn(x+
W

2
),

pointing away from the discontinuity surface at x = −W
2 on both sides. Likewise,

the field of charge density −ρs C/m2 on x = W
2 plane should be

E− = −x̂
ρs
2ǫo

sgn(x− W

2
),

pointing toward x = W
2 surface from both sides. Superposing the two fields, we

find that

E = E+ + E− =

{

x̂ρs
ǫo
, for − W

2 < x < W
2 ,

0, otherwise,
= x̂

ρs
ǫo

rect(
x

W
)

as depicted in the margin.

Note that the field lines of our solution point from positive charges on one surface to
the negative charges resting on the other surface — this field has the structure
of fields encountered in parallel plate capacitors that we will be studying soon.

−ρs

E =
ρs

ǫo

x̂

z

x

y

ρs > 0

Ex(x)
ρs

ǫo

−

W

2

W

2
x

+ -
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−ρ1 < 0

z

x

−W1

E1x(x)

ρ1W1

2ǫo

x

ρ2 > 0

W2

E2x(x)

ρ2W2

2ǫo

x

−W1

W2

Ex(x)

−

ρ1W1

ǫo

x

W2−W1

E
+-

Example 4: An infinite charged slab of width W1, located over −W1 < x < 0, has
a negative volumetric charge density of −ρ1 C/m3, ρ1 > 0. A second slab of
width W2 and positive charge density ρ2 is located over 0 < x < W2 as shown
in the margin. Compute the electric field of this static charge configuration if
W1ρ1 = W2ρ2, implying that the entire system is charge neutral (i.e., a net charge
of zero).

Solution: We note that the field of slab W1 can be written as

E1 =















x̂ρ1W1

2ǫo
, for x < −W1

−x̂
ρ1(x+

W1

2
)

ǫo
, for −W1 < x < 0

−x̂ρ1W1

2ǫo
, for x > 0

as depicted in the margin. Likewise, the field of slab W2 is

E2 =















−x̂ρ2W2

2ǫo
, for x < 0

x̂
ρ2(x−W2

2
)

ǫo
, for 0 < x < W2

x̂ρ2W2

2ǫo
, for x > W2.

Note that field strengths ρ1W1

2ǫo
and ρ2W2

2ǫo
showing up in the expressions for E1 and E2

are equal because of the charge neutrality condition W1ρ1 = W2ρ2.

Consequently, when we superpose E1 and E2, the fields cancel out outside the region
−W1 < x < W2, so that the total field becomes (as depicted in the margin)

E = E1 + E2 =











−x̂ρ1(x+W1)
ǫo

, for −W1 < x < 0

x̂ρ2(x−W2)
ǫo

, for 0 < x < W2

0, otherwise.
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Gauss’ Law in terms of

charge density:

∮

S

D · dS =

∫

V

ρdV

• Charge density formalism which we find convenient to use for macro-

scopic field calculations can also be “adjusted” to describe the distri-

butions of isolated point charges via the use of impulses or delta

functions in space.

Q

x

y

z

3D impulse here
where point charge
Q is localized over
a region of zero 
volume

ρ(x, y, z) = Qδ(x)δ(y)δ(z)

– For example

ρ(x, y, z) = Qδ(x− xo)δ(y − yo)δ(z − zo)

can be regarded as a 3D volumetric charge density function rep-

resenting a point charge Q located at a coordinate

r = (x, y, z) = (xo, yo, zo) ≡ ro.

◦ This is justified because we can regard δ(x − xo) to be zero

everywhere except at x = xo. By extension, the product

δ(x− xo)δ(y − yo)δ(z − zo)

is zero everywhere except at r = ro = (xo, yo, zo) — therefore

the density function ρ(x, y, z) defined above behaves correctly

to indicate the absence of charges everywhere with the ex-

ception of ro. Furthermore, the area property of the impulse

implies that the volume integral of the charge density yields
∫

ρdV =

∫ ∫ ∫

Qδ(x− xo)δ(y − yo)δ(z − zo)dxdydz = Q

as it should.
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◦ Notice that the shifted impulses δ(x − xo), etc., must have

m−1 units in order to maintain dimensional consistency in the

above expression.

– Another example is

ρ(x, y, z) = ρs(y, z)δ(x− xo)

representing a surface charge density of ρs(y, z) C/m2 on x = xo
plane.

z

x

y

ρs > 0

xo

ρ(x, y, z) = ρs(y, z)δ(x− xo)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

z

Example 5: Figure in the margin depicts (for the d = 1) the Ê-field of a pair of
charges ±Q located at (0, 0,±d

2) derived from

E(r) =
Q(r− d

2 ẑ)

4πǫo|r− d
2 ẑ|3

+
−Q(r+ d

2 ẑ)

4πǫo|r+ d
2 ẑ|3

=
Q

4πǫo
[
(x, y, z − d

2
)

|(x, y, z − d
2)|3

− (x, y, z + d
2
)

|(x, y, z + d
2)|3

]V/m.

Determine the electric flux
∫

xy
E · dS across the entire xy-plane using dS =

−ẑdxdy.

Solution: Because of linearity, the flux we want to calculate equals the sum of the flux
due to charge Q at (0, 0, d2) above xy-plane and the flux due to charge −Q at

(0, 0,−d
2) above xy-plane.

7



Since by Gauss’s law
∮

S
E · dS = Q

ǫo
for any S surrounding Q, we can, by symmetry,

infer that
∫

xy

E · (−ẑdxdy) =
Q

2ǫo

when only charge Q is considered — the logic here is, half of flux
∮

S
E · dS = Q

ǫo
emanating from charge Q should go up and the remaining half should go down
crossing the xy-plane in downward direction. Likewise, since

∮

S
E · dS = −Q

ǫo
for

any S surrounding −Q, again by symmetry, we can infer
∫

xy

E · (−ẑdxdy) =
Q

2ǫo

due to charge −Q only — the logic in this case is, half of flux Q
ǫo

“entering” charge
−Q is “coming from” above crossing the xy-plane in downward direction.

Thus, by superposition, we find total
∫

xy

E · (−ẑdxdy) =
Q

2ǫo
+

Q

2ǫo
=

Q

ǫo
.

The above result can be confirmed directly by evaluating the integral
∫

xy

E(x, y, 0) · (−ẑdxdy) =

∫

xy

Q

4πǫo
[
(x, y,−d

2)

|(x, y,−d
2
)|3

− (x, y, d2)

|(x, y, d
2
)|3

] · (−ẑdxdy)

=
Q

4πǫo

∫

xy

d

|(x, y,−d
2)|3

dxdy =
Qd

2ǫo

∫ ∞

r=0

r

(r2 + (d2)
2)3/2

dr

=
Q

ǫo
.

Just before the last step we have replaced dxdy by rdrdφ, where r ≡
√

x2 + y2, and
carried out the φ integration before completing the r integration as a last step (which
you should verify).
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4 Divergence and curl

Expressing the total charge QV contained in a volume V as a 3D volume

integral of charge density ρ(r), we can write Gauss’s law examined during

the last few lectures in the general form
∮

S

D · dS =

∫

V

ρdV.

This equation asserts that the flux of displacement D = ǫoE over any closed

surface S equals the net electrical charge contained in the enclosed volume

V — only the charges included within V affect the flux of D over surface

S, with charges outside surface S making no net contribution to the surface

integral
∮

S D · dS.

• Gauss’s law stated above holds true everywhere in space over all sur-

faces S and their enclosed volumes V , large and small.

• Application of Gauss’s law to a small volume ∆V = ∆x∆y∆z sur-

rounded by a cubic surface ∆S of six faces, leads, in the limit of van-

ishing ∆x, ∆y, and ∆z, to the differential form of Gauss’s law expressed

in terms of a divergence operation to be reviewed next:

(x, y, z + ∆z)

x

y

z

(x, y, z) (x + ∆x, y, z)

(x, y + ∆y, z)

– Given a sufficiently small volume ∆V = ∆x∆y∆z, we can assume

that
∫

∆V

ρdV ≈ ρ∆x∆y∆z.

1



– Again under the same assumption
∮

S

D·dS ≈ (Dx|2−Dx|1)∆y∆z+(Dy|4−Dy|3)∆x∆z+(Dz|6−Dz|5)∆x∆y

with reference to displacement vector components like Dx|2 shown

on cubic surfaces depicted in the margin. Gauss’s law demands

the equality of the two expressions above, namely (after dividing

both sides by ∆x∆y∆z)

x

y

z

(x, y, z)

5

2
1

4

3

6

Dx|2 −Dx|1
∆x

+
Dy|4 −Dy|3

∆y
+

Dz|6 −Dz|5
∆z

≈ ρ,

in the limit of vanishing ∆x, ∆y, and ∆z. In that limit, we obtain

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z
= ρ,

which is known as differential form of Gauss’s law.

A more compact way of writing this result is

∇ ·D = ρ,

where the operator

∇ ≡ (
∂

∂x
,
∂

∂y
,
∂

∂z
),

known as del, is applied on the displacement vector

D = (Dx, Dy, Dz)

2



following the usual dot product rules, except that the product of ∂
∂x

and Dx,

for instance, is treated as a partial derivative ∂Dx
∂x . In the left side above

∇ ·D =
∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z
(divergence of D)

is known as divergence of D.

Example 1: Find the divergence of D = x̂5x+ ŷ12 C/m2

Solution: In this case
Dx = 5x, Dy = 12, and Dz = 0.

Therefore, divergence of D is

∇ ·D =
∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z

=
∂

∂x
(5x) +

∂

∂y
(12) +

∂

∂z
(0)

= 5 + 0 + 0 = 5
C

m3
.

Note that the divergence of vector D is a scalar quantity which is the volumetric
charge density in space as a consequence of Gauss’s law (in differential form).

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

z
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−ρ1 < 0

z

x

−W1

E1x(x)

ρ1W1

2ǫo

x

ρ2 > 0

W2

E2x(x)

ρ2W2

2ǫo

x

−W1

W2

Ex(x)

−

ρ1W1

ǫo

x

W2−W1

E
+-Example 2: Find the divergence ∇ · E of electric field vector

E =











−x̂ρ1(x+W1)
ǫo

, for −W1 < x < 0

x̂ρ2(x−W2)
ǫo

, for 0 < x < W2

0, otherwise,

from Example 4, last lecture (see margin figures).

Solution: In this case Ey = Ez = 0, and therefore the divergence of E is

∇ · E =
∂Ex

∂x
=

∂

∂x











−ρ1(x+W1)
ǫo

,
ρ2(x−W2)

ǫo
,

0,

=











−ρ1
ǫo
, for −W1 < x < 0

ρ2
ǫo
, for 0 < x < W2

0, otherwise,

,

which provides us with ρ(r)/ǫo of Example 4 from last lecture (in accordance
with Gauss’s law).

• Summarizing the results so far, Gauss’s law can be expressed in integral

as well as differential forms given by
∮

S

D · dS =

∫

V

ρdV ⇔ ∇ ·D = ρ.

– The equivalence of integral and differential forms implies that (af-

ter integrating the differential form of the equation on the right

4



over volume V on both sides)
∮

S

D · dS =

∫

V

∇ ·D dV

which you may recall as the divergence theorem from MATH

241. Divergence thm.

– Note that according to divergence theorem, we can interpret di-

vergence as flux per unit volume.

– We can also think of divergence as a special type of a derivative

applied to vector functions which produces non-zero scalar results

(at each point in space) when the vector function has components

which change in the direction they point.

◦ A second type of vector derivative known as curl which we re-

view next complements the divergence in the sense that these

two types of vector derivatives collectively contain maximal

information about vector fields that they operate on:

Given their curl and divergences, vector fields can be uniquely recon-

structed in regions V of 3D space provided they are known at the

bounding surface S of region V , however large (even infinite) S and V

may be — this is known as Helmholtz theorem (proof outlined in

Lecture 7).

• The curl of a vector field E = E(x, y, z) is defined, in terms of the del

5



operator ∇, like a cross product

∇×E ≡ (
∂

∂x
,
∂

∂y
,
∂

∂z
)× (Ex, Ey, Ez) =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣

∣

∣

∣

∣

∣

∣

(curl of E)

= x̂(
∂Ez

∂y
− ∂Ey

∂z
)− ŷ(

∂Ez

∂x
− ∂Ex

∂z
) + ẑ(

∂Ey

∂x
− ∂Ex

∂y
).

Example 3: Find the curl of the vector field

E = x̂ cos y + ŷ1

Solution: The curl is

∇× E =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

cosy 1 0

∣

∣

∣

∣

∣

∣

= x̂(
∂

∂y
0− ∂

∂z
1)− ŷ(

∂

∂x
0− ∂

∂z
cos y) + ẑ(

∂

∂x
1− ∂

∂y
cos y)

= x̂0− ŷ0 + ẑ(0 + sin y) = ẑ sin y

which is another vector field.

-4 -2 0 2 4

-4

-2

0

2

4

x

y

The diagram in the margin depicts E = x̂ cos y + ŷ1 as a vector map

superposed upon a density plot of |∇×E| = |ẑ sin y| = | sin y| indicating the

strength of the curl vector ∇×E (light color corresponds large magnitude).
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It is apparent that curl ∇×E is stronger in those regions where E is rapidly

varying in directions orthogonal to the direction of E itself.

• As the above example demonstrates the curl of a vector field is in

general another vector field.

– The only exception is if the curl is identically 0 at all positions

r = (x, y, z)!

◦ In that case, i.e., if ∇ × E = 0, vector field E is said to be

curl-free.

IMPORTANT FACT: All static electric fields E, obtained from

Coulomb’s law, and satisfying Gauss’s law ∇ · D = ρ with static

charge densities ρ = ρ(r), are also found to be curl-free without

exception.

• The proof of curl-free nature of static electric fields can be given by

first showing that Coulomb field of a static charge is curl-free, and then

making use of the superposition principle along with the fact that the

curl of a sum must be the sum of curls — like differentiation, “taking

curl” is a linear operation.

– You should try to show that ∇ × E = 0 with the Coulomb field

of a point charge Q located at the origin.

7



◦ The calculation is slightly more complicated than the following

example (although similar in many ways) where we show that

the static electric field of an infinite line charge is curl-free.

λ

r

L

z

S

Er =
λ

2πǫor

x

y

φExample 4: Recall that the static field of a line charge λ distributed on the z-axis is

E(x, y, z) = r̂
λ

2πǫor
,

where
r2 = x2 + y2 and r̂ = x̂ cosφ+ ŷ sinφ = (

x

r
,
y

r
, 0).

Show that field E satisfies the condition ∇× E = 0.

Solution: Clearly, we can express vector E as

E =
λ

2πǫo
(
x

r2
,
y

r2
, 0).

Since the components x
r2

and y
r2

of the vector are independent of z, the corre-
sponding curl can be expanded as

∇× E =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣

∣

∣

∣

∣

∣

=
λ

2πǫo

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

x
r2

y
r2

0

∣

∣

∣

∣

∣

∣

=
λ

2πǫo
ẑ(

∂

∂x

y

r2
− ∂

∂y

x

r2
).

But,
∂

∂x

y

r2
− ∂

∂y

x

r2
= y

∂

∂x

1

r2
− x

∂

∂y

1

r2
= y

−2x

r4
− x

−2y

r4
= 0,

so ∇× E = 0 as requested.
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5 Curl-free fields and electrostatic potential

• Mathematically, we can generate a curl-free vector field E(x, y, z) as

E = −(
∂V

∂x
,
∂V

∂y
,
∂V

∂z
),

by taking the gradient of any scalar function V (r) = V (x, y, z). The

gradient of V (x, y, z) is defined to be the vector

∇V ≡ (
∂V

∂x
,
∂V

∂y
,
∂V

∂z
),

pointing in the direction of increasing V ; in abbreviated notation, curl-

free fields E can be indicated as

E = −∇V.

– Verification: Curl of vector ∇V is

∇× (∇V ) =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∣

∣

∣

∣

∣

∣

∣

= x̂0− ŷ0− ẑ0 = 0.

– If E = −∇V represents an electrostatic field, then V is called

the electrostatic potential.

◦ Simple dimensional analysis indicates that units of electro-

static potential must be volts (V).

1



– The prescription E = −∇V , including the minus sign (optional,

but taken by convention in electrostatics), ensures that electro-

static field E points from regions of “high potential” to “low po-

tential” as illustrated in the next example. Electrostatic fields E

point from regions of

“high V ” to “low V ”

Example 1: Given an electrostatic potential

V (x, y, z) = x2 − 6yV

in a certain region of space, determine the corresponding electrostatic field E =
−∇V in the same region.

Solution: The electrostatic field is

E = −∇(x2 − 6y) = −(
∂

∂x
,
∂

∂y
,
∂

∂z
)(x2 − 6y) = (−2x, 6, 0) = −x̂ 2x+ ŷ6V/m.

Note that this field is directed from regions of high potential to low potential. Also note
that electric field vectors are perpendicular everywhere to “equipotential” contours.

-4 -2 0 2 4

-4

-2

0

2

4

Light colors indicate “high V ”
dark colors “low V ”

Given an electrostatic potential V (x, y, z), finding the corresponding elec-

trostatic field E(x, y, z) is a straightforward procedure (taking the negative

gradient) as already illustrated in Example 1.

The reverse operation of finding V (x, y, z) from a given E(x, y, z) can be

accomplished by performing a vector line integral
∫ o

p

E · dl

2



in 3D space, since, as shown below, such integrals are “path independent” for

curl-free fields E = −∇V .

• The vector line integral
∫ o

p

E · dl

over an integration path C extending from a point p = (xp, yp, zp) in

3D space to some other point o = (xo, yo, zo) is defined to be x

y

z

o = (xo, yo, zo)

p = (xp, yp, zp)

Ej

∆ljC

C ′

– the limiting value of the sum of dot products Ej·∆lj computed over

all sub-elements of path C having incremental lengths |∆lj| and

unit vectors ∆lj/|∆lj| directed from p towards o — the limiting

value is obtained as all |∆lj| approach zero (i.e., with increasingly

finer subdivision of C into |∆lj| elements).

• Computation of the integral (see example below) involves the use of

infinitesimal displacement vectors

dl = x̂dx + ŷdy + ẑdz = (dx, dy, dz)

and vector dot product

E · dl = (Ex, Ey, Ez) · (dx, dy, dz) = Exdx + Eydy + Ezdz.

The integral
∫ o

p

E · dl =
∫ o

p

(Exdx + Eydy + Ezdz)

3



will in general be path dependent except for when E is curl-free. Curl-free: path-independent
line integrals
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“Curly”: path-dependent line
integrals
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Example 2: The field E = x̂y ± ŷx is curl-free with the + sign, but not with − as
verified below by computing ∇ × E. Calculate the line integral of E (for both
signs, ±) from a point o = (0, 0, 0) to point p = (1, 1, 0) for two different paths
C going through points u = (0, 1, 0) and l = (1, 0, 0), respectively (see margin).

Solution: First we note that

∇× (x̂y ± ŷx) =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y ±x 0

∣

∣

∣

∣

∣

∣

= ẑ(±1− 1)

which confirms that E = x̂y ± ŷx is curl-free with with + sign, but not with −.
In either case, the integral to be performed is

∫ p

o

E · dl =
∫ p

o

(Exdx+ Eydy + Ezdz) =

∫ p

o

(y dx± x dy).

For the first path Cu going through u = (0, 1, 0), we have
∫ p

o

(y dx± x dy) =

∫ 1

y=0

(±x) dy|x=0 +

∫ 1

x=0

y dx|y=1 = 0 + 1 = 1.

For the second path Cl going through l = (1, 0, 0), we have
∫ p

o

(y dx± x dy) =

∫ 1

x=0

y dx|y=0 ±
∫ 1

y=0

x dy|x=1 = 0± 1 = ±1.

Clearly, the result shows that the line integral
∫ p

o
E · dl is path independent for

E = x̂y + ŷx which is curl-free, and path dependent for E = x̂y − ŷx in which
case ∇× E 6= 0.
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• The mathematical reason why curl-free fields have path-independent

line integrals is because in those occasions the integrals can be written

in terms of exact differentials:

– for curl-free E = x̂y + ŷx we have E · dl as an exact differential

ydx + xdy = d(xy) of the function xy, in which case
∫ p

o E · dl =
xy|po = (1 · 1− 0 · 0) = 1 over all paths.

– for E = x̂y − ŷx with ∇ × E = −2ẑ 6= 0, on the other hand,

E · dl = ydx− xdy does not form an exact differential −dV , and

thus there is no path-independent integral −V |po, nor an underlying

potential function V .

E·dl is guaranteed to be an exact differential if E = −∇V = (−∂V
∂x ,−∂V

∂y ,−∂V
∂z ),

since in that case the differential of V (x, y, z), namely

dV ≡ ∂V

∂x
dx+

∂V

∂y
dy+

∂V

∂z
dz, is precisely −Exdx−Eydy−Ezdz = −E·dl.

– In that case x

y

z

Vo = 0

Vp =
∫ o

p
E · dl

E(r)

dl

∫ o

p

E · dl = −
∫ o

p

dV =

∫ p

o

dV = Vp − Vo

is independent of integration path; thus, if we we call o the “ground”,

and set Vo = 0, then

Vp =

∫ o

p

E · dl

denotes the potential drop from (any) point p to ground o.
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• The physical reason why this integral formula for potential Vp works

with any integration path is the principle of energy conservation:

x

y

z Vp =
∫ o

p
E · dl

dl

Vo = 0

As long as E is curl-free, line
integral is path-independent and
produces the voltage drop from 
point p to "ground" o.

E(r)

– integral
∫ o

p E · dl, namely the “voltage drop” from p to o, repre-

sents the work done per unit charge by the field E in moving

charges from location p to location o1, so if the line integral were

path-dependent (in reaching from p to o) there would be ways

of creating net energy by making a charge q follow special closed

paths within the electrostatic field E, in violation of the general

principle of energy conservation (that permits energy conversion

but not creation or destruction).

1Either to increase the kinetic energy of the charge if charge transport from p to o is unimpeded (as
for a test charge accelarating between a pair of capacitor plates) or else in pushing the charge against
frictional forces (as through a resistive wire) both at the expense of the energy stored in the field. On the
other hand, work done (i.e., the voltage drop) by the field would be negative if charges q > 0 were moved
from p to o against the local electric field (as within a battery), in which case there would be a positive
voltage rise from p to o representing energy gain for the field per unit charge transported from p to o.

6



x

y

z
Vp = −

∫ p

o
E · dl

o
X

Y

Z

A voltmeter with its (+/red)
probe contacting point p and
its (-/black) probe contact-
ing point o would display (by
analog or digital means) the
numerical value of

Vp =

∫

o

p

E · dl

with the integration path
consisting of the path defined
by the probe wires. The volt-
meter reading would be inde-
pendent of the path config-
uration when the field E is
electrostatic.

For the voltmeter not to per-
turb the field it is probing,
its input impedance need to
be much greater than the
impedance between points p
and o.

Example 3: Given that Vo = V (0, 0, 0) = 0 and

E = 2xx̂+ 3zŷ + 3(y + 1)ẑ
V

m
,

determine the electrostatic potential Vp = V (X, Y, Z) at point p = (X, Y, Z) in
volts.

Solution: Assuming that the field is curl-free (it is), so that any integration path can
be used, we find that

Vp =

∫ o

p

E · dl = −
∫ p

o

E · dl = −
∫ p

o

(2x dx+ 3z dy + 3(y + 1) dz)

= −
∫ X

0

2x dx|y,z=0 −
∫ Y

0

3z dy|x=X,z=0 −
∫ Z

0

3(y + 1) dz|x=X,y=Y

= −X2 − 0− 3(Y + 1)Z.

This implies
V (x, y, x) = −x2 − 3(y + 1)z V.

Note that

−∇(−x2 − 3(y + 1)z) = ∇(x2 + 3(y + 1)z)

= x̂2x+ ŷ3z + ẑ3(y + 1)

yields the original field E, which is an indication that E is indeed curl-free.
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Alternate Solution — Exact Differential Method: Note that

E · dl = (2xx̂+ 3zŷ + 3(y + 1)ẑ) · (x̂dx+ ŷdy + ẑdz)

= 2xdx+ 3zdy + 3(y + 1)dz = 2xdx+ 3(ydz + zdy) + 3dz

= d(x2 + 3yz + 3z) = −dV.

Therefore
V (x, y, z) = −x2 − 3yz − 3z + C,

where the integration constant C should chosen so that V (0, 0, 0) = 0. The result
is

V (x, y, z) = −x2 − 3(y + 1)z

as before.
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e
x

y

z

z = r

Or else (exact differential
method):

E·dl = (
e

4πǫor2
r̂)·r̂dr = d(

−e

4πǫor
) = −dV

leading to

V (r) =
e

4πǫor

(using an integration con-
stant of zero).

Example 5: According to Coulomb’s law electrostatic field of a proton with charge
Q = e (where −e is electronic charge) located at the origin is given as

E =
e

4πǫor2
r̂,

where

r =
√

x2 + y2 + z2 and r̂ =
(x, y, z)

r
.

Determine the electrostatic potential field V established by charge Q = e with
the provision that V → 0 as r → ∞ (i.e., ground at infinity).

Solution: Field E and its potential V will exhibit spherical symmetry in this problem.
Therefore, with no loss of generality, we can calculate the line integral from a
point p at a distance r from the origin to a point o at ∞ (the specified ground)
along, say, the z-axis. Approaching the problem that way, the potential drop
from r to ∞ is

V (r) =

∫ ∞

z=r

e

4πǫoz2
ẑ · ẑdz

= − e

4πǫoz
|∞r =

e

4πǫor
.

• To convert electrostatic potential Vp (in volts) at any point p to poten-

tial energy of a charge q brought to the same point, it is sufficient to

multiply Vp with q (or just the sign of q, depending on which energy

units we want to use — see the next example).
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Example 6: In view of Example 5, what are the potential energies of a proton e and
an electron −e placed at distance r = a away from the proton at the origin,
where distance

a ≡ 4πǫo
e2

~
2

me

= 0.529× 10−10 m

stands for Bohr radius — it is the mean distance of the ground state electron in
a hydrogen atom from the center of the atom. Recall that e = 1.602× 10−19 C
and ǫo ≈ 10−9/36π F/m.

Solution: Let’s first evaluate the potential V (r) at r = a:

V (a) =
e

4πǫoa
≈ (1.6× 10−19)36π × 109

4π × 0.53× 10−10
=

9× 1.6

0.53
= 27.2V.

For the proton, potential energy in Joules is calculated by multiplying V (a) = 27.2
V with q = e = 1.602 × 10−19 C. However, by referring to 1.602 × 10−19 J of
energy as 1 eV (electron-volt), it is more convenient to refer to potential energy
eV (a) of the proton at r = a as

eV (a) = 27.2 eV.

Likewise, for a particle with charge q = −e, i.e., an electron, potential energy at the
same location is

−eV (a) = −27.2 eV.
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6 Circulation and boundary conditions

Since curl-free static electric fields have path-independent line integrals, it

follows that over closed paths C (when points p and o coincide)
∮

C

E · dl = 0,

where the
∮

C E · dl is called the circulation of field E over closed path C

bounding a surface S (see margin).

x

y

z

o = p

Ej

∆lj

C

S

dS

Closed loop integral over path 
C enclosing surface S. 

Note that the area increment 
dS of surface S is taken by 
convention to point in the 
right-hand-rule direction 
with respect to "circulation"
direction C. 

x

yz

(-3,0,0) (3,0,0)

(3,4,0)(-3,4,0)

C

Example 1: Consider the static electric field variation

E(x, y, z) = x̂
ρx

ǫo

that will be encountered within a uniformly charged slab of an infinite extent in
y and z directions and a finite width in x direction centered about x = 0. Show
that this field E satisfies the condition

∮

C
E · dl = 0 for a rectangular closed

path C with vertices at (x, y, z) = (−3, 0, 0), (3, 0, 0), (3, 4, 0), and (−3, 4, 0)
traversed in the order of the vertices given.

Solution: Integration path C is shown in the figure in the margin. With the help of
the figure we expand the circulation

∮

C
E · dl as

E =

∫ 3

x=−3

x̂
ρx

ǫo
· x̂dx+

∫ 4

y=0

x̂
ρ3

ǫo
· ŷdy +

∫ −3

x=3

x̂
ρx

ǫo
· x̂dx+

∫ 0

y=4

x̂
ρ(−3)

ǫo
· ŷdy

=

∫ 3

x=−3

ρx

ǫo
dx+ 0 +

∫ −3

x=3

ρx

ǫo
dx+ 0 = 0.

1



Note that in expanding
∮

C
E · dl above for the given path C, we took dl as x̂dx

and ŷdy in turns (along horizontal and vertical edges of C, respectively) and
ordered the integration limits in x and y to traverse C in a counter-clockwise
direction as indicated in the diagram.

• Vector fields E having zero circulations over all closed paths C are

known as conservative fields (for obvious reasons having to do with

their use in modeling static fields compatible with conservation theo-

rems).

– The concepts of curl-free and conservative fields overlap, that is
∮

C

E · dl = 0 ⇔ ∇×E = 0

over all closed paths C and at each r.

x

y

z

E

dl

C

S

dS

STOKE’S THM:
Circulation of E around close 
path C equals the flux over
enclosed surface S of the curl 
of E taken in direction of dS.  

dS points in right-hand-rule 
direction with respect to 
"circulation" direction C. 

• The above relationship between circulation and curl is also a conse-

quence of Stoke’s theorem (discussed in MATH 241) which asserts

that Stoke’s thm.
∮

C

E · dl =
∫

S

∇× E · dS,

where

– the integration surface S on the right is bounded by the closed

integration contour C of the left side, and

2



– the incremental area element dS on the right points across area S

in the direction indicated by a right-hand rule as follows:

Point your right thumb in chosen circulation direction C; then your

right fingers point through surface S in the direction that should be

adopted for dS.

– Given Stoke’s theorem,
∮

C E · dl = 0 follows immediately for all

C, if ∇×E = 0 is true over all r.
x

y

z

E

dl

C

S

dS

STOKE’S THM:
Circulation of E around close 
path C equals the flux over
enclosed surface S of the curl 
of E taken in direction of dS.  

dS points in right-hand-rule 
direction with respect to 
"circulation" direction C. 

(x, y, z + ∆z)

x

y

z

(x, y, z)

(x, y + ∆y, z)
3

1

2
4

C

dS = ∆y∆zx̂

• Stoke’s theorem clearly implies that curl is circulation per unit

area, just as the divergence theorem showed that divergence is flux

per unit volume.

– The only difference is, curl also has a direction, which is the normal

unit of the plane that contains the maximal value of circulation

per unit area found at that location (over all possible orientations

of dS).

• We will verify Stoke’s thm after explaining the circulation per unit

area notion in steps:

– Let us first calculate the circulation of a vector field E taken about

an arbitrary point (x, y, z) on a constant x plane around a square

contour with small edge dimensions ∆y and ∆z parallel to y and

z axes as shown in the margin.
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– For a small rectangular contour “Cx” on a constant x plane with

sufficiently small ∆y and ∆z dimensions parallel to y and z axes

(see figure in the margin), we have
(x, y, z + ∆z)

x

y

z

(x, y, z)

(x, y + ∆y, z)
3

1

2
4

C

dS = ∆y∆zx̂

∮

Cx

E · dl ≈ Ez|2∆z − Ey|4∆y − Ez|1∆z + Ey|3∆y

= (Ez|2 − Ez|1)∆z − (Ey|4 − Ey|3)∆y.

It follows that

1

∆y∆z

∮

Cx

E · dl ≈ (
Ez|2 − Ez|1

∆y
− Ey|4 − Ey|3

∆z
)

and

lim
∆y,∆z→0

1

∆y∆z

∮

Cx

E · dl = (
∂Ez

∂y
− ∂Ey

∂z
) = x̂ · ∇ ×E,

meaning that the x component of ∇ × E is the circulation of E

per unit area on a constant x surface.

– Likewise, y and z components of ∇×E are circulations of E per

unit area on constant y and z surfaces, and in general

∇×E = lim
∆x,∆y,∆z→0

(
1

∆y∆z

∮

Cx

E·dl, 1

∆x∆z

∮

Cy

E·dl, 1

∆x∆y

∮

Cz

E·dl).

– Furthermore, based on the above result, we can recognize that vec-

tors ∇×E point everywhere in directions perpendicular to planes

of maximum circulations per unit area in the E field and have

4



magnitudes corresponding to the maximum values of circulations

per unit area at every point.

• Now, to confirm Stoke’s theorem

E

dl

C

S

Sum of circulations over small
squares cancel in the interior
edges and only survive around the
exterior path C.  This way, 
circulation around C matches
the sum of the fluxes of curl E
calculated over the small squares. 

Laws of

electrostatics:

∇×E = 0

∇ · ǫoE = ρ

They also apply “quasi-statically”
over a region of dimension L
when a time-varying field source
ρ(r, t) has a time-constant τ much
longer than the propagation time
delay L/c of E(r, t) field varia-
tions across the region (c is the
speed of light).

In electro-quasistatics (EQS)
E(r, t) will be accompanied by
a slowly varying magnetic field
B(r, t) (to be studied starting in
Lecture 12).

∮

C

E · dl =
∫

S

∇×E · dS

pertinent for a closed path C and its enclosed surface S, we will make

use of the diagram shown in the margin.

– The circulations over small squares shown in the diagram are ap-

proximately equal to the products of their areas and the normal

components of ∇ × E calculated at the center points (basd on

what we learned above).

– When all such circulations covering surface S are added up, the

result is
∫

S ∇×E ·dS in the limit of vanishing size for the squares,

– as well as
∮

C E · dl because in the grand sum of the circulations

over all the squares, all the contributions mutually cancel out (like

the overlapping edges of red and blue squares) except for those

calculated along the periphery C!

We can now summarize the general constraints governing static electric fields

as

∇×E(r) = 0, ∇ ·D(r) = ρ(r), where D(r) = ǫoE(r).

5



• Vector fields E(r) and D(r) governed by these equations will in general

be continuous functions of position coordinates r = (x, y, z) except at

boundary surfaces where charge density function ρ(r) requires a repre-

sentation in terms of a surface charge density ρs(r).

– For instance, according to our earlier results, static electric field

of a charge density (see sketch at the margin)

ρ(r) = ρsδ(z)

would be

E(r) = ẑ
ρs
2ǫo

sgn(z) ⇒ D(r) = ẑ
ρs
2

sgn(z).

◦ Consider a superposition of these fields with fields Eo(r) and

Do(r) = ǫoEo(r) produced by arbitrary continuous sources,

namely (macroscopic) fields
-2 -1 0 1 2

-2

-1

0

1

2

x

z

E(r) = ẑ
ρs
2ǫo

sgn(z)+Eo(r) and D(r) = ẑ
ρs
2

sgn(z)+ǫoEo(r).

Since fields Eo(r) and Do(r) vary continuously, these field expressions

must satisfy

ẑ · (D+ −D−) = ρs and ẑ × (E+ −E−) = 0

where

E+ ≡ E(x, y, 0+) and E− ≡ E(x, y, 0−)
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refer to limiting values of E at z = 0 plane from above and below,

respectively, and likewise for ẑ

D
+

D
−

z = 0

D+ ≡ D(x, y, 0+) and D− ≡ D(x, y, 0−).

• The above “boundary condition equations” can be written in a more

general form (see margin for justification) as

n̂
D

+

D
−

w

Constraint
∮

C

E · dl = 0

around the dotted path yields

E+

t
= E−

t

in w → 0 limit.

Gauss’s law
∮

S

D · dS = QV

applied over the dotted volume (seen in
profile) yields

D+

n
−D−

n
= ρs

in w → 0 limit.

n̂ · (D+ −D−) = ρs and n̂× (E+ −E−) = 0

where n̂ denotes a unit vector normal to any surface of an arbitrary

orientation carrying a surface charge density ρs, while field vectors with

superscripts + and − indicate limiting values of fields measured on

either side of the charged surface (with n̂ pointing from − to +).

– The equations can be further simplified as

D+
n −D−

n = ρs and E+
t = E−

t

where Dn and Et refer to normal component of D and tangential

component of E, respectively. Clearly, these boundary condi-

tions say that at any surface S,

◦ tangential component of electric field E needs to be continu-

ous, but

◦ normal component of D can change by an amount equal to

the charge density ρs carried by the surface.
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z

x

y

ρs = 2C/m
2

x = 5 m

D = 0 for x < 0.

ρso = ?

Example 2: Measurements indicate that D = 0 in the region x < 0.

Also, x = 0 and x = 5 m planes contain surface charge densities of ρs = 2 C/m2 and
ρso, respectively.

Determine ρso and D for −∞ < x < ∞ if there are no other charge distributions.

Solution: Since the normal component of D must increase by ρs = 2 C/m2 when
we cross the charged surface x = 0, we must have D = x̂2 C/m2 in the region
0 < x < 5 m.

Having D = 0 in the region x < 0 requires that the field due to surface charge ρso
on x = 5 m plane must cancel the field due ρs = 2 C/m2 on x = 0 plane — this
requires that ρso be −2 C/m2.

In that case D = 0 in the region x > 5 m, because D must increase by ρso = −2
C/m2 when we cross the charged surface at x = 5 m.
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z

x

y

ρs = 2C/m
2

x = 5 m

D = 3ŷ for x < 0.

ρs = −6C/m
2

Example 3: In the region x < 0 measurements indicate a constant displacement field
D = 3ŷ C/m2. Also, x = 0 and x = 5 m planes contain surface charge densities
of ρs = 2 C/m2 and ρs = −6 C/m2 respectively. Determine D for x > 0 if D is
known to be uniform in the intervals 0 < x < 5 m and x > 5 m.

Solution: First we note that E = D

ǫo
= ŷ 3

ǫo
V/m is tangential to x = 0 and x = 5 m

surfaces. Since the tangential component of E cannot change at any boundary,
we will have a uniform Ey = 3

ǫo
in all regions, −∞ < x < ∞, implying that

Dy = 3 C/m2 throughout (caused by charges at |y| → ∞).

Second, we note that normal component of D with respect to x = 0 and x = 5 m
surfaces, namely Dx, is zero in z < 0. Since the normal component of D must
increase by an amount ρs when we cross a charged surface, we must have Dx = 2
C/m2 in the region 0 < x < 5 m, and Dx = 2 + (−6) = −4 C/m2 in x > 5 m.

In summary,

D =











ŷ3, for x < 0,

x̂2 + ŷ3, for 0 < x < 5 m C
m2 .

−x̂4 + ŷ3, for x > 5 m
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7 Poisson’s and Laplace’s equations

Summarizing the properties of electrostatic fields we have learned so far, they

satisfy the laws of electrostatics shown in the margin and, in addition, Laws of

electrostatics:

∇ · E = ρ/ǫo
∇×E = 0

E = −∇V as a consequence of ∇×E = 0.

• Using these relations, we can re-write Gauss’s law as

∇ ·E = −∇ · (∇V ) =
ρ

ǫo
,

from which it follows that

∇2V = − ρ

ǫo
, (Poisson’s eqn)

where

∇2V ≡ ∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2

is known as Laplacian of V . Poisson’s eqn:

∇2V = − ρ

ǫo

Laplace’s eqn:

∇2V = 0

– A special case of Poisson’s equation corresponding to having

ρ(x, y, z) = 0

everywhere in the region of interest is

∇2V = 0. (Laplace’s eqn)
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Focusing our attention first on Laplace’s equation, we note that the equation

can be used in charge free-regions to determine the electrostatic potential

V (x, y, z) by matching it to specified potentials at boundaries as illustrated

in the following examples:

z

x

y

z = d = 2 m

V (d) = −3 V

V (0) = 0

z = 0
V (z) =?

z

V (z)

V (z) = Az + B

Example 1: Consider a pair of parallel conducting metallic plates of infinite extents
in x and y directions but separated in z direction by a finite distance of d = 2
m (as shown in the margin). The conducting plates have non-zero surface charge
densities (to be determined in Example 2), which are known to be responsible for
an electrostatic field E = ẑEz measured in between the plates. Each plate has
some unique and constant electrostatic potential V since neither E(r) nor V (r)
can dependent the coordinates x or y given the geometry of the problem.

Using Laplace’s equation determine V (z) and E(z) between the plates if the potential
of the plate at z = 0 is 0 (the ground), while the potential of the plate at z = d
is −3 V.

Solution: Since the potential function V = V (z) between the plates is only dependent
on z, it follows that Laplace’s equation simplifies as

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
=

∂2V

∂z2
= 0.

This equation can be satisfied by

V (z) = Az +B

where A and B are constants to be determined. Now applying the given boundary
conditions, we first notice that (at the lower plate)

V (0) = (Az +B)|z=0 = B = 0.
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Applying the second boundary condition (at the top plate) we find

V (2) = (Az + 0)|z=2 = 2A = −3V ⇒ A = −3

2

V

m
.

The upshot is, potential function

V (z) = −3

2
z, for 0 < z < 2m.

Finally, we determine the electric field between the plates as

E = −∇V = −∇(−3

2
z) = ẑ

∂

∂z
(
3

2
z) = ẑ

3

2

V

m
.

z

x

y

z = d = 2 m

V (d) = −3 V

V (0) = 0

z = 0
V (z) =?

z

V (z)

V (z) = −
3

2
z

−3

0

E = −∇(−
3

2
z) =

3

2
ẑ

Example 2: In Example 1 what are the surface charge densities of the metallic plates
located at z = 0 and z = 2 m surfaces?

Solution: Since the electric field

E = ẑ
3

2

V

m
in between the plates, comparing this field with the field

E = ẑ
ρs
ǫo

of a pair of parallel surfaces carrying surface charge densities ρs and −ρs (at
z = 0 and z = 2 m), we find that

ρs =
3

2
ǫo

on the surface at z = 0. The surface at z = 2 m has ρs = −3
2
ǫo.

3



Notice that our solution with equal and opposite charge densities on the parallel
surfaces implies that electrostatic fields are zero within the conducting plates
where the fields due to two charged surfaces are canceling out. This conclusion is
consistent with having constant electrostatic potentials within conducting regions
as will be discussed in the next lecture.

z

x

Vo = 0
+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-

Vp =?
E

+
E

− = 0

3 m

Example 3: A pair of copper blocks separated by a distance d = 3 m in x direction
hold surface charge densities of ρs = ±2 C/m2 on surfaces facing one another as
shown in the margin. The blocks are assigned constant potentials Vo = 0 and Vp

(see figure). What is the potential difference Vp?

Solution: Let D+ = x̂ǫoEx denote the displacement vector in between the blocks, and
let D− = 0 denote the displacement vector within the block with a surface at
x = 0. Then the boundary condition equation used at x = 0 implies that

x̂ · (D+ −D−) = ǫoEx = 2
C

m2
⇒ Ex =

2

ǫo
.

In that case, potential difference between the blocks is

V = Exd =
2

ǫo
3 =

6

ǫo
.

Since the block on the left is at a higher potential (electric field vectors point
from high to low potential) assigned as Vo = 0, we must have

Vp = − 6

ǫo
.
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Poisson’s equation

∇2V = − ρ

ǫo
is used in regions where the charge density ρ(r) is non-zero. The following

example illustrates a possible use of Poisson’s equation.

−ρ1 < 0

z

x

−W1

E1x(x)

ρ1W1

2ǫo

x

ρ2 > 0

W2

E2x(x)

ρ2W2

2ǫo

x

−W1

W2

Ex(x)

−
ρ1W1

ǫo

x

W2−W1

E
+-

Example 4: An infinite charged slab of width W1, located over −W1 < x < 0, has a
negative volumetric charge density of −ρ1 C/m3, ρ1 > 0. A second slab of width
W2 and positive charge density ρ2 is located over 0 < x < W2 as shown in the
margin. The electric field of this static charge configuration under the constraint
W1ρ1 = W2ρ2 was computed in an earlier section as

E =

{

−x̂ρ1(x+W1)
ǫo

, for −W1 < x < 0

x̂ρ2(x−W2)
ǫo

, for 0 < x < W2

and is depicted in the margin. Determine the electrostatic potential in the re-
gion and the potential difference V21 ≡ V (W2) − V (−W1) satisfying Poisson’s
equation.

Solution: This is a one dimensional geometry where E and potential V depend only on
coordinate x. Therefore, Poisson’s equation ∇2V = −ρ/ǫo takes the simplified
form

d2V

dx2
= −ρ(x)

ǫo
.

Integral of this equation over x yields in the left dV
dx

= −Ex, which implies, given
the electric field result from above,

dV

dx
=

{

ρ1(x+W1)
ǫo

, for −W1 < x < 0

−ρ2(x−W2)
ǫo

, for 0 < x < W2
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Integrating dV
dx

once more (i.e., finding suitable anti-derivatives with integration
constants), we find

V (x) =

{

ρ1(x+W1)
2

2ǫo
+ V1, for −W1 < x < 0

−ρ2(x−W2)
2

2ǫo
+ V2, for 0 < x < W2

where the integration constants included on each line have been selected so that
V2 = V (W2), V1 = V (−W1).

Requiring a unique potential value at x = 0 (we can only associate a single potential
energy level with each position in space) compatible with this expression for V (x),
we obtain

ρ1(0 +W1)
2

2ǫo
+ V1 = −ρ2(0−W2)

2

2ǫo
+ V2,

from which

V21 = V2 − V1 =
ρ2W

2
2 + ρ1W

2
1

2ǫo
=

ρ2W2(W1 +W2)

2ǫo
=

ρ1W1(W1 +W2)

2ǫo
.

Note that the equation above can be solved for W1, W2, and W2 + W1 in terms of
V12, ρ2, and ρ1, providing useful formulas for diode design (see ECE 440). We
can also get useful specific formulae for V1 and V2 by imposing V (0) = 0, i.e.,
choosing x = 0 to be the reference point.

V1

V (x)
V2

−ρ1 < 0

z

x

−W1

ρ2 > 0

W2

Ex(x)

−
ρ1W1

ǫo

x

W2−W1

E
+-

−W1

W2 x

• The solution of Poisson’s equation

∇2V = − ρ

ǫo
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with an arbitrary ρ existing over a finite region in space can be obtained

as

x

y

z

r− r
′ ρ(r′)

r
′

r

O

V (r) =

∫

ρ(r′)

4πǫo|r− r′|d
3r′

where d3r′ ≡ dx′dy′dz′ and the 3D integral on the right over the primed

coordinates is performed over the entire region where the charge density

is non-zero.

– Verification: The solution above can be verified by combining a

number of results we have seen earlier on:

1. In Lecture 5 we learned that the electric potential V (r) of a

point charge e at the origin is

V (r) =
e

4πǫo|r|
.

Clearly, this singular result is a solution of Poisson’s equa-

tion above (and the stated boundary condition) for a charge

density input of

ρ(r) = eδ(r).

2. Using ECE 210-like terminology and notation, the above re-

sult can be represented as

δ(r) → Poisson’s Eqn → 1

4πǫo|r|
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identifying the output on the right as 3D “impulse response”

of the linear and shift-invariant (LSI) system represented

by Poisson’s equation.

3. Because of shift-invariance, we have

δ(r− r′) → Poisson’s Eqn → 1

4πǫo|r− r′|,

meaning that a shifted impulse causes a shifted impulse re-

sponse.

The shifted impulse response is usually called “Green’s

function” G(r, r′) in EM theory.

4. Because of linearity, we are allowed to use superpositioning

arguments like
∫

ρ(r′)δ(r−r′)d3r′ = ρ(r) → Poisson’s Eqn →
∫

ρ(r′)
1

4πǫo|r− r′|d
3r′ = V (r),

which concludes our verification of the electrostatic1 potential

solution. Note how we made use of the sifting property of the

impulse (from ECE 210) in above calculation.

1Also, in quasi-statics we use ρ(r′, t) to obtain V (r, t) over regions small compared to λ = c/f , with f
the highest frequency in ρ(r′, t).
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• As an application of the general solution of Poisson’s equation, namely

∇2V = − ρ

ǫo
⇒ V (r) =

∫

ρ(r′)

4πǫo|r− r′|d
3r′,

we next provide an outline of the proof of Helmholtz theorem (see

Lecture 4) which states that any vector field F(x, y, z) that vanishes in

the limit r =
√

x2 + y2 + z2 → ∞ can be reconstructed uniquely from

its divergence and curl:

– First, with no loss of generality, we write

F = −∇V +∇×A

in terms of scalar and vector fields V (x, y, z) and A(x, y, z) to be

identified as follows2:

– Taking first the divergence of F (and using ∇ · ∇ × A = 0), we

find that

∇ · F = −∇2V ⇒ V (r) =

∫ ∇′ · F(r′)
4π|r− r′|d

3r′

in analogy with Poisson’s equation (with ∇′·F(r′) replacing ρ(r′)/ǫo
where ∇′ is “del” in (x′, y′, z′)-space).

2This is possible because of the vector identity −∇2G = ∇× (∇×G)−∇(∇ ·G) — call −∇2G ≡ F,
which, according to this identity, is equal to the curl of a vector ∇×G ≡ A (with ∇·A = ∇·∇×G = 0),
minus the gradient of a scalar ∇ ·G ≡ V , as claimed. The challenge is in figuring out the underlying G

for a given F, which is what Helmholtz theorem is all about.
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– Likewise, the curl of F (with ∇ × ∇V = 0) leads us to, with a

divergence-free 3 A, to

∇×F = ∇×∇×A = ∇(∇·A)−∇2A = −∇2A ⇒ A(r) =

∫ ∇′ × F(r′)

4π|r− r′| d
3r′

once again in analogy with Poisson’s equation4.

These results validate Helmholtz theorem for fields F vanishing at infin-

ity, since, evidently, V and A needed to reconstruct F can be uniquely

specified in terms of ∇ · F and ∇× F, respectively.

3To confirm ∇ ·A = 0 directly, use the identity ∇ · (αG) = α∇ ·G+G · ∇α to expand A(r) as

∇·
∫ ∇′ × F(r′)

4π|r− r′| d
3r′ =

∫ ∇′ × F(r′)

4π
·∇ 1

|r− r′|d
3r′ = −

∫ ∇′ × F(r′)

4π
·∇′ 1

|r− r′|d
3r′ =

∫ ∇′ · (∇′ × F(r′))

4π|r− r′| d3r′ = 0,

after also using integration by parts for an integrand that vanishes as |r| → ∞ and a symmetry relation
∇|r− r′|−1 = −∇′|r− r′|−1 which is easy to confirm.

4While the vector field A identified above is divergence-free, ∇×A in the F = −∇V +∇×A expansion
can also be replaced with ∇×A′ so long as A′ = A+∇Ψ since ∇×∇Ψ is unconditionally zero independent
of the choice of Ψ. Note it is possible to specify Ψ so that ∇ ·A′ = ∇ · ∇Ψ = ∇2Ψ 6= 0 in which case A′

will be a divergent solution of the ∇ × F equation above! The additive term ∇Ψ in A′ is analogous to
allowing a constant number to be added to V ! The freedom to specify Ψ and thus ∇ ·A′ at will is known
as gauge freedom and any choice of Ψ making ∇ ·A′ = 0 is known as Coulomb’s gauge.
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8 Conductors, dielectrics, and polarization

So far in this course we have examined static field configurations of charge

distributions assumed to be fixed in free space in the absence of nearby

materials (solid, liquid, or gas) composed of neutral atoms and molecules.

In the presence of material bodies composed of large number of charge-

neutral atoms (in fluid or solid states) static charge distributions giving rise

to electrostatic fields can be typically1 found:

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -(a)

Eo = ẑ
ρs

ǫo

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -(b)

Eo

Eo

−ρs

ρs

−ρs

ρs

−ρs

ρs

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +

σ > 0 E = 0

A conducting slab inserted into a
region with field E_o (as shown 
in b)develops surface charge which 
cancels out E_o within the slab.  

E_o relates to surface charge 
as dictated by Gauss’s law and 
superposition principle. 

1. On exterior surfaces of conductors in “steady-state”,

2. In crystal lattices occupied by ionized atoms, as in depletion regions of

semiconductor junctions in diodes and transistors.

In this lecture we will examine these configurations and response of materials

to applied electric fields.

Conductivity and static charges on conductor surfaces:

• Conductivity σ is an emergent property of materials bodies con-

taining free charge carriers (e.g., unbound electrons, ionized atoms or

molecules) which relates the applied electric field E (V/m) to the elec-

trical current density J (A/m2) conducted in the material via a linear

1More generally, materials containing charge carriers exhibiting divergence free flows will also exhibit
static charge distributions.
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relation2

J = σE. (Ohm’s Law)

• Simple physics-based models for σ will be discussed later in Lecture 11.

For now it is sufficient to note that:

– σ → ∞ corresponds to a perfect electrical conductor 3 (PEC) for

which it is necessary that E = 0 (in analogy with V = 0 across a

short circuit element) independent of J.

– σ → 0 corresponds to a perfect insulator for which it is necessary

that J = 0 (in analogy with I = 0 through an open circuit element)

independent of E.

• While (macroscopic) E = 0 in PEC’s unconditionally, a conductor with

a finite σ (e.g., copper or sea water) will also have E = 0 in “steady-

state” after the decay of transient currents J that may be initiated

within the conductor after applying an external electric field Eo (see

margin).

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -(a)

Eo = ẑ
ρs

ǫo

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -(b)

Eo

Eo

−ρs

ρs

−ρs

ρs

−ρs

ρs

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +

σ > 0 E = 0

A conducting slab inserted into a
region with field E_o (as shown 
in b)develops surface charge which 
cancels out E_o within the slab.  

E_o relates to surface charge 
as dictated by Gauss’s law and 
superposition principle. 

– The reason is, mobile free charges (e.g., electrons in metallic con-

ductors) within the conductor will be pulled or pushed by the

applied field Eo to pile up on exterior surfaces of the conductor

2Linear behavior is possible provided charge carriers suffer occasional collisions within the medium.
3PEC is an “idealization” that has no real counterpart, even though it is convenient to treat high

conductivity materials such as copper as PEC in certain approximate models and calculations. For “su-
perconducting materials” σ → ∞ only in the low frequency limit.
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until a surface charge density ρs that is generated produces a sec-

ondary field −Eo that exactly cancels out the applied Eo within

the interior of the conductor.

– E = 0 in the interior at steady-state implies that potential V =const.,

as well as ρ = ∇ ·D = ∇ · ǫoE = 0.

– Surface charge density ρs and the exterior field on a conductor

surface will satisfy the boundary condition equations

n̂ ·D = ρs and n̂× E = 0,

with n̂ denoting the outward unit normal.

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -(a)

Eo = ẑ
ρs

ǫo

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -(b)

Eo

Eo

−ρs

ρs

−ρs

ρs

−ρs

ρs

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +

σ > 0 E = 0

A conducting slab inserted into a
region with field E_o (as shown 
in b)develops surface charge which 
cancels out E_o within the slab.  

E_o relates to surface charge 
as dictated by Gauss’s law and 
superposition principle. 

• The transient “time-constant” τ for the decay of charge density ρ (and

hence E, as claimed above) in a homogeneous4 conductor (constant σ)

can be obtained using the continuity equation

∂ρ

∂t
+∇ · J = 0

representing the mathematical statement of charge conservation (de-

rived in Lecture 16). Using J = σE and ∇ · E = ρ/ǫo, we have

∇ · J = σ∇ · E =
σ

ǫo
ρ

4See Fisher and Varney, Am. J. Phys., 44, 464 (1976), for a discussion of contact potential between
different metals.

3



above, from which it follows that

∂ρ

∂t
+

σ

ǫo
ρ = 0 with a damped solution ρ(t) = ρ(0)e−

σ
ǫo
t.

The decay time-constant

τ =
ǫo
σ

is typically very short (∼ 10−18 s) in metallic conductors, which is why

such conductors are usually considered to be in steady-state (and have

zero interior fields).

• As a consequence: in electrostatic5 problems conducting volumes

of materials (e.g., chunks of copper) can be treated as equipotentials

having zero internal fields and finite surface charge densities ρs = n̂ ·D
expressed in terms of external fields D normal to the surface.

5Also applicable quasi-statically when externally applied fields Eo(t) change slowly with time-constants
much longer than ǫo/σ. The way conductors are treated in high frequency electromagnetic problems will
be described later on.
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Dielectric materials and polarization:

• Dielectric materials consist of a large number of charge-neutral atoms

or molecules and ideally contain no mobile charge carriers (i.e., σ = 0).

• Electric fields produced by charges located outside or within a dielectric

material will polarize the dielectric — meaning that its constituent

atoms or molecules will be “stretched out” to expose their internal or

“bound” charges, electrons and protons — which will in turn cause the

electric field inside the dielectric to become weaker than (but not zero,

as in conductors) what the field would have been in the absence of

polarization effect.

Eo

Eo

E = Eo −
P

ǫo

A dielectric slab inserted into a
region with an initial field E_o 
will become polarized.

Inside the polarized dielectric the
field will be weaker than E_o, but 
not reduced to zero as in a 
conductor. 

Dielectric
slab

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +

We will next examine this polarization process and see how Gauss’s law can

be re-stated to facilitate field calculations in dielectric materials containing

bound charge carriers, i.e., atomic/molecular electrons and protons which

are not free to drift away from one another indefinitely (neglecting possible

ionization events).

• Consider a static free-charge density ρ(z) that would produce a macro-

scopic field Eo satisfying ρ = ǫo∇·Eo in free space, producing, instead,

a field E = ẑEz inside a dielectric medium composed of an array of

neutral atoms or molecules.

Our objective is to relate the field E to Eo and ρ, and find a way

of calculating E when ρ is given.
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• In the presence of an electric field E = ẑEz in the dielectric each neutral

atom of the medium will be in a distorted (but not ripped apart) state

forming a ẑ oriented electric dipole, which can be visualized as a

proton-electron pair with a small proton displacement d in z direction

with respect to the electron.

– Consider a regular array of such dipoles

p ≡ edẑ,

with ∆x, ∆y, and ∆z spacings between the dipoles (see margin),

so that the volumetric dipole density is

−ẑ
ρs

ǫo

≡ E1

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

−ẑ
ρs

ǫo

−ẑ
ρs

ǫo

−ẑ
ρs

ǫo

0 = E2

0

0

0

∆z

d

ρs =
e

∆x∆y

Nd ≡
1

∆x∆y∆z
m−3,

within the array, and, furthermore,

ρs =
e

∆x∆y

C

m2

is the magnitude of charge density of the adjacent proton and

electron layers (see margin again) formed by arrays of adjacent

dipoles displaced in z by intervals ∆z.

– Assuming that the array is infinite in extent in x and y directions,

the proton and electron layers with surface charge densities ±ρs
will produce interior electric fields

E1 = −ẑ
ρs
ǫo

= −ẑ
e/ǫo
∆x∆y
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(pointing in opposite direction to E = ẑEz), and exterior fields −ẑ
ρs

ǫo

≡ E1

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -−ρs

ρs

−ẑ
ρs

ǫo

−ẑ
ρs

ǫo

−ẑ
ρs

ǫo

0 = E2

0

0

0

∆z

d

ρs =
e

∆x∆y

E2 = 0

in between the dipole layers. Space averaged macroscopic electric

field within the array (with a spatial weighting proportional to

the size of regions with the fields E1 and E2) produced by the

polarized dipoles will then be

Ep = E1
d

∆z
+ E2

∆z − d

∆z
= −ẑ

ed/ǫo
∆x∆y∆z

= −Ndedẑ

ǫo
= −P

ǫo
,

where

P ≡ Ndedẑ = Ndp

is, by definition, macroscopic polarization field of the dielectric,

measured in units of C/m2 (same units as a surface charge density).

– The total macroscopic field E in the dielectric is then the sum of

field Eo produced by the free charge density ρ in the region and

the polarization field Ep = −P
ǫo

produced by bound charge carriers

of the neutral atoms and/or molecules of the dielectric, i.e.,

E = Eo −
P

ǫo
,

a result that shows a “reduced field strength” E (compared to Eo)

inside the dielectric since P and Eo are colinear.

Eo

Eo

E = Eo −
P

ǫo

A dielectric slab inserted into a
region with an initial field E_o 
will become polarized.

Inside the polarized dielectric the
field will be weaker than E_o, but 
not reduced to zero as in a 
conductor. 

Dielectric
slab

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +
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• Let’s re-arrange the expression for E from above as

ǫoE +P = ǫoEo

after multiplying it with ǫo and moving P to the left. Now, the term on

the right is ǫoEo = Do respresenting the displacement vector outside the

dielectric slab, and if we were to “adopt” the left hand side expression

as the “displacement vector” for the interior, i.e, take

D = ǫoE +P

in regions with non-zero P, then we would see that

– D = Do, i.e., the displacement is the same inside and outside the

slab, while electric fields E and Eo inside and outside differ by a

non-zero −P/ǫo, and furthermore,

– this generalized definition of electric displacement is consistent

with (by now familiar) D = ǫoE for free space as P 6= 0 only

within dielectrics.

Eo

Eo

E = Eo −
P

ǫo

A dielectric slab inserted into a
region with an initial field E_o 
will become polarized.

Inside the polarized dielectric the
field will be weaker than E_o, but 
not reduced to zero as in a 
conductor. 

Dielectric
slab

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +

• To express Gauss’s law ∇ · (ǫoE) = ρ in a form applicable with our

new revised D = ǫoE + P we first note that Gauss’s law also holds in

material media so long as ρ = ρf +ρb is a total charge density function,

a sum of charge densities ρf and ρb associated with free and bound

charge carriers that could present in the dielectric region. As such:
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– outside dielectrics, Gauss’s law is ∇ · (ǫoE) = ρf , since ρb = 0 in

that case, and this can be expressed as ∇·D = ρf , with D = ǫoE

as usual;

– using ∇ ·D = ρf also within dielectrics, with D = ǫoE+P, leads

to ∇ · (ǫoE) = ρf −∇ ·P, which is the expected form for Gauss’s

law within dielectrics with ρb = −∇ ·P;

– in conclusion, we can write Gauss’s law in a general form applicable

everywere as

∇ ·D = ρf ,

with the understanding that D ≡ ǫoE + P and “includes” the

effect of bound charge density ρb = −∇ · P which may be non-

zero6 within dielectrical materials.

– Typcially subscript f of ρf is dropped in Gauss’s law, with the

understanding that ρ refers to ρf because any non-zero ρb = −∇·P
effects have already been “lumped” into D = ǫoE+P definition.

Eo

Eo

E = Eo −
P

ǫo

A dielectric slab inserted into a
region with an initial field E_o 
will become polarized.

Inside the polarized dielectric the
field will be weaker than E_o, but 
not reduced to zero as in a 
conductor. 

Dielectric
slab

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +

• The differential form of Gauss’s law that we will now write (without

the subscript f on ρf) as

∇ ·D = ρ, [Gauss’s law inside material medium]

appears in integral form (after applying Divergence theorem to volume

6Note that if P is a constant inside a dielectric and zero outside then ρb = −∇ · P will be a surface
charge density confined to the surface of the dielectric.
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integral of the differential form) as
∮

S

D · dS =

∫

V

ρdV,

where the right side denotes the net free charge inside volume V .

• In a large class of dielectric materials macroscopic polarization P and

electric field E turn out to be linearly related (see Lecture 11) as

P = ǫoχeE,

where χe ≥ 0 is a dimensionless quantity called electric susceptibil-

ity. For such materials

D = ǫoE +P = ǫo(1 + χe)E = ǫE,

where

ǫ = ǫo(1 + χe) ≡ ǫrǫo

is known as the permittivity of the dielectric, and

ǫr = 1 + χe

its relative permittivity or dielectric constant.

– Dielectric constant of free space is 1,

◦ for air ǫr ≈ 1.0006,
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◦ for glass 4− 10,

◦ dry-to-wet earth 5− 10, silicon 11− 12, distilled water 81.

In certain materials χe and ǫ are found to be tensors — mean-

ing that P and D are no longer aligned with E. Such materials

are said to be anisotropic, but they will not be studied in this

course. Also, there is an exception to the condition χe ≥ 0 — in

collisionless plasmas χe < 0, as discussed in ECE 450.

• In Gauss’s law applicable in material media ρ denotes the free charge

carrier density (after the revisions we have agreed to make). Further-

more, in perfect dielectrics there are no mobile free carriers and Gauss’s

law typically reduces to ∇·D = 0, while the corresponding boundary

condition equation for surfaces separating perfect dielectrics becomes
n̂

D
+

D
−

n̂ · (D+ −D−) = 0 ⇒ D+
n = D−

n ,

which says that normal component of displacement D is continuous on

such surfaces. This is accompanied by

n̂× (E+ − E−) = 0 ⇒ E+
t = E−

t

stating the continuity of tangential components of E, which is univer-

sally true as we have seen earlier.

n̂
D

+

D
−

11



9 Static fields in dielectric media

• Summarizing important results from last lecture:

– within a dielectric medium, displacement

D = ǫE = ǫoE +P,

and if the permittivity ǫ = ǫrǫo is known, D and E can be calcu-

lated from free surface charge ρs or volume charge ρ in the region

without resorting to P.

– on surfaces separating perfect dielectrics, n̂ · (D+ −D
−) = 0 typ-

ically, while n̂ ·D+ = ρs on a conductor-dielectric interface (with

n̂ pointing from the conductor toward the dielectric).

n̂
D

+

D
−

– Gauss’s law ∇·D = ρ (and its integral counterpart) includes only

the free charge density on its right side, which is typically zero in

many practical problems.

– once D and E have been calculated (typically using the boundary

condition equations), polarization P can be obtained as

P = D− ǫoE

if needed.

These rules will be used in the examples in this section.
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z

x

E = 18x̂ E = 18x̂E = 3x̂

ǫ = ǫo ǫ = ǫoǫ = ǫrǫo

Example 1: A perfect dielectric slab having a finite thickness W in the x direction
is surrounded by free space and has a constant electric field E = 18x̂ V/m in
its exterior. Induced polarization of bound charges inside dielectric reduces the
electric field strength inside the slab from 18x̂ V/m to E = 3x̂ V/m. What are
the displacement field D and polarization P outside and inside the slab, and
what are the dielectric constant ǫr and electric susceptibility χe of the slab?

Solution: Displacement field outside the slab, where ǫ = ǫo, must be

D = ǫoE = x̂18ǫo
C

m2
.

The outside polarization P is of course zero. Boundary conditions at the interface
of the slab with free space require the continuity of normal component of D and
tangential component of E — both of these conditions would be satisfied if we
were to take D = x̂18ǫo C/m2 also within the dielectric slab. Thus, with E = 3x̂
V/m inside the slab, the condition D = ǫslabE within the slab requires that

ǫslab = 6ǫo.

Consequently, the dielectric constant of the slab is

ǫr = 1 + χe =
ǫslab
ǫo

= 6

and its electric susceptibility is

χe = ǫr − 1 = 5.

Finally, since D = ǫoE+P in general, polarization P inside the slab is

P = D− ǫoE = x̂18ǫo − ǫo3x̂ = x̂15ǫo
C

m2
.
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• Our revised definition of displacement D = ǫE, where ǫ = ǫrǫo, implies,

when combined with E = −∇V and ∇ · D = ρ, a revised form of

Poisson’s equation

∇2V = −ρ

ǫ
,

– provided that dielectric constant ǫr is independent of position so

that ∇ ·D = ∇ · (ǫE) = ǫ∇ ·E is a valid intermediate step in the

derivation of Poisson’s equation.

– Under the same condition Laplace’s equation ∇2V = 0 also re-

mains valid.

– Dielectrics where ǫr is independent of position are said to be ho-

mogeneous.

◦ In inhomogeneous dielectrics where ǫ varies with position

neither equation is valid, and one has to resort to the full

form of Gauss’s law in field and potential calculations.

In other words, don’t use Laplace’s/Poisson’s equations

in inhomogeneous media.

In the next example we have two homogeneous slabs side-by-side

making up an inhomogeneous configuration. In that case we can

use Laplace/Poisson within the slabs one at a time and then match

the results at the boundary using boundary condition equations

as shown.
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z

x

V (2) =?

V (0) = 0

ρs = 2ǫo

z

V (z)

V (z) = Az

ρs = −2ǫo

2ǫo

ǫo

z=1

z=2

ǫo

2ǫo V (z) = A + B(z − 1)

Example 2: A pair of infinite conducting plates at z = 0 and z = 2 m carry equal
and opposite surface charge densities of −2ǫo C/m2 and 2ǫo C/m2, respectively.
Determine V (2) if V (0) = 0 and regions 0 < z < 1 m and 1 < z < 2 m are
occupied by perfect dielectrics with permittivities of ǫo and 2ǫo, respectively.

Solution: Given that V (0) = 0, we assume V (z) = Az, for some constant A in the
homogeneous region 0 < z < 1 m, since V (z) = Az satisfies the Laplace’s
equation as well as the boundary condition at z = 0.

This gives V (1) = A at z = 1 m, which then implies that we can take V (z) =
A+B(z− 1) for the second homogeneous region 1 < z < 2 m having a different
permittivity than the region below.

To determine the constants A and B, we will make use of boundary conditions at

z = 0 and z = 1 m interfaces:

• In the region 0 < z < 1 m, the electric field E = −∇(Az) = −Aẑ, and,
therefore displacement D = ǫ1E = −ǫoAẑ. Hence, the pertinent boundary
condition ẑ ·D(0) = ρs yields

ẑ ·D(0) = −ǫoA = −2ǫo ⇒ A = 2.

• Just below z = 1 m the displacement is D(1−) = −ǫoAẑ = −2ǫoẑ as we
found out above. Above z = 1 m, the electric field is E = −∇(A+ B(z −
1)) = −Bẑ, and, therefore, D(1+) = −2ǫoBẑ just above z = 1 m. Hence,
the pertinent boundary condition ẑ · (D(1+)−D(1−) = 0 yields

ẑ · (−2ǫoBẑ − (−2ǫoẑ)) = −2ǫoB + 2ǫo = 0 ⇒ B = 1.
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Based on above calculations of constants A and B, the potential solution for the
region is

V (z) =

{

2z V, 0 < z < 1

2 + (z − 1)V, 1 < z < 2.

It follows that V (2) = 3 V.

Note that electric fields −2ẑ V/m and −ẑ V/m in the bottom and top layers point
from high to low potential regions. Electric field E is discontinuous at the bound-
ary at z = 1 m while displacement D is continuous — the continuity of normally
directed D is demanded by boundary condition equations in the absence of sur-
face charge.

0

z

d

d1 ρs

ρs0 = ?

ρsd = ?

E = ?

E = 0 V = 0

E = 0 V = 0

If ρs in Example 3 is a slowly-

varying function of time, then

slowly varying E, ρs0, and ρsd cal-

culated with instantaneous values

of ρs would constitute quasi-static

solutions which are valid so long

as d ≪ c/f , with f the highest

frequency in ρs(t).

Example 3: A pair of infinite conducting plates at z = 0 and z = d are grounded
and have equal potentials, say, V = 0. The region 0 < z < d is occupied by
free space (i.e., ǫ = ǫo) except that an infinite charge sheet with a static surface
charge density ρs is located at z = d1 < d. Determine (a) the electrostatic field
E(z) in regions 0 < z < d1 and d1 < z < d, and (b) the surface charge densities
ρs0 and ρsd at z = 0 and z = d on conductor surfaces if d1 = d/2.

Solution: (a) Laplace’s equation for the given geometry requires a linear (in z) poten-
tial solution in regions 0 < z < d1 and d1 < z < d. Since electrostatic E = −∇V ,
we can therefore represent the electric field in these regions as

E =

{

−ẑVo/d1, 0 < z < d1

+ẑVo/d2, d1 < z < d

5



where Vo ≡ V (d1) and d2 ≡ d− d1. Hence,

D = ǫoE =

{

−ẑǫoVo/d1, 0 < z < d1

+ẑǫoVo/d2, d1 < z < d
,

and Maxwell’s boundary condition equation applied on z = d1 surface is

ẑ · (D(d+1 )−D(d−1 )) = ρs ⇒ ǫoVo

(

1

d2
+

1

d1

)

= ρs.

Thus

Vo =
ρs
ǫo

(

1

d2
+

1

d1

)−1

=
ρs
ǫo

d1d2
d1 + d2

=
ρs
ǫo

d1d2
d

.

Substituting Vo back into the expression for E, we have

E =

{

−ẑ ρs
ǫo

d2
d
, 0 < z < d1

+ẑ ρs
ǫo

d1
d
, d1 < z < d.

(b) The surface charge at z = 0 can be found by evaluating ẑ ·D = ẑ · ǫoE at z = 0.
Hence,

ρs0 = ẑ · ǫoE(0) = −d2
d
ρs

−−−−−→
d1 = d/2 − ρs

2
.

Likewise,

ρsd = −ẑ · ǫoE(d) = −d1
d
ρs

−−−−−→
d1 = d/2 − ρs

2
.
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z

x

V (2) =?

V (0) = 0

ρs = 2ǫo

z

ρs = −2ǫo

2ǫo

ǫo

z=2

ǫ(z) =
4ǫo

4− z

ǫo

2ǫo

Ez(z)

Example 4: Between a pair of infinite conducting plates at z = 0 and z = 2 m, the
medium is a perfect dielectric with an inhomogeneous permittivity of

ǫ(z) =
4ǫo
4− z

.

Determine the electric potential V (2) on the top plate if V (0) = 0 and the
surface charge density is ρs = 2ǫo C/m2 on the bottom plate at z = 0. Note
that Laplace’s equation cannot be used in this problem since the medium is
inhomogeneous.

Solution: Consider Gauss’s law
∇ · (ǫE) = ρ

with ρ = 0 in the region 0 < z < 2 m. Assuming that E = ẑEz(z), because the
geometry is invariant in x and y, we have

∇ · (ǫE) = 0 ⇒ ∂

∂z
(ǫEz) = 0 ⇒ ǫEz = constant.

Thus the product ǫEz is invariant with respect to coordinate z, which implies
that

ǫ(z)Ez(z) = ǫ(0)Ez(0) ⇒ Ez(z) =
ǫ(0)

ǫ(z)
Ez(0) = Ez(0)(1−

z

4
)

after substituting for ǫ(z). To identify Ez(0), we apply the bottom boundary
condition ẑ ·D(0) = ρs, and obtain

Dz(0) = ǫ(0)Ez(0) = 2ǫo ⇒ Ez(0) =
2ǫo
ǫ(0)

= 2 V
m.
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To determine V (2), we integrate E = ẑ2(1− z
4) V/m from top to bottom plate

(grounded), obtaining

V (2) =

∫ 0

z=2

E · dl =
∫ 0

z=2

2(1− z

4
)dz

= 2(z − z2

8
)|02 = −2(2− 4

8
) = −2 · 3

2
= −3V.
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10 Capacitance and conductance

Parallel-plate capacitor: Consider a pair of conducting plates with surface
areas A separated by some distance d in free space (see margin).

z

x

y
−Q

d

A

Q

A

The plates are initially charge neutral, but then some amount of electrons

are transferred from one plate to the other so that the plates acquire equal

and opposite charges Q and −Q, distributed with surface densities of ±Q
A on

plate surfaces facing one another (as shown in the margin).

• That way, in steady state and for d ≪
√
A, a field configuration con-

fined mainly to the region between the plates is acquired, satisfying the

condition that static field inside a conductor should be zero. A weak

“fringing field” can be ignored if d ≪
√
A and thus the geometry well

approximates the case with infinite plates.

– A constant displacement field

D = x̂
Q

A

satisfies the normal boundary condition at the left plate boundary

as well as Gauss’s law ∇ ·D = 0 in the region between the plates.

The corresponding electrostatic field is

E =
D

ǫo
= x̂

Q

ǫoA
,

and the voltage drop from (positive charged) left plate to (negative

1



charged) right plate is

V =

∫ (d,0,0)

(0,0,0)

E · dl =
∫ d

x=0

Q

ǫoA
dx =

d

ǫoA
Q.

The last result can be expressed as a linear charge-voltage relation

Q = CV

with

C ≡ ǫo
A

d
representing the capacitance of the parallel conducting plate ar-

rangement that we call parallel plate capacitor.

• By differentiating Q = CV we obtain the charging rate of the capacitor

as

z

x

y
−Q

d

A

Q

A

I = C
dV

dt

V (t)+         -

I =
dQ

dt
= C

dV

dt
which is only possible, for ideal capacitors, if the capacitor plates are

externally connected to a circuit supplying a current as shown on the

right where the direction of I = dQ
dt

is in the direction of voltage drop V

across the capacitor, from the positively charged plate to the negatively

charged plate as shown.

– In lossy capacitors when the medium between the plates is con-

ducting, the charging rate of the capacitor plate will be smaller as

2



given by
dQ

dt
= C

dV

dt
= I −GV,

where G stands for the conductance of the capacitor (derived later
in this lecture) and I the external current flowing into the non-
ideal capacitor.

−Q

d

Q

I = GV (t) + C
dV

dt

V (t)
+         -

+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-

J = σE

E

C

x

R =
1

G

– Therefore, for non-ideal capacitors the external current

I = C
dV

dt
+GV,

meaning that part of I goes into changing stored charge Q = CV

of capacitor plates and the rest to conduct a GV amount of leakage

current of the capacitor plates, and the equivalent circuit of the

non-ideal capacitor there contains a “shunt resistance” R = 1
G

accompanying C as shown in the margin.

• Returning to the IV -relation

I = C
dV

dt

of the ideal capacitor, this IV -relation was obtained from the QV -

relation above quasi-statically assuming that
√
A ≪ λ = c/f , where f

is the highest frequency of V (t). The power absorbed by the capacitor

is then calculated as

P = V I = V C
dV

dt
=

d

dt
(
1

2
CV 2),

3



implying a stored energy of

W =
1

2
CV 2 =

1

2
ǫo|Ex|2Ad

when the capacitor is in a charged state.

• Notice that stored energy is

1

2
ǫoE

2
x =

1

2
ǫoE · E

times the volume Ad occupied by the field E between the capacitor

plates. That suggests that

w =
1

2
ǫoE · E

can be interpreted as stored electrostatic energy per unit volume in

general.

– Also both capacitance C and stored energies W and w would have

ǫ replacing ǫo in dielectric media.

A capacitor with a perfect dielectric between its plates will hold its charge

and stored energy indefinitely. However, if the dielectric is imperfect and

has a finite conductivity σ, charge will be transported from the positive to

negative plate by a volumetric current density

J = σE,
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which will result in a quasi-static discharge of the capacitor and the loss of

the stored energy W to Ohmic dissipation in the imperfect dielectric.

Just as capacitance C characterizes the energy and charge storage “ca-

pacity” of the capacitor, we can define a conductance G that relates the

quasi-static discharge current I in between the plates of a capacitor to po-

tential drop V :

• Discharge current I is the product of current density

−Q

d

Q

I = GV (t) + C
dV

dt

V (t)
+         -

+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-

J = σE

E

C

x

R =
1

G

System above behaves like a resis-
tor R = 1/G for

ω ≪ G

C
=

1

RC
=

σ

ǫ

and like a capacitor C in the com-
plementary frequency band. To
obtain capacitor behavior at low
frequencies make sure that σ is
sufficiently small.

Alternatively, with large σ the
system becomes a good electri-
cal connector, a resistor R with
a small resistance R ∝ 1/σ.

Jx = σEx

in A/m2 units and the plate area A. Since Ex =
V
d , we obtain a linear

current-voltage relation

I = GV

with conductance

G ≡ σ
A

d
for the parallel plate capacitor.

– Notice that G = σ
ǫ
C, a relation that will hold true for other types

of capacitors that we will be examining.

– Also,

R ≡ 1

G
=

d

Aσ
is the corresponding resistance that scales inversely with con-

ductivity σ of the material — large σ materials will have small

5



resistance, but for a given σ, R increases with length d and de-

creases with increasing cross-sectional area A. Simple conductivity

models and J will be discussed next lecture.

Coaxial Cable: When we study guided wave propagation later in the course

we will learn about coaxial cables.

ℓ

ab

r

z

• A coax cable consists of two conducting regions — a central cylindrical

conductor with a cross-sectional radius a, enclosed by a conducting

pipe of a radius b > a (see margin), with some dielectric ǫ filling in

the space. We will next calculate the capacitance and conductance of

a coax segment of some length ℓ.

• For ℓ ≫ b, field E can be assumed to point out radially away from

the inner conductor with radius a to the outer conductor with radius b.

In that case Gauss’s law in integral form can be utilized to determine

the radial field Er. Considering a cylindrical integration surface with a

radius r > a centered about the inner conductor, we re-write Gauss’s

law

ǫ

∮

s

E · dS = QV

as

ǫEr2πrℓ = Q

where Q is the total charge distributed over the inner conductor and ǫ

the permittivity of the dielectric separating the two conductors.

6



– It follows that

Er =
Q

2πǫℓr
,

and voltage drop from inner to outer conductor is

V =

∫ b

r=a

Erdr =

∫ b

r=a

Q

2πǫℓr
dr =

Q

2πℓǫ

∫ b

r=a

dr

r
=

Q

2πℓǫ
ln

b

a
.

Clearly, once again Q = CV , with

C =
2π

ln b
a

ℓǫ

representing the capacitance of the coax segment of length l.

• The capacitance of the coax per unit length is

C =
2π

ln b
a

ǫ.

– Conductance of the coax per unit length can likewise be shown

to be

G =
2π

ln b
a

σ.

This result is a consequence of the general relation G = σ
ǫ
C men-

tioned earlier.

– Per length parameters C and G of the coax will play an important

role when we study guided wave propagation in coaxial transmis-

sion lines with lengths for which quasi-static approximation may

be violated.
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Diode junctions: In Example 4 in Lecture 7 we derived the expression

for potential drop V across a charged region of a total width of W1 + W2,

such that in region 1 where −W1 < x < 0 the charge density ρ = −ρ1 is

negative, while in region 2 where 0 < x < W2 the charge density ρ = ρ2
is positive, with the additional constraint that the entire region is charge

neutral, meaning that ρ1W1 = ρ2W2.

V1

V (x)
V2

−ρ1 < 0

z

x

−W1

ρ2 > 0

W2

Ex(x)

−

ρ1W1

ǫo

x

W2−W1

E
+-

−W1

W2 x

By solving Poisson’s equation for this charge density configuration (see

margin) encountered in junction regions of semiconductor diodes (described

in detail ECE 440) we had established that the voltage drop from x = W2

to x = −W1 across the junction is given by

V =
ρ2W2(W1 +W2)

2ǫo
=

ρ1W1(W1 +W2)

2ǫo
.

The above equation implies that

W1 =
2ǫoV

(W1 +W2)ρ1
and W2 =

2ǫoV

(W1 +W2)ρ2
⇒ W1+W2 =

√

2ǫoV
ρ1 + ρ2
ρ1ρ2

.

Using the expressions above for junction voltage V and width W1 +W2,

we will next derive an expression for small signal capacitance of the diode

junction:

• In region 2 where x > 0, the junction holds a total positive charge of

Q = ρ2W2A per cross-sectional area A.

• Therefore, substituting Q
A

for ρ2W2 in the expression for V above, and
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also using the W1 +W2 ∝
√
V expression derived above, we obtain

V =
ρ2W2(W1 +W2)

2ǫo
=

Q
√

2ǫoV
ρ1+ρ2
ρ1ρ2

2ǫoA
,

which can be re-arranged as

Q = A

√

2ǫoρ1ρ2
ρ1 + ρ2

√
V

representing a non-linear charge-voltage relation (for a given charge

profiles satisfying ρ1W1 = ρ2W2).

– In a linear charge-voltage relation Q = CV , the capacitance pa-

rameter C represents the slope Q
V

of a Q vs V curve.

V1

V (x)
V2

−ρ1 < 0

z

x

−W1

ρ2 > 0

W2

Ex(x)

−

ρ1W1

ǫo

x

W2−W1

E
+-

−W1

W2 x

The slope of any Q vs V curve is given by the derivative dQ
dV , whether or

not the curve is linear. The slope dQ
dV

of a non-linear charge-voltage curve

can be interpreted as a small signal capacitance C. For a diode junction,

differentiating the above equation, we find that

C =
dQ

dV
= A

√

ǫo
2V

ρ1ρ2
(ρ1 + ρ2)

.

Small changes dV in junction voltage will accompany small changes dQ =

CdV in stored charge Q of the junction, but the amount CdV will itself

depend on V because C ∝ V −1/2.

9



11 Lorentz-Drude models for conductivity and

susceptibility and polarization current

In this lecture we will describe simple microscopic models for conductivity σ

and electric susceptibility χe of material media composed of free and bound

charge carriers. The models were first developed by Lorentz and Drude prior

to the establishment of quantum mechanics. In these models free charge

carriers motions are described using Newtonian dynamics and atoms are

represented as electric dipoles p = −er (r is electron displacement from

atomic nucleus) behaving like damped 2nd order systems.

Conductivity: Conducting materials such as copper, sea water, ionized

gases (plasmas) contain a finite density N of mobile and free charge carriers

at the microscopic level (in addition to neutral atoms and molecules sharing

the same macroscopic space) — these elementary mobile carriers can be

electrons, positive or negative ions, or positive “holes” (in semi-conductor

materials).

(a)

(b)

E = 0

E

q > 0

q > 0

In the absence of an applied electric 
field E, free charge q exhibits a 
"random walk" between collisions such 
that its average velocity v is zero. 

By collisions we refer to the inreactions
of q with zero-mean miscroscopic electric 
fields within the conductor due to charges 
entrapped in the lattice.

In the presence of an applied electric
field E, the mean position of free charge 
q>0 drifts in the direction of field
vector E with some non-zero mean 
velocity v.

Avg. drift velocity v reperesents a 
balance between acceleration force due 
to E and an opposing friction force 
produced by collisions of q with the 
lattice at random intervals with 
some mean value   .τ

• Each elementary charge carrier with a charge q and mass m and subject

to a macroscopic electrical force qE will be modelled by a dynamic

equation

m
dv

dt
= qE−m

v

τ
,

which is effectively Newton’s second law — “force equals mass times

acceleration” — in which v denotes the macroscopic velocity1 of charge

1Think of microscopic velocity of each charge carrier as v+ δv, where δv is an independent zero-mean

1



carriers and −mv
τ

denotes a macroscopic friction force proportional to

−v. Friction is a consequence of “collisions” of charge carriers with the

neutral background at a frequency of ν = 1
τ collisions per unit time,

and causes the decay of v as

v(t) = v(0)e−t/τ

in the absence of field E. Therefore, when E = 0 the carriers settle

down to a steady state with v = 0 (in t ≫ τ limit), meaning that

no macroscopic current density J will be found in the absence of E in

regions with homogeneous charge carrier densities.

• With a constant but non-zero E, steady-state solution of the above

equation is

1 m

1 m
1m

J = Nqv

v

such that current I (in A) across
any surface S having area elements
dS is given by 

I =
∫
S
J · dS

A cube of unity volume contains
N charge carriers q each moving 
with an average  velocity of 
v=1 m/s towards the shaded surface 
of the cube of a unity surface area. 

In 1 second all N charges in the 
volume cross the shaded surface, 
transporting Nq Coulombs of charge 
per second per unit area.

By contrast, charge transport rate 
across the same surface is

Nqv C/s/m2 = Nqv A/m2

if the average charge velocity
is an arbitrary v.

Thus, in vector notation, we can
define the current density in the
region as 

q

v =
qτ

m
E, where |qτ

m
| is known as mobility.

– Assuming N charge carriers per unit volume each moving (on the

average) with this steady-state velocity in a given material, we can

calculate the average flux density of charge through the region as

J = Nqv =
Nq2

mν
E

C/s

m2

which is commonly referred to as current density (see margin).

If a given material contains several species of carriers with charge,

random variable for each charge carrier whereas macroscopic velocity v corresponds to the statistical
average of all v + δv.
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mass, collision frequency, and number density of qs, ms, νs, and

Ns, respectively, then current density can be expressed as Ohm’s Law

and

DC

conductivity

J = σE,

with

σ =
∑

s

σs and σs =
Nsq

2
s

msνs

denoting the medium and species conductivities, respectively, un-

der DC conditions.

• With a time varying field E the corresponding current density will also

be time varying, in which case conductivity σ should be defined in the

frequency domain using phasor techniques (remember ECE 210).

– Briefly, using phasors Ẽ and J̃ such that

E(t) = Re{Ẽejωt} and J(t) = Re{J̃ejωt}, etc.,

we have a phasor transformed Newton’s force balance equation

m
dv

dt
= qE−m

v

τ
⇒ mjωṽ = qẼ−m

ṽ

τ
,

from which it follows that

J̃ = σẼ,
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with

σ =
∑

s

σs and σs =
Nsq

2
s

ms(νs + jω)
.

AC

conductivity– Note that the AC conductivity just derived can be approximated

by the DC conductivity derived earlier for all AC frequencies ω

much smaller than species collision frequencies νs.

◦ In many cases of practical interest, this condition can be easily

met, and we are often well justified to ignore the frequency

dependence and complex character of conductivity σ revealed

in above derivation.

– More advanced quantum mechanical derivations of σs give the

same results except with effective masses specified by quantum

theory replacing the particle masses ms used in classical models.

• Typical DC conductivities:

– For silver, copper, gold, σ ∼ several × 107 S/m

– For seawater σ ≈ 4 S/m

– For intrinsic silicon σ = 1.6× 10−3 S/m

– For dry earth σ ∼ 10−5 S/m

– For glass σ ∼ 10−10 − 10−14 S/m

Superconductivity occurs in certain materials at low temperatures

4



when the DC conductivity vanishes as a consequence of correlated

charge carrier motions which are ignored in the Lorentz-Drude

model.

Susceptibility: In perfect dielectrics there are no free charge carriers and so

σ = 0. However, in general such materials are polarizable and therefore they

have a non-zero susceptibility χe and a dielectric constant ǫr = 1 + χe > 1.

• In Lorentz-Drude model, each polarized atom or molecule is considered
to be a dipole p = −er, with r representing the displacement vector
of an atomic electron from atomic nucleus when the atom is polarized
because of an applied electric field.

+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-

E

r
e−e

r
e−e

r
e−e

• If the polarizing force on the atom is removed, observations indicate

that the dipole field of the atom Ep ∝ p ∝ r will decay as a damped

co-sinusoid with a decay time constant τd = 1
α

and a characteristic

damped frequency
√

ω2
o − α2 ≈ ωo satisfying a condition ωo ≫ α = 1

τd
(strongly underdamped).

– Possible values of ωo for a given atom can be obtained from the en-

ergy levels of bound states of the atom (calculated using standard

quantum2 models like in PHYS 214) and time constants τd = 1
α

(which are finite because energies ~ωo radiated away are also finite)

are related to observed line widths (2α) in the emission spectra of

excited atoms.
2For a quantum mechanical derivation of susceptibility, see, e.g., Mott, “Elements of Wave Mechanics”,

Chapt 4, Sect 10 (1958); Miller, “Quantum Mechanics for Scientists and Engineers”, Sect 7.3 (2008).
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Electron displacement having the inferred damped co-sinusoid form

r(t) = roe
−t/τd cos(

√

ω2
o − α2t) ≈ roe

−t/τd cos(ωot)

is “zero-input response” (remember ECE 210) of a linear second-order

ODE that can be constructed using Newton’s second law of classical

mechanics:

– If we assume that mass m times acceleration d2r
dt2

of a displaced

electron equals the sum of a

+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-

E

r
e−e

r
e−e

r
e−e

◦ force −eE exerted by an applied macroscopic electric field E,

◦ a spring-like restoring force −mω2
or responsible for the binding

of the electron to the nucleus, and

◦ a friction-like dissipative force −m2αdr
dt ,

we get

m
d2r

dt2
= −eE−mω2

or−m2α
dr

dt
,

for which r(t) given above is the zero-input solution in the absence

of E.

• To find the DC susceptibility of a dielectric composed of dipoles con-

strained by the above equation, we note that steady-state solution of

the equation with a non-zero constant field E is

r = − e

mω2
o

E.
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Consequently, dipole moment of a single polarized atom is

p = −er =
e2

mω2
o

E,

and polarization field in a dielectric with a dipole density of Nd is

P = Ndp =
Nde

2

mω2
o

E.

This result can also be written as

+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-

E

r
e−e

r
e−e

r
e−e

P = ǫoχeE,

where DC

susceptibilityχe ≡
Nde

2/mǫo
ω2
o

is DC susceptibility. AC susceptibility can be derived using phasor

techniques, but at frequencies ω ≪ ωo, AC susceptibility is well ap-

proximated by the DC susceptibility derived above.

Polarization current: Consider the case of a time varying electric field

E(t) in a dielectric medium at a frequency ω ≪ ωo such that the relations

r = − e

mω2
o

E and P = ǫoχeE

from above are accurate.
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• Time variation of E will imply the time variation of electron displace-

ment r, so that there will be in effect a non-zero electron velocity

v =
dr

dt
= − e

mω2
o

dE

dt

capable of producing a current.

– With Nd such electrons per unit volume, each carrying a charge

−e, we will have a net flux density of charge in the region given

by

Jp = −eNdv =
Nde

2

mω2
o

dE

dt
=

dP

dt
.

This flux is effectively an AC current density carried by bound

charges found in a dielectric medium. Even though, a DC cur-

rent is not possible in a perfect dielectric containing only bound

charges, evidently AC currents Polarization

current

densityJp =
dP

dt
Polarization current density

are possible — we call this type of AC current as polarization

current density.

• In our studies of time-varying electromagnetic fields we will include the

effects of polarization currents dP
dt

along with the effects of conduction

currents σE.
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12 Magnetic force and fields and Ampere’s law

Pairs of wires carrying currents I running in the same (opposite) direction

are known to attract (repel) one another. In this lecture we will explain the

I

I

F

F

“Things should be made as simple
as possible – but no simpler.”

— Albert Einstein

mechanism — the phenomenon is a relativistic1 consequence of electrostatic

charge interactions, but it is more commonly described in terms of magnetic

fields. This will be our introduction to magnetic field effects in this course.

1Brief summary of special relativity: Observations indicate that light (EM) waves can be
“counted” like particles and yet travel at one and the same speed c = 3 × 108 m/s in all reference
frames in relative motion. As first recognized by Albert Einstein, these facts preclude the possibility that
a particle velocity u could appear as

u′ = u− v (Newtonian)

to an observer approaching the particle with a velocity v; instead, u must transform to the observer’s
frame as

u′ =
u− v

1− uv
c2

, (relativistic)

so that if u = c, then u′ = c also. This “relativistic” velocity transformation in turn requires that positions
x and times t of physical events transform (between the frames) as

x′ = γ(x− vt) and t′ = γ(t− v

c2
x), (relativistic)

where γ ≡ 1√
1−v2/c2

, rather than as

x′ = x− vt and t′ = t, (Newtonian)

so that dx
dt

= u and dx′

dt′
= u′ are related by the relativistic formula for u′ given above.

Relativistic transformations imply a number of “counter-intuitive” effects ordinarily not noticed unless
|v| is very close to c. One of them is Lorentz contraction, implied by dx = dx′/γ at a fixed t: since γ > 1,
dx < dx′, and moving objects having velocities v appear shorter then they are when viewed from other
reference frames where v is determined. A second one is time dilation, implied by dt′ = dt/γ at a fixed x′:
since γ > 1, dt′ < dt, and moving clocks having velocities v and fixed x′ run slower than clocks in other
reference frames where v is determined. Consider taking PHYS 325 to learn more about special relativity.
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• Consider a current carrying stationary wire in the lab frame:

– the wire has a stationary lattice of positive ions,

I

v

+   +   +   +   +   +   +   +

λ−

λ+ = −λ−

(a) Neutral wire carrying current I 
    in the "lab frame":

Iv

+  +  +  +  +  +  +  +  +  +
_    _    _    _    _    _    _ 

λ
′
− = λ−/γ

λ
′
+

= γλ+

(b) In the "electron frame" the wire 
appears positively charged:

E
′ =

λ
′

2πǫor
r̂

r

_   _   _   _   _   _   _   _

λ
′ ≈ λ+

v
2

c2
=

Iv

c2
= Ivµoǫo

– electrons are moving to the left through the lattice with an average

speed v, and

– a current I > 0 is flowing to the right as shown in the figure.

◦ If the wire is electrically uncharged — which will be true if

electron and ion charge densities in the wire, λ− < 0 and

λ+ > 0, respectively, have equal magnitudes — then the wire

will produce no electrostatic field E, and any stationary charge

q placed near the wire will not be subject to any force2.

◦ The current carried by the wire is I = v|λ−| = vλ+ in terms

of the magnitudes of electron velocity and charge density.

• An uncharged wire in the lab frame appears as “charged” in the refer-

ence frame of the electrons carrying the current:

– this is a relativistic effect due to “Lorentz contraction” of the dis-

tances between the charges in the wire.

2This is true for zero-resistivity wires. Current carrying wires with finite resistivity will however support
surface charge densities with axial gradients to produce the static field within the wire needed to drive
the current — e.g., in Am. J. Phys.: Jefimenko, 30, 19 (1962); Parker, 38, 720 (1970); Preyer, 68, 1002
(2000).
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– In the electron frame the wire is found to have a positive charge

density λ′, and thus it has a radial electrostatic field

E′ =
λ′

2πǫor
r̂

implying an electrostatic force F′ = qE′ on a stationary charge q.

I

v

+   +   +   +   +   +   +   +

λ−

λ+ = −λ−

(a) Neutral wire carrying current I 
    in the "lab frame":

Iv

+  +  +  +  +  +  +  +  +  +
_    _    _    _    _    _    _ 

λ
′
− = λ−/γ

λ
′
+

= γλ+

(b) In the "electron frame" the wire 
appears positively charged:

E
′ =

λ
′

2πǫor
r̂

r

_   _   _   _   _   _   _   _

λ
′ ≈ λ+

v
2

c2
=

Iv

c2
= Ivµoǫo

– Relativistic calculations3 show that

λ′ ≈ λ+
v2

c2
= (

I

v
)
v2

c2
= Ivǫoµo

3(i) Electron spacings dx′ measured in the electron reference frame will appear as

dx =

√

1− v2

c2
dx′

in the lab frame because of Lorentz contraction. Charge density of the electrons in the lab frame,

λ− =
λ′
−

√

1− v2/c2
,

is therefore greater in magnitude than the electron charge density λ′
− in the electron frame. Furthermore,

λ− = −λ+ in order to maintain a charge neutral wire in the lab frame. (ii) Once again because of Lorentz
contraction, the charge density of positive ions will appear in the electron frame as

λ′
+
=

λ+
√

1− v2/c2
.

(iii) Thus, the total charge density of the wire in the electron frame is

λ′ = λ′
+
+ λ′

− =
λ+

√

1− v2/c2
+ λ−

√

1− v2/c2 =
λ+

√

1− v2/c2
− λ+

√

1− v2/c2 =
λ+v

2/c2
√

1− v2/c2
≈ λ+v

2

c2
,

a positive density for non-zero |v| ≪ c. (e.g., articles in Am. J. Phys.: Webster, 29, 262, 1961; Matzek
and Russel, 36, 905, 1968; Arista and Lopez, 43, 525, 1975; Zapolsky, 56, 1137, 1988).
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and force F′ = qE′ can be transformed back to the lab frame,

where q appears to be moving with velocity v, as (with no ap-

proximation4)

F = qv × µoI

2πr
φ̂,

where φ̂ is the unit vector in the direction given by the right-hand-

rule (see margin) and µo = 4π × 10−7 H/m is permeability of free

space.

• We find it convenient to define

B ≡ µoI

2πr
φ̂

to be the “magnetic flux density” of current filament I at a distance r,

and attribute the force

Iv

+  +  +  +  +  +  +  +  +  +
_    _    _    _    _    _    _ 

λ
′
− = λ−/γ

λ
′
+

= γλ+

(a) In the "electron frame" the wire 
appears positively charged and 
repelsa test charge q with 
force F’=qE’

F
′ = qE

′ = q
λ
′

2πǫor
r̂ ≈ qv

µoI

2πr
r̂

r

λ
′ ≈ λ+

v
2

c2
=

Iv

c2
= Ivµoǫo

I

(b) In the lab frame force F~F’ of
moving charge q is attributed to 
magnetic field B produced by 
current I and velocity v of the 
charge in F=qvXB combination. 

F = qv × B

q

q

v B =
µoI

2πr
φ̂

Magnetic field B curls around 
current I in a right handed 
direction designated by azimuthal 
unit vector 

Magnetic field lines close upon 
themselves unlike electric field 
lines which start and stop on 
point charges.

φ̂

Right hand rule: point your
right thumb in the direction
of current flow; your fingers
will point in direction φ̂.

F = qv ×B

on the moving charge q to the magnetic field B produced by current I

(rather than to the electrostatic field of the wire seen by q in its own

reference frame).

While we assumed q to be stationary in the reference frame of the electrons

in the above discussion (for the sake of simplicity), the results obtained above

are found to be valid for all particle velocities v measured in the lab frame.

4We also get the same result using the approximation F = F′ that can be justified when |v| ≪ c, which
is typically true by a large margin for electron speeds in current carrying conducting metals — see HW.
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Also, if there are multiple current filaments In, each generating its own field

Bn, force F on q can be calculated using a superposition method as with

electrostatic fields.

Magnetic field B of the infinite current filament I obtained above can

also be obtained by superposing the magnetic field increments

dB ≡ µoIdl× r̂

4πr2
(Biot-Savart law)

of directed current increments Idl, where r = rr̂ is a position vector extend-

ing from the location of the current increment to the field position where dB

is being specified — this formula, known as Biot-Savart law, is only valid

when used in terms of infinitesimal segments Idl of time-invarying current

loops.

• Magnetic field B of the infinite line current I “derived” above satisfies

a circulation relation

B =
µoI

2πr
φ̂

z

I

r

∮

C

B · dl = µoIC,

with IC = I.

This integral for the circulation of static magnetic field B is found to be

valid (experimentally) for all closed circulation paths C, and is known

as Ampere’s law (for static magnetic fields). In Ampere’s law

– IC stands for the net sum of all filament currents In crossing any

surface S bounded by path C,

◦ flowing in the direction given by the “right-hand-rule”:

5



when the right thumb is pointed in the direction of dl along path

C, the direction of filament current In is specified as the direction

of the fingers of your right hand through surface S bounded by

contour C.

◦ Filament currents not crossing S — i.e., current filaments not

“linked” to path C — should not be included on the right hand

side of Ampere’s law.

• Ampere’s law can also be expressed as
∮

C

H · dl =
∫

S

J · dS,

where

– we have defined

H ≡ µ−1
o B

for the sake of convenience, and

B =
µoI

2πr
φ̂

z

I

r

– J is the volumetric current density measured in A/m2 units (e.g.,

σE in a conducting region as discussed in last lecture) having a

total flux

IC =

∫

S

J · dS

across any surface S bounded by a path C,

◦ with dS pointing across S in the direction compatible with

right-hand-rule as in Stoke’s theorem (recall Lecture 6).
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• Stoke’s theorem re-stated for a vector field H as
∮

C

H · dl =
∫

S

∇×H · dS

implies that the differential form of Ampere’s law should be Laws of

magnetostatics:

∇×H = J

∇ ·B = 0

They also apply “quasi-statically”
over a region of dimension L
when a time-varying field source
J(r, t) has a time-constant τ
much longer than the propagation
time delay L/c of field variations
across the region (c is the speed
of light).

In magneto-quasistatics (MQS)
B(r,t) = µoH(r, t) will be ac-
companied by a slowly varying
electric field E(r, t) (derived from
Faraday’s law discussed in Lec-
ture 14).

∇×H = J.

This differential relation is accompanied by

∇ ·B = 0,

satisfied by static magnetic field of the line current as well as by any

other magnetic field — static as well as non-static, as determined ex-

perimentally and described in more detail later on.

• Current density vector field J invoked above in Ampere’s law expres-

sions, measured nominally in units of A/m2, can also be adjusted to

describe the distributions of surface or line currents in 3D space.

– For example,

J(x, y, z) = Js(y, z)δ(x− xo)

can be regarded as volumetric current density representation

of a surface current density Js(x, y) measured in A/m units

flowing on x = xo surface.

7



– Likewise,

J(x, y, z) = ẑI(z)δ(x− xo)δ(y − yo)

representats a line current I(z) measured in A units flowing in

z-direction along a filament defined by the intersections of x = xo
and y = yo surfaces.

– As a most extreme case,

J(x, y, z, t) = Qvδ(x− xo)δ(y − yo)δ(z − zo)

represents the time-varying current density of a point charge Q

at coordinates (x, y, z) = (xo(t), yo(t), zo(t)) moving with velocity

v = (ẋo(t), ẏo(t), żo(t)).

z

x

y

xo

J = ẑ y rect(y − 0.5) δ(x)

Example 1: Consider a surface current density of

Js = ẑy rect(y − 0.5)A/m

flowing on x = 0 plane (as shown in the margin). What is the total current I
flowing on the same plane measured in A units?

Solution: To go from a surface current density Js in A/m to a total current I in A,
we need to perform an appropriate integration operation on the surface were Js

is defined. For the specified Js in this problem we find that

I =

∫ ∞

y=−∞
Js · ẑdy =

∫ 1

y=0

y dy =
y2

2
|10 =

1

2
A.
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13 Current sheet, solenoid, vector potential and

current loops

In the following examples we will calculate the magnetic fields B = µoH

established by some simple current configurations by using the integral form

of static Ampere’s law.

z

Js = ẑJs

x

y

L

W

B = ŷB(x)
B

B(x) =
µoJs

2

C

As shown in Example 1 mag-
netic field of a current sheet
is independent of distance
|x| from the current sheet.
Also H changes discontinu-
ously across the current sheet
by an amount Js.

Example 1: Consider a uniform surface current density Js = Jsẑ A/m flowing on
x = 0 plane (see figure in the margin) — the current sheet extends infinitely in
y and z directions. Determine B and H.

Solution: Since the current sheet extends infinitely in y and z directions we expect B
to depend only on coordinate x. Also, the field should be the superposition of the
fields of an infinite number of current filaments, which suggests, by right-hand-
rule, B = ŷB(x), where B(x) is an odd function of x. To determine B(x), such
that B(−x) = −B(x), we apply Ampere’s law by computing the circulation of
B around the rectangular path C shown in the figure in the margin. We expand

∮

C

B · dl = µoIC

as
B(x)L+ 0−B(−x)L+ 0 = µoJsL,

from which we obtain

B(x) =
µoJs
2

⇒ B = ŷ
µoJs
2

sgn(x) and H = ŷ
Js
2

sgn(x).

1



Example 2: Consider a slab of thickness W over −W
2

< x < W
2

which extends in-
finitely in y and z directions and conducts a uniform current density of J = ẑJo
A/m2. Determine H if the current density is zero outside the slab.

Solution: Given the geometric similarities between this problem and Example 1, we
postulate that B = ŷB(x), where B(x) is an odd function of x, that is B(−x) =
−B(x). To determine B(x) we apply Ampere’s law by computing the circulation
of B around the rectangular path C shown in the figure in the margin. For
x < W

2
, we expand

∮

C

B · dl = µoIC

as
B(x)L+ 0− B(−x)L+ 0 = µoJo2xL ⇒ B(x) = µoJox.

For x ≥ W
2

, the expansion gives

B(x)L+ 0−B(−x)L+ 0 = µoJoWL ⇒ B(x) = µoJo
W

2
.

Hence, we find that

H =

{

ŷJox, |x| < W
2

ŷJo
W
2

sgn(x), otherwise.

Note that the solution plotted in the margin shows no discontinuity at x = ±W
2

or elsewhere.

Joẑ

z

x

W

2
−

W

2

By(x) µoJoW

2

−
W

2

W

2
x

y

B = ŷB(x)B
L

W

C

The figure in the margin depicts a finite section of an infinite solenoid.

A solenoid can be constructed in practice by winding a long wire into a

2



multi loop coil as depicted. A solenoid with its loop carrying a current I

in φ̂ direction (as shown), produces effectively a surface current density of

Js = INφ̂ A/m, where N is the number density (1/m) of current loops in

the solenoid. In Example 3 we compute the magnetic field of the infinite

solenoid using Ampere’s law.
L

B = ẑB

C

I

Infinite solenoid
with N loops per
unit length carrying
I amps per loop

B = µoIN

Example 3: An infinite solenoid having N loops per unit length is stacked in z-
direction, each loop carrying a current of I A in counter-clockwise direction when
viewed from the top (see margin). Determine H.

Solution: Assuming that B = 0 outside the solenoid, and also B is independent of
z within the solenoid, we find that Ampere’s law indicates for the circulation C
shown in the margin

∮

C

B · dl = µoIC ⇒ LB = µoINL.

This leads to
B = µoIN and H = ẑIN

for the field within the solenoid.

The assumption of zero magnetic flux density B = 0 for the exterior region is justified

because:

(a) if the exterior field is non-zero, then it must be independent of x and y (follows
from Ampere’s law applied to any exterior path C with IC = 0), and

(b) the finite interior flux Ψ = µoINπa2 can only be matched with the flux of
the infinitely extended exterior region when the constant exterior flux density
(because of (a)) is vanishingly small.
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• Static electric fields: Curl-free and are governed by

∇× E = 0, ∇ ·D = ρ where D = ǫE

with ǫ = ǫrǫo.

• Static magnetic fields: Divergence-free and are governed by

∇ ·B = 0, ∇×H = J where B = µH

with µ = µrµo — relative permeabilities µr other than unity (for free

space) will be explained later on.

Mathematically, we can generate a divergence-free vector field B(x, y, z)

as

B = ∇×A

by taking the curl of any vector field A = A(x, y, z) (just like we can generate

a curl-free E by taking the gradient of any scalar field −V (x, y, z)).

Verification: Notice that

∇ · ∇ ×A =
∂

∂x
(∇×A)x +

∂

∂y
(∇×A)y +

∂

∂z
(∇×A)z =

∣

∣

∣

∣

∣

∣

∣

∂
∂x

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

=
∂

∂x
(
∂Az

∂y
− ∂Ay

∂z
)− ∂

∂y
(
∂Az

∂x
− ∂Ax

∂z
) +

∂

∂z
(
∂Ay

∂x
− ∂Ax

∂y
) = 0.

• If B = ∇×A represents a magnetostatic field, then A is called mag-

netostatic potential or vector potential.
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– Vector potential A can be used in magnetostatics in similar ways

to how electrostatic potential V is used in electrostatics.

◦ In electrostatics we can assign V = 0 to any point in space

that is convenient in a given problem.

◦ In magnetostatics we can assign ∇ · A to any scalar that is

convenient in a given problem.

– For example, if we make the assignment1

∇ ·A = 0,

then we find that

∇×B = ∇×∇×A = ∇(∇ ·A)−∇2A = −∇2A.

This is a nice and convenient outcome, because, when combined with

∇×H = J ⇒ ∇×B = µoJ,

it produces

∇2A = −µoJ,

which is the magnetostatic version of Poisson’s equation

∇2V = − ρ

ǫo
.

1With this assignment — known as Coulomb gauge — A acquires the physical meaning of “potential
momentum per unit charge”, just as scalar potential V is “potential enegy per unit charge” (see Konopinski,
Am. J. Phys., 46, 499, 1978).
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– In analogy with solution

V (r) =

∫

ρ(r′)

4πǫo|r− r′|d
3r′

of Poisson’s equation, it has a solution

A(r) =

∫

µoJ(r
′)

4π|r− r′|d
3r′.

Given any static2 current density J(r), the above equation can be used to

obtain the corresponding vector potential A that simultaneously satisfies x

y

z

r− r
′

J(r′)

r
′

r

O

∇ ·A = 0 and ∇×A = B.

Once A is available, obtaining B = ∇×A is then just a matter of taking a

curl.

• Magnetic flux density B of a single current loop I can be calculated

after determining its vector potential as follows:

– For a loop of radius a on z = 0 plane, we can express the corresponding current
density as

J(r′) = Iδ(z′)δ(
√

x′2 + y′2 − a)
(−y′, x′, 0)
√

x′2 + y′2

where the ratio on the right is the unit vector φ̂′.

– Inserting this into the general solution for vector potential, and performing
the integration over z′, we obtain

I

x

y
z

Jφ = Iδ(z)δ(
√
x2 + y2 − a)

a

2Also, in quasi-statics we use J(r′, t) to obtain A(r, t) and B = ∇×A over regions small compared to
λ = c/f , with f the highest frequency in J(r′, t).
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A(r) =
µoI

4π

∫

δ(
√

x′2 + y′2 − a)
(−y′, x′, 0)

√

(x− x′)2 + (y − y′)2 + z2
√

x′2 + y′2
dx′dy′

=
µoI

4π

∫

δ(r′ − a)
(−y′, x′, 0)

√

(x− x′)2 + (y − y′)2 + z2r′
r′dr′dφ′

=
µoI

4π

∫ π

−π

(−a sinφ′, a cosφ′, 0)
√

(x− a cosφ′)2 + (y − a sinφ′)2 + z2
dφ′ ≡ x̂Ax(r) + ŷAy(r).

– Given that Az = 0, it can be shown that B = ∇×A leads to

Bx = −∂Ay

∂z
, By =

∂Ax

∂z
, Bz =

∂Ay

∂x
− ∂Ax

∂y
.

– From the expected azimuthal symmetry of B about the z-axis, it is sufficient
to evaluate these on, say, y = 0 plane — after some algebra, and dropping the
primes, we find, on y = 0 plane,

Bx =
µoaI

4π

∫ π

−π

z cosφ

(x2 + a2 + z2 − 2ax cosφ)3/2
dφ,

By =
µoaI

4π

∫ π

−π

z sinφ

(x2 + a2 + z2 − 2ax cosφ)3/2
dφ,

and

Bz =
µoaI

4π

∫ π

−π

a− x cosφ

(x2 + a2 + z2 − 2ax cosφ)3/2
dφ.

– We note that By = 0 since the By integrand above is odd in φ and the
integration limits are centered about the origin. Hence, the field on y = 0
plane is given as

B = x̂Bx + ẑBz

with Bx and Bz defined above.

– There are no closed form expressions for the Bx and Bz integrals above for an

arbitrary (x, z).

7



◦ However, it can be easily seen that if x = 0 (i.e., along the z-axis), Bx = 0
(as symmetry would dictate) and

Bz =
µoaI

4π

∫ π

−π

a

(a2 + z2)3/2
dφ =

µoIa
2

2(a2 + z2)3/2
.

For |z| ≫ a,

Bz ≈
µoIa

2

2|z|3 ,

which is positive and varies with the inverse third power of distance |z|.

– Also, Bx and Bz integrals can be performed numerically. Figure

in the margin depicts the pattern of B̂ on y = 0 plane for a loop

of radius a = 1 computed using Mathematica.

I
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• Note that circulation
∮

C B · dl around each closed field line (“linking”

the current loop) equals a fixed value of µoI — this dictates that the

average field strength |B| of a current loop is stronger on shorter field

lines closer to the current loop than on longer field lines linking the

loop further out. As a result |B| can be shown to vary as r−3 for large

r.
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• It can be shown that the equations for magnetic field lines of a current

loop on, say, y = 0 plane, can be expressed as

r = L sin2 θ

in terms of radial distance r from the origin and zenith angle θ

measured from the z axis. Clearly, parameter L in this formula is the

8



radial distance of the field line on θ = 90o plane, and the field line

formula is accurate only for r ≫ a. The Earth’s magnetic field had

such a magnetic dipole topology as shown.

• Lorentz force due to the magnetic fields of a pair of current loops — also

known as magnetic dipoles — turns out to be “attractive” when the cur-

rent directions agree (see margin). Bar magnets carrying “equivalent”

current loops of atomic origins interact with one another in exactly the

same way — i.e., as governed by the second term of Lorentz force.

qv × B
qv × B

Loops with parallel
currents attract one
another 

I

I

B ∝ I
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14 Faraday’s law and induced emf

Michael Faraday discovered (in 1831, less than 200 years ago) that a chang-

ing current in a wire loop induces current flows in nearby wires — today

we describe this phenomenon as electromagnetic induction: the current

change in the first loop causes the magnetic field produced by the current to

change, and magnetic field change, in turn, is said to induce1 (i.e., produce)

electric fields which drive the currents in nearby wires. Definitions of E and

B have not changed:

recall that

• E is force per unit sta-
tionary charge

• B gives an additional
force v × B per unit
charge in motion with
velocity v in the mea-
surement frame.

• While static electric fields produced by static charge distributions are

unconditionally curl-free, time-varying electric fields produced by cur-

rent distributions with time-varying components are found to have, in

accordance with Faraday’s observations, non-zero curls specified by

∇× E = −∂B

∂t
Faraday’s law

at all positions r in all reference frames of measurement. Using Stoke’s

theorem, the same constraint can also be expressed in integral form as
∮

C

E · dl = −
∫

S

∂B

∂t
· dS Faraday’s law

for all surfaces S bounded by all closed and directed paths C (with

the direction of C, indicated by an arrow, and direction of vector dS

related by right hand rule).

1Relativistic derivation of static B given in Lecture 12 can be extended to show that Coulomb interactions of charges

in time-varying motions require a description in terms of time-varying B and E — see, e.g., Am. J. Phys.: Tessman, 34,

1048 (1966); Tessman and Finnel, 35, 523 (1967); Kobe, 54, 631 (1986). Thus, the cause of induced E is not really the

time-varying B, but rather the time-varying current J that is also producing the variation in B.
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• The right hand side of the integral form equation above includes the

flux of rate of change of magnetic field B over surface S.

If contour C bounding S is “fixed” (unchanging) in the measurement

frame, then the equation can also be expressed as
∮

C

E · dl = − d

dt

∫

S

B · dS,

where the right hand side is now expressed in terms of the rate of change

of magnetic flux

Ψ ≡
∫

S

B · dS

linking contour C over any surface S bounded by C.

• This modification (the exchange of the order of integration and time

derivative on the right side) would not be permissible if path C were

moving within the measurement frame or being deformed in time —

but in such cases we could still express Faraday’s integral form equation

with −dΨ
dt

on the right side, provided that we also modify the left side

as in
∮

C

(E + v ×B) · dl = − d

dt

∫

S

B · dS

where v denotes the velocity of motion or deformation of path C.

S
C

C(∆t)

Ψ(∆t) =
∫
S
B(r, ∆t) · dS +

∫
δS

B(r, ∆t) · dS.

v∆t

dl

Ψ(0) =
∫
S
B(r, 0) · dS, and

Thus,
Ψ(∆t) − Ψ(0)

∆t
=

δS

Hence in limit ∆t → 0

dΨ

dt
=

∫
S

∂B

∂t
· dS −

∫
C
v × B · dl,

since

∫
δS

B(r, ∆t) ·
dS

∆t
=

∫
C
B(r, ∆t) ·

∆tv × dl

∆t

= −
∫

C
(v ×B) · dl

∫
S

B(r, ∆t) − B(r, 0)

∆t
· dS +

∫
δS

B(r, ∆t) ·
dS

∆t
.

because

B · (v × dl) = dl · (B× v),

both representing the volume of

a parallelepiped formed by the vectors

dl, v, and B.

Note that velocity v does not have to be

constant around contour C.

– This is equivalent to the original equation, since, as shown in the margin,
∫

S

∂B

∂t
· dS =

d

dt

∫

S

B · dS+

∮

C

v ×B · dl

when C is changing continuously with velocities v.
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• A physical interpretation of the final equation

∮

C

(E + v ×B) · dl = − d

dt

∫

S

B · dS
︸ ︷︷ ︸

Integral formFaraday’s Law

E = −dΨ

dt
Faraday’s eqn.

is as follows: Magnetic field lines con-

tributing to Ψ form links

with path C (bounding S)

like the links in an ordinary

chain — hence, Ψ is said to

be the flux linking path C.

– the circulation integral on the left is the “voltage drop” once

around the directed closed path C, representing the work done

per unit charge (by the Lorentz force ∝ E + v × B) taken a

full circle around C, which was denoted by Michael Faraday with a

symbol E and called the emf (short for electro-motive force, which

is a bad name since E is work, and not force, per unit charge) for

the closed path, equaling the decay rate −dΨ
dt

of its linked mag-

netic flux Ψ (due to all sources of magnetic flux density B in the

region).

C

S

v

B

dS

– if/when path C is occupied by a conducting wire loop of some

total conductance G = 1
R, and a resistance R = 1

G, a current

I = GE = E
R

will flow around the loop in the circulation direction2,

2I = Aσ|E+ v×B| for a homogeneous wire loop with a conductivity σ and cross sectional area A. If
the loop length is L, then the loop conductance is G = Aσ

L
and therefore we find that I = GE , as claimed,

since E =
∮

C
(E+ v ×B) · dl = |E+ v ×B|L around a homogeneous loop.

3



driven by the non-zero field E+v×B within the wire accounting

for the non-zero E if/when −dΨ
dt is non-zero.

– in equivalent circuit models of conducting wire loops, Faraday’s

equation, re-written as RI = −dΨ
dt

, is effectively Kirchfoff’s voltage

law (KVL) applied to the loop, with RI on the left denoting the

(sum of all) voltage drops in the direction of C, while −dΨ
dt

on the

right denoting a voltage rise also in the direction of C.

◦ note that the emf E describes both the voltage drop RI and

voltage rise −dΨ
dt

appearing in the circuit model for the con-

ducting wire loop since E = RI and E = −dΨ
dt are both true.

– in modern parlance (since Maxwell) the term emf and its symbol

E are used to refer to and denote sources of energy, e.g., battery

voltages and magnetic flux rate −dΨ
dt that drive currents I = E

R

around closed circuits3.

• If path C is fixed in the measurement frame, then v = 0, and KVL for

such a stationary loop reads as
∮

C

E · dl = −dΨ

dt
;

– otherwise, that is if C is in motion, then

C

S

v

B

dS

3see Saslow, Am. J. Phys., 58, 22 (2021), for a discussion of Maxwell’s interpretation of emf and
electrical energy production in batteries. Also see Scanlon et al., Am. J. Phys., 37, 689 (1969) for a
discussion of E =

∮

C
(E+ v×B) · dl vs E = −dΨ

dt
.
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∮

C

(E + v ×B) · dl = −dΨ

dt

because in that case force per unit charge advected with path C

will be E+v×B according to Lorentz force (note: any additional

velocity vq of a moving charge along C does not contribute because

(vq ×B) · dl = 0 if dl and vq are parallel).

– In either case, if C is a physical conducting path with a total

resistance R, then the emf −dΨ
dt drives a current

C

S

I =
E

R

Think of EMF as the sum of all the "voltage 
rises" around the loop traversed in the 
direction of loop current I that needs to 
match the total "voltage drop" RI around 
the same loop traversed in the same 
direction.

That way, KVL which states that

Sum of voltage rises = Sum of voltage drops,

is fulfilled.
  I =

−dΨ
dt

R

around C in the circulation direction (determined by dl and dS

directions used in accordance with the right-hand-rule).

• The minus sign present in Faraday’s equation, E = −dΨ
dt

, assures that

induced current I produces an induced magnetic field that opposes the

flux change producing the emf — this fact is known as Lenz’s rule

and is in full accord with observations4./newpage

• According to Faraday’s law it appears that magnetic flux variations

−dΨ
dt can produce a non-zero emf independent of how the variations are

produced — the possibilities are:

4Faraday’s law not having the minus sign (or in conflict with Lenz’s rule) would be non-physical, as it
would lead to unbounded growth of induced currents and fields (by aiding rather than opposing the flux
change producing the emf).
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1. Fixed C, but time-varying B,

2. B =const. (in space and time), but time-varying C (rotating or

changing size),

3. An inhomogeneous static B = B(r) in the measurement frame

and C in motion.

• Note that even in the absence of any electric field E in the measurement

frame, a non-zero emf
∮

C

(v ×B) · dl = −dΨ

dt

can exist because of the motion of C through an inhomogeneous mag-

netic field (if the field is homogeneous then dΨ
dt will be zero, implying

zero E), which will of course appear as an emf

C

S

I =
E

R

v

B

∮

C

E′ · dl′ = −dΨ′

dt′

for a second observer moving with C who sees a time varying electric

field E′ = v ×B in her own frame (in addition to the inhomogeneous

but constant magnetic field B of the first frame appearing as a time-

varying magnetic field B′)5.

5See Scanlon et. al., Am. J. Phys., 37, 698 (1969), for a discussion of I ′ = E ′

R
for rigid C with resistance

R observed from different reference frames.
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– Thus, having non-zero electric field circulations
∮

C

E′ · dl′

under time-varying magnetic field conditions appears to be quite

comprehensible after all!

– Magnetic fields B in one frame will morph into electric fields E′ in

other frames because of (near) invariance of Lorentz force between

reference frames.

– Moreover a morphed E′ can even be non-conservative — i.e., non

curl-free — when B is inhomogeneous in space (or time) as we

have just seen.
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x

y

z
Boe

−t/τ
ẑ

C

Example 1: If
B = Boe

−t/τ ẑ,

what is the emf E taken over a stationary circular loop C of radius r = 10 m on
z = 0 plane in counter-clockwise direction (looking down on z = 0 plane)? What
is current I if the loop resistance is R?

Solution: Since counter-clockwise circulation is requested we take dS pointing in ẑ
direction to be consistent with the right hand rule. We then have

Ψ =

∫

S

B · dS = (Boe
−t/τ ẑ) · (π102ẑ) = π102Boe

−t/τ

over the circular surface S. Thus, the emf

E = −dΨ

dt
= π102

Bo

τ
e−t/τ .

The loop current will be I = E
R

in counter-clockwise direction of the computed cir-
culation E , which will be positive and counteract (i.e., strengthen) the weakening
Bz.
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x

y

C

I

2t

2 m/s

2 m

Example 2: Consider the magnetic flux density

B =
µoI

2πr
φ̂

produced by current I flowing along the x axis. What is the emf E of a square
loop C of area 4 m2 moving on xy-plane with edges parallel to x- and y-axes, if
its center is located at y = 2t m as a function of time? Compute the emf E first
as −dΨ

dt
and then as

∮

C
(v×B) · dl to verify that the same values are obtained.

Solution: Given the described geometry, we have

Ψ(t) =

∫

1

−1

dx

∫

2t+1

2t−1

dy
µoI

2πy
=

µoI

π
ln(

2t+ 1

2t− 1
).

Thus, the emf E is

−dΨ

dt
= −µoI

π
(
2t− 1

2t+ 1
)
∂

∂t
(
2t+ 1

2t− 1
) =

µoI

π

4

(2t+ 1)(2t− 1)
=

µoI

π(t2 − 1

4
)
.

Alternatively, since v = 2ŷ m/s, and v ×B = 2µoI
2πr

x̂, we find, using dl = ±x̂dx
and ±ŷdy in turns,

E =

∮

C

(v ×B) · dl = 2
µoI

2π(2t− 1)
2− 2

µoI

2π(2t+ 1)
2 =

µoI

π(t2 − 1

4
)

in consistency with the above result.
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Example 3: A conducting loop of a radius r = 0.1 m (see figure in the margin) is
being rotated about the x axis with frequency of f = ω

2π
= 60 Hz in a region

with a DC magnetic field of B = 10ẑ T. Determine the induced current in the
loop if the loop resistance is 12Ω.

Solution: The maximum value of the magnetic flux linking the loop should be

Ψo = π(0.1)210 = 0.1πWb.

The time-varying flux linking the rotating loop is therefore

Ψ(t) = Ψo cos(ωt) = 0.1π cos(120πt).

The corresponding emf is

E = −dΨ

dt
= (120π)0.1π sin(120πt).

Therefore, the induced current around the loop must be

I =
E
R

=
12π2 sin(120πt)

12
= π2 sin(120πt)A.

10



R1 = 1 Ω
R2

x

z

3t

2 m

~v = 3x̂ m/s

X X X X X X X

X X X XXXX

C

Moving bar in the presence
of a constant magnetic field
produces an emf and electric
fields in the lab frame that
drive a loop current I.

Example 4 illustrates how the
∮

E · dl part of emf
∮

(E+ v×
B) ·dl caused by a motion v =
3x̂ m/s is zero (with non-zero
static Ez components)!!

Example 4: A conducting bar of resistance R1 = 1Ω ohms is moved in the x-direction
with a velocity v = 3x̂ m/s on a pair of perfect conducting (R = 0) stationary
rails 2 m apart terminated with a load resistance R2 at x = 0, all constituting a
rectangular contour C to be taken counterclockwise. A constant magnetic field
of B = 1ŷ T is linked throught contour C such that the flux Ψ = −1 × 2 × 3t
and the emf E = −dΨ/dt = 6 V. Hence, Faraday’s law demands that

∮

C

(E+ v ×B) · dl =
∫ t

b

(E+ v ×B)1 · dl+
∫ b

t

(E)2 · dl = 6

where the two integrals (with b and t referring to bottom and top rail contact
points) correspond to voltage drops across resistors R1 and R2, respectively. But
since

∫ t

b

(v ×B)1 · dl = 3× 1× 2 = 6,

it follows that
∫ t

b

(E)1 · dl+
∫ b

t

(E)2 · dl = 0 ⇒ Ez1 − Ez2 = 0 ⇒ Ez2 = Ez1,

i.e., identical static fields within the moving and stationary bars across the perfect
conducting rails. This may be a surprising claim/result — let’s give two examples
to illustrate how this happens:

1. Let R2 = 2Ω ohms. Then I = 6/3 = 2 A. It follows that voltage drops (E+ v ×B)1 · 2ẑ = 2
V across R1 and (E)2 · (−2ẑ) = 4 V across R2, yielding Ez1 = Ez2 = −2 V/m.

2. Let R2 = ∞ — open ckt load to the moving conductor. Then I = 6/∞ = 0 A. It follows that
(E+ v×B)1 · 2ẑ = 0 V across R1 and (E)2 · (−2ẑ) = 6 V across R2, yielding Ez1 = Ez2 = −3
V/m. Note that in this case the entire emf appears across the open termination (gap in the

loop C and the emf
∫

t

b
(E+ v ×B)1 · dl = 0 across resistor R1).
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Transformers which operate
based on an inductive cou-
pling principle, and electric
dynamos (and motors) which
produce motion induced emfs
(and rotating coils) are stud-
ied in depth in power courses
starting with ECE 330.

Example 5: An infinite solenoid producing a constant −dΨ
dt

= 8 V, passes through
small a loop consisting of a 1 Ω resistor on the right and a 3 Ω resistor on the
left, connected in series — see margin plot. What is the current Ic through this
resistor loop, and what voltages would be measured (by a voltmeter) across the
individual resistors?

Solution: The magnetic flux produced by the solenoid will be confined to its interior

as long as dI/dt (and thus dΨ/dt, as specified) is constant and emf E = −dΨ/dt

is non-time varying (see below). In that case, with constant emf E = −dΨ
dt

= 8

V of the encircling resistor loop in the setup, the loop current Ic is the ratio of

E and the total loop resistance 4 Ω, i.e., Ic =
E
R
= 2 A. Consequently, 1 and 3

Ω resistors will develop 2 and 6 V drops, respectively, in the direction of the 2A

current!! Note that:

• the loop has no battery to support this current flow — it has instead been excited
“inductively”.

• with constant dI/dt, there is zero magnetic field at the locations of the loop wire and
resistors (static E in the solenoid exterior is curl-free!) — thus, the emf of the loop is
not being produced by a time varying local magnetic field; it is rather a consequence of
the time-varing current I(t) in the solenoid (which is also responsible for time-varying
Ψ), with the relation E = −dΨ/dt being “incidental”!

• what a voltmeter measures across the resistors — whether 2 or 6 V — depends on
whether its probes contacting points A and B are placed to the right or to the left of
the solenoid!! That’s because the field E produced by the time-varying current I(t) is
no longer conservative across the system and consequently the line integral of E is path
dependent — we have to be more careful about what we mean by voltage in these new
situations!

12



R1 R2

x

y

C

A

B

In the presence of time vary-
ing magnetic flux, voltage of
a path P , defined as

∫

P
(E +

v × B) · dl, will in general be
path dependent!

A voltmeter reads and dis-
plays the voltage of its
own path constituted by the
placement of its own probe
wires contacting the mea-
surement nodes A and B.

Example 6: Consider a square conducting loop of 1 m2 cross sectional area bordered
by R1 = 2Ω and R2 = 1Ω resistors as shown in the margin. The loop is
linked with a magnetic flux Ψ due to time varying magnetic field described as
B = (12− 3t)ẑ T.

• Hence, Ψ = 12− 3t Wb and the emf E = −dΨ/dt = 3 V.

• Loop current I = 3V/3Ω = 1 A in the circulation direction.

• Voltage drop V1 = 2 V across R1 from point A to point B.

• Voltage drop V2 = −1 V across R2 from point A to point B.

• A voltmeter connected from A (positive lead) to B will read 2 V if and only if its
leads form a path identical to the path defined by R1 (from A to B).

• A voltmeter connected from A (positive lead) to B will read -1 V if and only if
its leads form a path identical to the path defined by R2.

• A voltmeter connected from A (postive lead) to B will read 0.5 V if its leads form

a diagonal path from A to B.

– To see this, notice that Faraday’s law applied for the triangular loop in-
cluding the voltmeter and R2 would have an emf of 1.5 V equaling the sum
of voltmeter reading VR and 1 V drop across resistor R2.
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15 Inductance — coil, solenoid, shorted coax

• Given a circular coil with some resistance R and conducting some cur-

rent I, the magnetic flux Ψ produced by I and “linking” the coil itself

— see figure on the right — can be expressed as

Ψ = LI

using a non-negative proportionality constant

L =
Ψ

I

termed the self -inductance of the coil measured in units of Henries

(H=Wb/A)1.

Ψ

I

I, E = −L
dI

dt

V (t) = L
dI

dt

+                  -

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

z

R

(a) A one turn coil with current I
generates its own linked magnetic
flux LI as shown, where a non-
negative L is the inductance of
the coil.

(b) An equivalent circuit model 
for the coil expressed in terms of 
lumped resistor R and inductor L 
forming a loop carrying the loop
current I

The emf RI=-LdI/dt of the coil 
appears as a voltage rise across 
the inductor in the ckt model, 
as well as a voltage drop across 
the resistor, both taken in the 
direction of current I. Voltage 
drop V across the inductor in the 
current direction is LdI/dt, as
we learned in our circuit courses.  

• Given Ψ = LI, and its time derivative

dΨ

dt
= L

dI

dt
,

it follows that Faraday’s equation applied to the coil is

E = −dΨ

dt
= −L

dI

dt
,

indicating a self -emf −LdI
dt

representing a voltage rise around the

coil in the direction of current flow I = E/R — see an equivalent circuit

model for the coil derived from these relations shown on the right.

1As opposed to a mutual inductance M , also measured in Henries, relating the flux linking a coil C to
a current Io flowing in a second coil Co.
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– The current I and self-emf E are then the solutions of differential

equations

RI = −L
dI

dt
and RE = −L

dE
dt

,

respectively, and exhibit an exponential decay with a time constant

of τ = L/R (just like in LR circuits seen in ckt courses, and in

analogy with time constant τ = RC that governs voltage decays

in RC circuits).

◦ Note that τ = L/R implies that when the inducance L is

large, so is time constant τ , and current decay in the induc-

tor is slow — inductors with large L will behave like slowly

time-varying current sources (just like capacitors behaving like

time-varying voltage sources) as they relase their stored energy

(while maintaining a voltage rise −LdI
dt determined by other

elements in their connected circuits).

• For an inductor consisting of n-loops, the emf E measured across all

n-loops is naturally (since n emf’s add up)

Ψ

I

I, E = −L
dI

dt

V (t) = L
dI

dt

+                  -
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(a) A one turn coil with current I
generates its own linked magnetic
flux LI as shown, where a non-
negative L is the inductance of
the coil.

(b) An equivalent circuit model 
for the coil expressed in terms of 
lumped resistor R and inductor L 
forming a loop carrying the loop
current I

The emf RI=-LdI/dt of the coil 
appears as a voltage rise across 
the inductor in the ckt model, 
as well as a voltage drop across 
the resistor, both taken in the 
direction of current I. Voltage 
drop V across the inductor in the 
current direction is LdI/dt, as
we learned in our circuit courses.  

E = n(− d

dt
Ψ) = − d

dt
nΨ ≡ −L

dI

dt

implying an inductance

L ≡ nΨ

I
.
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Example 1: An n-turn coil has a resistance R = 1Ω and inductance of 1µH. If it is
conducting 3 A current at t = 0, determine I(t) for t > 0.

Solution: Current flow in the resistive n-turn coil will be driven by self-emf E = −LdI

dt

matching a voltage drop RI . Hence

RI = −L
dI

dt
↔ dI

dt
+

R

L
I = 0 ⇒ I(t) = I(0)e−

R

L
t = 3e−10

6
t A.

• As illustrated by above example, current I around a resistive loop C

will in general be obtained by solving a differential equation constructed

using the emf of the loop.

– The algebraic I = E
R

solution used last lecture assumed that self-

emf −LdI
dt

produced by the induced current I(t) is small compared

to an externally produced emf.

We continue with typical inductance calculations.
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Inductance of long solenoid: Consider a long solenoid with length ℓ,

cross-sectional area A, and a density of N loops per unit length as examined

in Example 3 of Lecture 12 (see figure in the margin). As determined in

Example 3, the magnetic flux density in the interior of the solenoid is

ℓ

B = ẑB

I

B = µoIN

B = µoINẑ

while n = Nℓ is the number of turns of the solenoid. Thus, the inductance

of the solenoid with n = Nℓ turns is

L =
nΨ

I
=

Nℓ(µoIN)A

I
= N2µoAℓ.

• As we know from our circuit courses, an inductor L such as the solenoid

coil considered above can be used to store energy. An inductor con-

nected to an external circuit with a quasi-static current I develops a

voltage drop V = LdI
dt across its terminals2 and absorbs power at an

instantaneous rate

P = V I = L
dI

dt
I =

d

dt
(
1

2
LI2),

implying a stored energy of

W =
1

2
LI2 =

1

2
N2µoAℓI

2 =
|Bz|2
2µo

Aℓ =
1

2
µo|Hz|2Aℓ

in an inductor in a conducting state.

2Assuming a physical size much smaller than a wavelength λ = c/f for the highest frequency in I(t).
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• Notice that the stored energy of the solenoid is

1

2
µo|Hz|2 =

1

2
µoH ·H

times its volume Aℓ occupied by the field H inside the solenoid. That

suggests that

w =
1

2
µoH ·H

can be interpreted as stored magnetostatic energy per unit volume in

general.

– Also both inductance L and stored energies W and w would have

µ replacing µo in material media with permeabilities

µ = (1 + χm)µo

and magnetic susceptibilities χm, in analogy with the concepts of

permittivity ǫ = (1 + χe)ǫo and electrical susceptibility χe.

◦ Permeability and magnetic susceptibility notions will be ex-

amined in a future lecture.
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Inductance of shorted coax: Consider a coaxial cable of some length ℓ

which is “shorted” at one end (with a wire connecting the inner and outer

conductors), so that a steady current I can flow on the inner conductor of

radius a to return on the interior surface of the outer conductor at radius

b after having circulated through the short. We will next determine the

inductance L of such an inductor after first computing the magnetic flux

density Bφ that will be produced by the inner conductor current I. In Bφ

calculation we will assume ℓ ≫ b so that an “infinite coax” approximation

can be invoked.

ℓ

ab

r

z

Short

B

I

I

Shorted coax circulates
a current I linking a
magnetic flux 
confined to a region
bounded by the outer
conductor of the coax.

Ψ• Expanding the integral form of Ampere’s law
∮

C

B · dl = µoIC

as

Bφ2πr = µoI

over a circular integration contour C of a radius r > a, we find that

the magnetic flux density in the interior of the coax cable is

Bφ =
µoI

2πr
.

• Therefore, the magnetic flux linked by the closed current path I (see

figure in the margin) is

Ψ =

∫

S

B · dS = ℓ
µo

2π
I

∫ b

a

dr

r
= ℓ

µo

2π
ln

b

a
I.
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Clearly, we have a linear relation Ψ = LI, with

L ≡ ln b
a

2π
ℓµo,

which is the inductance of a shorted coax of a finite length ℓ.

– The inductance of the coax per unit length is

L =
ln b

a

2π
µo,

which should be contrasted with capacitance per unit length

C =
2π

ln b
a

ǫo

of the same coax configuration.

Notice how L and C are proportional to ǫo and µo, respectively,

having proportionality constants which are inverses of one another.
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Inductance of shorted parallel plates: If a pair of parallel plates of

areas A = Wℓ and separation d were shorted at one end, we would obtain

effectively an inductor with a per length inductance

L =
d

W
µo

that accompanies per length capacitance

C =
W

d
ǫo

of the same parallel plate configuration. This follows from a generalization of

our finding above that the proportionality constants of L and C are arithmetic

inverses of one another.
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16 Charge conservation, continuity eqn, displace-

ment current, Maxwell’s equations

• Total electric charge is conserved in nature in the following sense:

if a process generates (or eliminates) a positive charge, it always does

so as accompanied by a negative charge of equal magnitude.

– Example: Photoionization of atoms and molecules can generate

free positive ions and free negative electrons in pairs (see margin

figure). Photoionization is a process that converts bound charge

carriers into free charge carriers.

– Example: Recombination when a positive ion and an electron

get together to produce a charge neutral atom or molecule.

– Example: Annihilation of an electron (negative charge) by a

positron (positive charge of equal magnitude) and the reverse pro-

cess of pair creation.

QV = 0

V

S

t = 0

(a) At t=0 volume V contains
a neutral atom but no net charge

QV = 0

V

S

t = t1

(b) At t=t1 volume V contains
a proton and a free electron after
the ionization of the hydrogen 
atom.  There is still no net charge
in the volume.

H

-e

e

QV = e

V

S

t = t2

(c) At t=t2 volume V now contains
only a proton after the exit of 
free electron through surface S.
Now V contains a net charge e.

-e

e
As a consequence, if the total electric charge QV contained in any finite

volume V changes as a function of time, this change must be attributed

to a net transport of charge, i.e., electric current, across the bounding

surface S of volume V as detailed below.
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• Consider two distinct surfaces S1 and S2 bounded by the same closed

loop C (as shown in the margin) such that a volume V is contained

between the two surfaces.

– Let

I1 =

∫

S1

J · dS1

and

I2 =

∫

S2

J · dS2

denote currents flowing through surfaces S1 and S2, respectively.

V

S1

S2

C

dS1

dS2

dS

– Note that current I1 through surface S1 enters volume V , while

current I2 through surface S2 exits volume V (with the directions

assigned to dS1 and dS2).

– If I1 6= I2, then current out is not matched by the current in,

and as a result, the net charge QV contained in volume V increases

with time at a rate I1 − I2 provided that charge is conserved in

the sense discussed above. In that case, we have

dQV

dt
= I1 − I2.

This relationship can be expressed as

d

dt

∫

V

ρdV =

∫

S1

J · dS1 −
∫

S2

J · dS2
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since, in terms of charge density ρ, charge in volume V is

QV =

∫

V

ρdV.

The expression can also be cast as
∫

V

∂ρ

∂t
dV = −

∮

S

J · dS

where S is the union of surfaces S1 and S2 enclosing V , and dS

is an outward area element of S (see margin). This relationship is

known as continuity equation. Its differential form is Continuity

equation
∂ρ

∂t
= −∇ · J,

which follows from the integral form above as a consequence of

divergence theorem (recall Lecture 4).

Continuity equation is a mathematical re-statement of the

principle of conservation of charge.
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• While Faraday’s law

∇× E = −∂B

∂t
indicates that time-varying B induces time-varying electric fields E,

Ampere’s law, written as

∇×H = J,

makes no such claim about a time-varying E inducing a time-varying

B = µoH.

– This “asymmetry” was noted by James Clerk Maxwell who realized

that the form of Ampere’s law given above must be “incomplete”

under time-varying situations. Revised

Ampere’s

law (with

“displacement

current”)

– Noting the inconsistency of Ampere’s law with the continuity equa-

tion under time varying conditions, he re-wrote the Ampere’s law

as

∇×H = J +
∂D

∂t
in 1861 by adding the term on the right which is now called the

“displacement current”.

◦ Maxwell postulated that the displacement current term is needed

in Ampere’s law because only then the divergence of Ampere’s

law avoids falling into conflict with charge conservation (under

time varying conditions).
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Verification of Maxwell’s claim: Since ∇ × H is divergence-free

(just like the curl of vector potential A, namely B), it follows that

the divergence of Maxwell’s modified Ampere’s law — often called

Ampere-Maxwell equation — is

∇ · (∇×H) = ∇ · J +
∂

∂t
∇ ·D = 0.

– In the absence of the second term due to displacement current,

this results would be inconsistent with the continuity equation

∂ρ

∂t
+∇ · J = 0,

unless ∂ρ
∂t = 0 (the static case).

– By, contrast, including the second term, the result above is rec-

ognized as the continuity equation per se, since by Gauss’s law

— assuming that it applies with no change under time varying

situations —
∂

∂t
∇ ·D =

∂ρ

∂t
.

• The modified Ampere’s law

∇×H = J +
∂D

∂t

postulated by Maxwell under the assumption that Gauss’s law is also

valid under time-varying conditions, leads to some specific predictions

about how time-varying fields should behave.

5



• These predictions — concerning the propagation of electromagnetic

waves — were validated experimentally by Heinrich Hertz around 1888.

– The experiments confirmed that time-varying electric and mag-

netic fields obey collectively (and at microscopic scales) the differ-

ential relations Maxwell’s

equations
∇ ·D = ρ Gauss’s law

∇ ·B = 0

∇×E = −∂B

∂t
Faraday’s law

∇×H = J +
∂D

∂t
, Ampere’s law

where

D = ǫoE and B = µoH

provided that ρ and J describe the distributions of all charges and

currents associated with free and bound charge carriers1. Alter-

natively, the same differential relations — known collectively as

Maxwell’s equations — are also valid for macroscopic fields, pro-

vided that ρ and J describe only the free charge contributions

and

D = ǫE and B = µH

1In the classical domain, down to scales of about ℏ/mc, the Compton wavelength — at shorter scales
quantized and generalized versions (known as electroweak theory) are needed.
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in terms of suitably defined permittivities and permeabilities ǫ and

µ — see next Lecture.

• The unnamed Maxwell equation

∇ ·B = 0

can be viewed to be a consequence of Faraday’s law

∇× E = −∂B

∂t

and the fact that magnetic monopoles have never been observed.

Explanation: Since ∇ × E is divergence-free, taking the divergence

of Faraday’s law, we get

∇ · (∇×E) = − ∂

∂t
∇ ·B = 0.

This constraint requires ∇ · B to an invariant scalar at all locations

in space. As a consequence, if ∇ · B = 0 at some instant in time, it

should remain so at all times. Given that ∇ · B = 0 for static fields,

this relationship must also continue to be valid when B starts changing

with time.

The fact that ∇·B remains fixed at a zero value everywhere, whereas ∇ ·D
varies like ρ, is in fact a consequence of the fact that there appears to be no

magnetic charges (monopoles) in nature. Had there been “point charges for
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magnetic fields” in nature, ∇ · B would have equaled the density of those

charges, and magnetic field lines would have started and stopped on them

(rather than looping into themselves). But no one has observed of any evi-

n̂
D

+

D
−

w

Constraint
∮

C

H · dl =
∫

S

(J+
∂D

∂t
) · dS

around the dotted path yields

n̂× (H+ −H−) = Js

in w → 0 limit.

Constraint
∮

S

B · dS = 0

applied over the dotted volume (seen in
profile) yields

B+

n
− B−

n
= 0

in w → 0 limit.

dence for such magnetic charges anywhere, even going back to the very early

times in the history of the universe (accessible by making observations of

very far astronomical objects). So, ∇ ·B = 0.

• Finally, the full set of Maxwell’s boundary condition equations concern-

ing any interface with a normal unit vector n̂ are

n̂ · (D+ −D−) = ρs

n̂ · (B+ −B−) = 0

n̂× (E+ − E−) = 0

n̂× (H+ −H−) = Js

– We had already seen how the first and third boundary condition

equations arise.

– The second boundary condition equation concerning the normal

component of B is another consequence of the absence of magnetic

charges (see margin).

– A detailed justification of the last boundary condition concerning

tangential H will be given explicitly during Lecture 19. This equa-

tion allows a discontinuous change in the tangential component of

H if the interface contains a non-zero surface current Js.
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17 Magnetization current, Maxwell’s equations

in material media

• Consider the microscopic-form Maxwell’s equations

∇ ·D = ρ Gauss’s law

∇ ·B = 0

∇×E = −∂B

∂t
Faraday’s law

∇×H = J +
∂D

∂t
, Ampere’s law

where

D = ǫoE

B = µoH.

• Direct applications of these equations in material media containing a

colossal number of bound charges is impractical.

• Macroscopic-form Maxwell’s equations suitable for material media are

obtained by first expressing ρ and J above as the macroscopic quantities

ρ = ρf −∇ ·P

and

J = Jf +
∂P

∂t
+∇×M

where

1



– subscripts f indicate charge and current density contributions due

to free charge carriers,

– the term −∇ ·P denotes the bound charge density,

– the term ∂P
∂t denotes the polarization current density due to

oscillating dipoles (already discussed in Lecture 11), and

– ∇×M is a “magnetization current density” also due to bound

charges, an effect that we will discuss and clarify later in this

section.

Using these expressions in Gauss’s and Ampere’s laws

∇ · ǫoE = ρ Gauss’s law

∇× µ−1
o B = J +

∂ǫoE

∂t
, Ampere’s law

we obtain

∇ · (ǫoE +P) = ρf Gauss’s law

∇× (µ−1
o B−M) = Jf +

∂

∂t
(ǫoE +P), Ampere’s law.

Now, re-define D and H as

D = ǫeE +P = ǫE

and

H = µ−1
o B−M = µ−1B,

2



respectively, and drop the subscripts f which will no longer be needed.

Using these new definitions, the full set of Maxwell’s equations now

read as (the same form as before)

∇ ·D = ρ Gauss’s law

∇ ·B = 0

∇×E = −∂B

∂t
Faraday’s law

∇×H = J +
∂D

∂t
, Ampere’s law

with

D = ǫE

B = µH,

where ρ and J are understood to be due to free charge carriers only.

• We had already seen many aspects of the above procedure for obtaining

the macroscopic form field equations earlier on (e.g., in Lectures 8 and

11).

– In particular we were already familiar with the revised definition

of D = ǫE along with the concept of medium permittivity ǫ.

– The new feature above that requires further discussions is the rela-

tion B = µH along with the concept of medium permeability

µ. The details of this relation are connected to the concept of

“magnetization current” which we discuss next.
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• Just like “free charge” density and currents, “bound charge” densities

and currents also have to satisfy the continuity equation

∂ρ

∂t
+∇ · J = 0.

– This equation is automatically satisfied if we substitute

ρ = ρb = −∇ ·P

and

J = Jb =
∂P

∂t
in it.

Verification:

∂ρb
∂t

+∇ · Jb =
∂

∂t
(−∇ ·P) +∇ · ∂P

∂t
= 0

since the order of time derivative and divergence can be exchanged

on the right.

– But the same equation is also satisfied if we take

Jb =
∂P

∂t
+∇×M

for any vector field M simply because vector ∇×M is divergence

free.
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Consequently, it is not sufficient to represent bound currents in mate-

rial media as simply ∂P
∂t , if bound carriers can also conduct divergence-

free currents due to closed-loop orbits.

– In fact, electrons “orbiting” atomic nuclei certainly produce such

divergence-free current loops at microscopic scales — we account

for such currents at macroscopic scales by including a magnetiza-

tion current term ∇×M in Jb.

– Also, bound charge motions within nucleons1 — proton and neu-

trons — produce magnetization currents ∇×M.

– Even bare electrons can produce magnetization currents ∇ × M

because of their intrinsic spin2.

Once ∇×M is included in Jb, it follows from Ampere’s law that

H = µ−1
o B−M

where M is referred to as magnetization field.

1Physical models of nucleons involve bound charge carriers known as quarks which cannot be observed
in a free state.

2All elementary charge carriers carry an intrinsic magnetization proportional to charge-to-mass ratio
q

m
and a “spin angular momentum” having quantized values of ±~

2
N.m.s in any measurement direction.

Using Heisenberg’s uncertainty principle, ∆p∆r ≥ ~

2
, we can interpret the spin angular momentum of

an elementary particle as the lower bound of ∆p∆r, the product of quantum uncertainties in particle
momentum and position. There is no classical interpretation of spin angular momentum for point particles.
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• To get a physical picture about magnetization M and the physical

origin of H = µ−1
o B − M consider a solenoid wound around some

cylindrical shaped material as shown in the margin. We know that

with a solenoid current Io, we would have Ho = NIoẑ in the interior of

a solenoid with N loops per unit legth aligned with the z-axis, and a

corresponding magnetic flux density Bo = µoNIoẑ when the solenoid

core is free space. This will be modified to some B = Bo + µoM when

a material core is introduced into the same space, where µoM stands

for the (additional) macroscopic (space averaged) magnetic flux den-

sity produced by microscopic current loops localized within the atoms

constituting the core.

Bo = µoIoN

Io

inside the solenoid
but outside the cylindrical
magnetic core

Within the core, stacks of
atomic loop currents are 
effective solenoids giving 
rise to an additional
magnetic flux density of
an average magnitude  

µoAlIlNl = µoM

that adds to Bo

– If there are Na =
1

∆x∆y∆z atoms per unit volume in the core, with

∆x separations in x direction and so forth, loop currents Il of a

stack of atoms with ∆z separations in z would produce an effective

solenoid an internal z-directed magnetic flux density of µo
Il
∆z ẑ and

zero exterior field.

– Since one such atomic stack solenoid with a loop area of Al will be

found for every ∆x∆y cross-sectional area of the core, a macro-

scopic average magnetic flux density produced by these atomic

solenoids would be calculated as (this calculation is similar to

finding the average polarization field in a dielectric as discussed in

Lecture 8) Al

∆x∆y × µo
Il
∆z ẑ = µoNaIlAlẑ ≡ µoM, with M = Nam,

m ≡ IlAlẑ.
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◦ Here m is the magnetic dipole moment of each current loop

(analogous to electric dipole p = qr), M is the magnetization

field vector (analogous to P = Nap), which is a simple product

of m per magnetized atom and the atomic number density Na

in the core.

– Superposing the magnetic flux densities of µoM andBo, we obtain

B = Bo+µoM for the core region, or for any region of space having

a non-zero magnetization M, which then leads to the general result

H = µ−1
o B−M, which is further discussed below.

– Notice, whether the flux density B = Bo+µoM inside the material

medium is stronger or weaker in magnitude than Bo depends on

the direction of M, which, in turn, depends on the algebraic sign

of microscopic loop currents Il introduced above.

◦ Negative Il is found in diamagnetic materials where |B| <
|Bo|, while positive Il in paramagnetic and ferromagnetic

materials where |B| > |Bo|, as discussed below.

– Also, the expression H = µ−1
o B − M leads to H = µ−1

o B = Ho

in the exterior region where M = 0, indicating that while fields B

and Boif the interior and exterior are different, H is the same in

both regions (analogous with D in dielectrics).
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• Lab measurements — e.g., inductances L measured for coils wound

around magnetic materials3 — show that for a large class of materials

M ≡ µ−1
o B−H

varies linearly with H (which is of course possible only when B also

varies linearly with H).

– In that case we write

M = χmH,

where χm is a dimensionless parameter called magnetic suscep-

tibility, and obtain a relation Magnetic

susceptibility

and

permeability

B = µo(1 + χm)H = µH,

where

µ = µo(1 + χm)

is called the permeability of the medium.

3Recall from Lecture 15 that L ∝ µ when inductors are wound around materials with permeability µ.
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• For a large class of materials with M ∝ H, it is observed that |χm| ≪ 1.

In that case, the material is called

– Diamagnetic if χm < 0:

◦ Diamagnetism occurs when an applied magnetic field induces

electron orbital angular momentum in a collection of atoms

having no net permanent magnetization M — in such materi-

als electron clouds around atomic nuclei spin up in accordance

with Lenz’s to generate magnetic fields opposing the applied

magnetic field so as to keep B = µH smaller than µoH. This

happens in materials that we ordinarily think of being non-

magnetic (wood, glass, water, etc.). Diamagnetic materials

are in fact very weakly repulsed by permanent magnets since

µ ≈ µo in all diamagnetic materials.

– Paramagnetic if χm > 0:

◦ Paramagnetism occurs in materials composed of atoms hav-

ing permanent magnetic dipole moments due to electron spin

angular momentum — magnetic dipoles of such atoms co-

align with the applied magnetic field due to v × B related

torques, leading to M pointing in the applied B direction4.

This happens for atoms with unfilled inner electron shells, be-

cause in filled shells electron spins are opposite (due to Pauli

4In these materials the described paramagnetism overcomes the diamagnetic tendency of the material
caused by the orbital angular momenta of its electrons around atomic nuclei.
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exclusion principle) and cancel one another. Unfilled outer

shells do not usually give rise to paramagnetism because in-

teractions between adjacent atoms in that case give rise to

opposite spins of their outer shell electrons. Paramagnetic

materials are very weakly attracted to permanent magnets

(e.g., aluminum, lithium, tungsten).

• In a small class of materials known as ferromagnets — iron, nickel,

and cobalt, which are metals with atoms having unfilled inner elec-

tron shells, and their various alloys — M can arise spontaneously (be-

cause permanent magnetic dipole moments of nearby atoms produced

by electron spins become co-aligned as a consequence of conduction

electrons moving through the lattice) and turns out to be a non-linear

function of present and past values of H, in which case experimentally

obtained relations, denoted as

B = B(H),

need to be used in Maxwell’s equations. It is even possible to have

non-zero B in such materials with zero H — permanent magnets have

that property.

• First principles modeling of χm or the B = B(H) relation requires

quantum mechanics (classical models turn out to be not accurate enough).

Overall, the models give rise to frequency dependent results, involving

loss as well as resonance features (also exhibited in Lorentz-Drude mod-
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els of χe examined in Lecture 11) relevant for applications including

various magnetic imaging techniques.
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18 Wave equation and plane TEM waves in source-

free media

With this lecture we start our study of the full set of Maxwell’s equations

shown in the margin by first restricting our attention to homogeneous and

non-conducting media with constant ǫ and µ and zero σ.

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B

∂t

∇×H = J +
∂D

∂t
.

• Our first objective is to show that non-trivial (i.e., non-zero) time-

varying field solutions of these equations can be obtained even in the

absence of ρ and J.

– We already know static ρ and J to be the source of static electric

and magnetic fields.

– We will come to understand that time varying ρ and J, which

necessarily obey the continuity equation

∂ρ

∂t
+∇ · J = 0,

constitute the source of time-varying electromagnetic fields.

Despite these intimate connections between the sources ρ and J and

the fields

D = ǫE and B = µH,

non-trivial field solutions can exist in source-free media as we will see

shortly.
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• Such field solutions in fact represent electromagnetic waves, a familiar

example of which is light.

• Another example is radiowaves that we use when we communicate

using wireless devices such as radios, cell-phones, WiFi, etc.

• Different types of electromagnetic waves are distinguished by their os-

cillation frequencies, and include

– radiowaves,

– microwaves,

– infrared,

– light,

– ultraviolet,

– X-rays, and gamma rays,

going across the electromagnetic spectrum from low to high fre-

quencies.

We are well aware that these types of electromagnetic waves can travel

across empty regions of space — e.g., from sun to Earth — transporting

energy and heat as well as momentum.

– Next, we will discover their general properties by examining Maxwell’s

equations under the restriction ρ = J = 0.
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• In source-free and homogeneous regions where ρ = J = 0 and ǫ and

µ are constant, we can simplify Maxwell’s equations as shown in the

margin.

∇ ·E = 0

∇ ·H = 0

∇×E = −µ
∂H

∂t

∇×H = ǫ
∂E

∂t
.

– If there are non-trivial solutions of these equations, namely E(r, t) 6=
0 and H(r, t) 6= 0, they evidently need to be divergence-free.

– They also have to be “curly” according to the last two equations:

Faraday’s and Ampere’s laws.

• Next we will make use of vector identity

∇× (∇×E) = ∇(∇ ·E)−∇2E

which should be familiar from an earlier homework problem.

– Since the electric field E is divergence-free in the absence of sources,

this identity simplifies as

∇× (∇× E) = −∇2E

where in the right side ∇2E is the Laplacian of E.

– Using this result we can express the curl of Faraday’s law as

∇× [∇× E = −µ
∂H

∂t
] ⇒ −∇2E = −µ

∂

∂t
∇×H,

which combines with the Ampere’s law to produce

∇2E = µǫ
∂2E

∂t2
,
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which can be written explicitly as 3D vector

wave

equation
∂2E

∂x2
+

∂2E

∂y2
+

∂2E

∂z2
= µǫ

∂2E

∂t2
.

Recall that our objective is to see whether a non-trivial time-varying solution

of Maxwell’s equations can exist in source-free media.

Our objective at this stage is not finding a general solution; it is instead

identifying a simple example of a non-trivial time-varying E(r, t), if we can.

For example, can a field solution

E(r, t) = x̂Ex(z, t)

that only depends on z and t and “polarized” in x-direction exist? If it can

exist, what would be the properties of this x-polarized solution?

• To find out, we note that with E = x̂Ex(z, t), the above “wave equation”

is reduced to 1D scalar

wave

equation

∂2Ex

∂z2
= µǫ

∂2Ex

∂t2
,

an equation that is known as a 1D scalar wave equation, as opposed

to the 3D vector wave equation above.

– Now, by substitution, we can easily show that

Ex = cos(ω(t−√
µǫz)),
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satisfies the 1D wave equation and represents an x-polarized time-

periodic field solution with an oscillation frequency ω.

– 1D wave equation can also be satisfied by

Ex = cos(ω(t +
√
µǫz)).

Let us jointly refer to these solutions as

Ex = cos(ω(t∓ z

v
)),

where

v ≡ 1√
µǫ

has the dimensions of m/s (i.e., velocity) and the algebraic signs ∓
distinguish between the “travel directions” of these possible “wave solu-

tions” as elaborated later on.

• Let us next find out the magnetic field intensity H that accompanies

the x-polarized electric field wave solution

E = x̂ cos(ω(t∓ z

v
)).

– Since the curl of E is

∇×E =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex 0 0

∣

∣

∣

∣

∣

∣

∣

= ŷ
∂Ex

∂z
= ±ŷ sin(ω(t∓ z

v
))
ω

v
,
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Faraday’s law

∇×E = −µ
∂H

∂t
requires that H should satisfy

−µ
∂H

∂t
= ±ŷ sin(ω(t∓ z

v
))
ω

v
.

Finding the time-dependent anti-derivative (and remembering v =

1/
√
µǫ), we obtain

H = ±ŷ

√

ǫ

µ
cos(ω(t∓ z

v
)).

• The results above, namely our x-polarized non-trivial field solutions of

Maxwell’s equations in source-free homogeneous space, can be repre-

sented more compactly as

x

y

z

H

E = x̂f(t −
z

v
)

E × H

x

yz

H
E = x̂f(t +

z

v
)

E × HE = x̂f(t∓ z

v
) and H = ±ŷ

f(t∓ z
v
)

η
,

where

f(t) ≡ cos(ωt) = Re{ejωt} =
ejωt + e−jωt

2
is the field waveform,

η ≡
√

µ

ǫ

is known as intrinsic impedance (and measured in units of ohms).

6



• Since Maxwell’s equations with constant µ and ǫ are linear and time-

invariant (LTI), the field solutions above can be further generalized by

using their weighted and time-shifted superpositions such as

f(t) =
∑

n

An cos(ωnt + θn)

and

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

having frequency dependent weighting factors An and F (ω). And since

according to Fourier analysis all practical signals f(t) can be synthe-

sized in these forms, it follows that the field solutions above are valid

with arbitrary waveforms f(t). d’Alembert

wave

solutionsSolutions

E, H ∝ f(t∓ z

v
)

of the 1D scalar wave equation with arbitrary f(t) are known as d’Alembert

wave solutions.

• d’Alembert solution

E, H ∝ f(t− z

v
)

describes electromagnetic waves traveling in +z direction, whereas so-

lution

E, H ∝ f(t +
z

v
)

7



describes electromagnetic waves traveling in −z direction (see margin).

In each case the travel speed is

v =
1√
µǫ

−−−−−−→
free space

1√
µoǫo

≡ c ≈ 3× 108 m/s.

• H solution can be obtained from E by dividing it with η and rotating

it by 90◦ so that vector E×H points in direction the waves travel.

• E can be obtained from H by multiplying it with η and rotating it by

90◦ so that vector E × H — called Poynting vector — once again

points in direction the waves travel.

t

Ex(t, z) = △(t −
z

c
)Ex(t, 0) = △(t)

z

Ex(t, z) = △(t −
z

c
)

Ex(0, z) = △(−
z

c
)

z

c

Time plots at z=0 and z>0:

Position plots at t=0 and t>0

ct

Note: ct=300 m in 1 microsec
      
      ct=300 km in 1 millisec

τ = 1

∆z = cτ

Traveling wave in +z direction with speed v=c:

1

t

u(t)

0

1

t

u(t − to)

0 to

Fundamental signal waveforms: REVIEW

1

t

rect(
t

τ
)

0

1

t0 to
τ

2
−

τ

2
−

τ

2

τ

2

rect(
t − to

τ
)

1

t

△(
t

τ
)

0

1

t0 to
τ

2
−

τ

2
−

τ

2

τ

2

△(
t − to

τ
)

1

t

t[u(t) − u(t − to)]

0 to

Unit-step

Rectangle
pulse

Triangle
pulse

Ramp
pulse

In each case the intrinsic impedance is

η =

√

µ

ǫ

−−−−−−→
free space

√

µo

ǫo
≡ ηo ≈ 120π ohms.

Transformation rules above also hold for y-polarized wave solutions

E = ŷf(t∓ z

v
) and H = ∓x̂

f(t∓ z
v)

η
.

Question: What about z-polarized waves

E = ẑf(t∓ z

v
),

can they exist?

Answer: No, z-polarized waves ẑf(t∓ z
v
) traveling in ±z direction cannot

exist because they would violate the divergence-free condition ∇·E = 0.
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19 d’Alembert wave solutions, radiation from

current sheets

• d’Alembert wave solutions of Maxwell’s equations for homogeneous and

source-free regions obtained in the last lecture having the forms

E, H ∝ f(t∓ z

v
)

are classified as uniform plane-TEM waves.

– TEM stands for Transverse ElectroMagnetic, and the reason for

this designation is:

x

y

z

H

E = x̂f(t −
z

v
)

E × H

x

yz

H
E = x̂f(t +

z

v
)

E × H

viable solutions satisfying ∇ · E = ∇ ·H = 0 conditions have their E

and H vectors transverse to the direction of propagation which always

coincides with the direction of vector S ≡ E×H known as Poynting

vector — more on this later on.

Poynting vector

E×H

– d’Alembert wave solutions such as

E = x̂f(t− z

v
) and H = ŷ

f(t− z
v)

η

are also designated as uniform plane waves because:

these wave-fields are constant (have the same vector value) at planes

of constant phase, e.g., on planes defined by

t− z

v
= const.,

1



which are planes transverse to the propagation direction (direction of

vector E×H).

Not all waves solutions of Maxwell’s equations are uniform plane — for in-

stance non-uniform TEM waves with spherical surfaces of constant phase are

ubiquitous, but they will be examined later on (in ECE 450, mainly).

After the next set of examples we will examine how uniform plane waves

can be radiated by infinite planes of surface currents. By contrast, spherical

waves are produced by compact antennas having finite dimensions.

Example 1: Let

E = x̂△(
t− y/c

τ
)

be a wave solution in free space where △( t
τ
) is a triangular waveform of duration

τ peaking at t = 0 (defined in ECE 210). We will next provide two different
solutions demonstrating how the wave field B accompanying E can be found.

Solution 1: We recognize the given wave field E as a TEM uniform plane wave travel-
ing in y-direction given the t−y/c dependence of phase. Consequently, we obtain
H by dividing E with η = ηo and rotating it by 90◦ from x̂-direction to co-align
it with E×H vector. As a result,

H = −ẑ
△( t−y/c

τ
)

ηo
= −ẑ

△( t−y/c

τ
)

√

µo/ǫo
.

Hence,

B = µoH = −ẑ
√
µoǫo△(

t− y/c

τ
) = −ẑ

△( t−y/c

τ
)

c
.

2



Solution 2: According to Faraday’s law,

∂B

∂t
= −∇×E = −

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex 0 0

∣

∣

∣

∣

∣

∣

= ẑ
∂Ex

∂y

= ẑ△′(
t− y/c

τ
)
∂

∂y
(
t− y/c

τ
) = ẑ

−1

cτ
△′(

t− y/c

τ
)

with the help of chain rule of differentiation, where △’(u) ≡ d
du
△(u). Finding

the time-dependent anti derivative, we directly obtain (as before)

B = −ẑ
△( t−y/c

τ
)

c
.

Example 2: Consider the Lorentz force

F = q(E+ v ×B)

on a test charge q in the lab where E and B are the plane wave fields considered
in Example 1. Show that electrical force term qE will dominate the magnetic
force term qv ×B unless the particle speed v = |v| is close to the speed of light
c (i.e., test charge is relativistic).

Solution: Since

E = x̂△(
t− y/c

τ
) and B = −ẑ

△( t−y/c

τ
)

c
,

it follows that Lorentz force

F = q(E+ v ×B) = q△(
t− y/c

τ
)(x̂− v × ẑ

c
).

3



Clearly, the first term of F proportional to x̂ is dominant, unless v = |v| is close
to c.

Example 3: Consider an x̂-polarized plane TEM wave field in free space propagating
in +z direction such that

E(z, t) = x̂f(t− z

c
), with f(t) = At rect(

t

τ
),

where c = 3 × 108 m/s = 300m/µs is the speed of light in free space, τ = 1µs,

and A = 2
V/m
µs . A plot of f(t) vs t (labelled in µs units is shown in the margin.

Determine the corresponding H(z, t) and make the following plots:

• (a) t-plots at fixed z’s: Ex(0, t) and Ex(z = 600m, t),

• (b) z-plots at fixed t’s: Ex(z, 0) and Ex(z, 2µs).

Solution: (a) t-plots at fixed z’s: Since z/c = 2µs for z = 600 m, it follows that

Ex(600m, t) = 2 (t− 2µs) rect(
t− 2µs

1µs
)

V

m

is a shifted version of

Ex(0, t) = 2 t rect(
t

1µs
)

V

m

already plotted above. A graph showing both waveforms (black for z = 0 and
red for z = 600 m) is in the margin.

4



(b) z-plots at fixed t’s: In this case we wish to deptict

Ex(z, 0) = 2 (0− z

c
) rect(

0− z/c

1µ
)

V

m

and

Ex(z, 2µs) = 2 (2µ− z

c
) rect(

2µ− z/c

1µ
)

V

m
.

The minus sign in front of z in the first term on the right indicates that the slopes

of the curves to be plotted are negative. Hence, we end up with the descending

ramp waveforms (black for t = 0 and red for t = 2µs) shown in the margin.

• Plane electromagnetic waves discussed above propagate in free-space in

regions of zero ρ and J (per our derivation).

– But what generates such waves?

• The answer must be, far away ρ and J variations (linked by continuity

equation) that we have not considered in our equations so far.

• We will next describe how plane TEM waves can be produced — radi-

ated — by time-varying infinite current sheets by starting from familiar

static and quasi-static solutions:

5



• Consider first a static and constant surface current density

Js = x̂Jx A/m

flowing on z = 0 surface as shown graphically in the margin. This

infinite surface current will produce a static magnetic field

x

y

z

H
+

H
−

Js = x̂Jx

H(z) = ∓ŷ
Jx
2

A/m for z ≷ 0

also shown in the margin as we learned in Lecture 13.

– Note that the fields point in opposing directions above and below

the surface current in compliance with the right hand rule and

obey the boundary condition equation for tangential H.

– Also, H is not accompanied by an electric field E since static

currents produce only static magnetic fields.

• What if the surface current Jx varies with time, i.e., Jx = Jx(t). In

that case we have quasi-statically

H(z, t) ≈ ∓ŷ
Jx(t)

2
A/m for z ≷ 0,

but only as an approximation for positions very close to z = 0 sur-

face where propagation time-delay z
v

of d’Alembert solutions can be

neglected1.

1This solution surely cannot be an exact solution since if it were, it would imply instantaneous changes
in H in response Jx at arbirarily large distances, implying an infinite speed of propagation — we know
that is not true!

6



• But the exact field solution of Maxwell’s equtions valid for all z is

equally easy to obtain: just replace Jx(t) above with Jx(t ∓ z
v) and

replace ≈ with = so that

H(z, t) = ∓ŷ
Jx(t∓ z

v)

2
A/m for z ≷ 0

complies with plane TEM d’Alembert solutions2 of Maxwell’s equations

in homogeneous and sourece free regions z ≷ 0.

x

y

z

E
+

H
+

H
−

E
−

Js = x̂Jx(t)

E+ ×H+

E− ×H−

• As always, there is an accompanying E(z, t) that is obtained by multi-

plying H(z, t) with η and replacing its unit vector so that vector E×H

points in the direction of propagation, away from the z = 0 in this case

— hence, as illustrated in the margin,

E(z, t) = −x̂
η

2
Jx(t∓

z

v
)V/m for z ≷ 0.

Since Maxwell’s eqn’s + boundary conditions have unique solutions in given

settings, we are assured that any solution that complies with both (as in this

case) is the solution for the given setting (surface current on z = 0, in this

case) — it was surprisingly easy to solve this radiation problem by starting

from simple static and quasi-static solutions.

2We use Jx(t∓ z

v
) rather than Jx(t± z

v
) for z ≷ 0 because we assume that Jx(t) on z = 0 surface is the

only field source — in that case causality principle dictates that we use only the solutions propagating
away from the source (just like when a pebble drops in a pond, ripples propagate away).

7



Conclusion: Evidently, a time varying surface current

Js = x̂f(t) on z = 0 plane

produces plane electromagnetic waves

E± = −x̂
ηf(t∓ z

v)

2
and H± = ∓ŷ

f(t∓ z
v)

2
in regions z ≷ 0

propagating away from the z = 0 plane.

Note that:

1. Ex and Hy waveforms are proportional to delayed versions of surface

current Jx(t) at each location z above and below the current sheet, with

the reference directions of E and Js opposing one another.

2. fields E± are continuous on z = 0 surface in compliance with tangential

boundary condition equations.

3. fields H± exhibit a discontinuity on z = 0 surface that matches the

current density of the same surface, once again in compliance with

tangential boundary condition equations.

x

y

z

E
+

H
+

H
−

E
−

Js = x̂Jx(t)

E+ ×H+

E− ×H−

Opposing E and Js vectors on z = 0 plane indicate that the surface is acting

as a source of radiated energy (the energy that feeds the waves radiated away

from the surface) — this interpretation will be discussed in more detail in

the next lecture.
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Example 4: A current sheet on z = 0 surface is described by

Js(t) = x̂f(t), with f(t) = At rect(
t

τ
),

where τ = 1µs and A = 1
A/m
µs . A plot of the current waveform f(t) is plotted in

the margin. Assuming that the current sheet is embedded in free space, construct
the following plots:

• (a) Radiated Hy(z, t = 2µs) vs z,

• (b) RadiatedEx(z, t = 2µs) vs z.

Solution: (a) From the theory developed above, we have using delayed copies of half
the surface current density,

Hy(z, 2µs) = ∓1

2
(2µ∓ z

c
) rect(

2µ∓ z
c

1µ
)

A

m
for z ≷ 0,

as plotted in the margin. Notice that the propagated field waveforms — c ×
2µs=600 m has been covered in 2 µs — are re-scaled and shifted replicas of the
source function f(t).

(b) We have, multiplying Hy with ηo = 120πΩ, and adjusting the signs so that E

and Js are pointing in opposite directions,

Ex(z, 2µs) = −60π(2µ∓ z

c
) rect(

2µ∓ z
c

1µ
)

V

m
for z ≷ 0.

Plots are shown in the margin.
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20 Poynting theorem and monochromatic waves

• The magnitude of Poynting vector

S = E×H

represents the amount of power transported — often called energy flux

— by electromagnetic fields E and H over a unit area transverse to the

E×H direction.

This interpretation of the Poynting vector is obtained from a conservation

law extracted from Maxwell’s equations (see margin) as follows:

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B

∂t

∇×H = J +
∂D

∂t
.

1. Dot multiply Faraday’s law by H, dot multiply Ampere’s law by E,

(∇× E = −∂B

∂t
) ·H

(∇×H = J +
∂D

∂t
) · E

and take their difference:

H · ∇ × E− E · ∇ ×H
︸ ︷︷ ︸

= −∂D

∂t
· E− ∂B

∂t
·H

︸ ︷︷ ︸

−J · E.

∇ · (E×H) − ∂

∂t
(
1

2
ǫE ·E +

1

2
µH ·H)

2. After re-arrangements shown above, the result can be written as

1



∂

∂t
(
1

2
ǫE · E +

1

2
µH ·H) +∇ · (E×H) + J · E = 0.

• Poynting theorem derived above is a conservation law just like the

continuity equation ∂ρ
∂t
+∇ · J = 0: Poynting theorem

– The first term on the left,

∂

∂t
(
1

2
ǫE · E +

1

2
µH ·H),

is time rate of change of total electric and magnetic energy den-

sity.

Hence, Poynting theorem is the conservation law for electro-

magnetic energy, just like continuity equation is the conservation law

for electric charge.

– The second term

∇ · (E×H)

accounts for energy transport in Poynting theorem, just like ∇ · J
accounts for charge transport in the continuity equation. There-

fore

S ≡ E×H

2



is energy flux per unit area measured in

V

m

A

m
=

W

m2
=

J/s

m2

units, just like J is charge flux per unit area in C/s
m2 = A

m2 units.

– Finally, the last term in Poynting theorem (repeated in the mar-

gin), Poynting thm:

∂
∂t(

1
2ǫE ·E+ 1

2µH ·H) +

∇ · (E×H) + J ·E = 0

J · E
is called Joule heating, and it represents power absorbed per

unit volume (which can only be non-zero in the presence of J).

If J·E is negative in any region, then J in that region is acting as a

source of electromagnetic energy, just like any circuit component

with negative vi is acting as an energy source in the electrical

circuit.

Note that J ·E had a negative value on the current sheet radiator

examined in last lecture. We return to the current sheet radiator

in the next example.
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y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

Example 1: On z = 0 plane we have a time-harmonic surface current specified as

Js = x̂f(t) = x̂2 cos(ωt)
A

m

where ω is some frequency of oscillation.

(a) Determine the radiated TEM wave fields E(z, t) and H(z, t) in the regions z ≷ 0,

(b) The associated Poynting vectors E×H, and

(c) Js · E on the current sheet.

Solution: (a) With reference to the solution of the current sheet radiator depicted
in the margin (from last lecture), we that an x-polarized surface current f(t)
produces the wave fields

Ex = −η

2
f(t∓ z

v
) and Hy = ∓1

2
f(t∓ z

v
)

in the surrounding regions propagating away from the current sheet on both sides.
Given that f(t) = 2 cos(ωt), this implies that

Ex = −η cos(ωt∓ βz) and Hy = ∓ cos(ωt∓ βz)

where
β =

ω

c
and η = ηo ≈ 120πΩ

since the current sheet is surrounded by vacuum. Hence in vector form we have

E(z, t) = −η cos(ωt∓ βz)x̂
V

m
and H(z, t) = ∓ cos(ωt∓ βz)ŷ A

m ,

where the upper signs are for z > 0, and lower signs for z < 0.
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(b) The associated Poynting vectors are

S = E×H = ±η cos2(ωt∓ βz)ẑ
W

m2
.

Note that the time-average value of vector S points in the direction of wave
propagation on both sides of the current sheet.

(c) Since on z = 0 surface of the current sheet the electric field vector is

E(0, t) = −η cos(ωt)x̂
V

m
,

it follows that Js · E on the same surface is

Js(t) · E(0, t) = (x̂2 cos(ωt)
A

m
) · (−η cos(ωt)x̂

V

m
) = −2η cos2(ωt)

W

m2
.

• In the above example, a time-harmonic source current oscillating at

some frequency ω produced “monochromatic waves” of radiated fields

propagating away from the current sheet on both sides.

– The calculations showed time-varying Poynting vectors E×H.

The time-averaged values of these time-varying vectors can be eas-

ily determined by making use of the trig identity

cos2(ωt + φ) =
1

2
[1 + cos(2ωt + 2φ)].

Since the time-average of the second term on the right is zero, we

5



can express the time-average of this identity as

〈cos2(ωt + φ)〉 = 〈1
2
[1 + cos(2ωt + 2φ)]〉 = 1

2
,

where the angular brackets denote the time-averaging procedure.

y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

• Consequently, the result

E×H = ±η cos2(ωt∓ βz)ẑ
W

m2

from Example 1 implies that

〈E×H〉 = ±η
1

2
ẑ

W

m2
= ±60π ẑ

W

m2
,

which represent the time-average power per unit area transported by

the waves radiated by the current sheet.

• In Poynting theorem the Joule heating term J ·E is power absorbed

per unit volume, and, accordingly, −J · E is power injected per

unit volume.

– Likewise, ±Js·E can be interpreted as power absorbed/injected

per unit area on a surface.

In Example 1 above we calculated an instantaneous injected power

density of

6



−Js · E = 2η cos2(ωt)
W

m2
.

Clearly, its time-aveage works out as

〈−Js · E〉 = η
W

m2
= 120π

W

m2
.

– Note that 〈−Js ·E〉 exactly matches the sum of |〈E×H〉| calcu-

lated on both sides of the current sheet, in conformity with energy

conservation principle (Poynting theorem).
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21 Monochromatic waves and phasor notation

• Recall that we reached the traveling-wave d’Alembert solutions

E, H ∝ f(t∓ z

v
)

via the superposition of time-shifted and amplitude-scaled versions of

f(t) = cos(ωt),

namely the monochromatic waves

A cos[ω(t∓ z

v
)] = A cos(ωt∓ βz),

with amplitudes A where

β ≡ ω

v
= ω

√
µǫ

can be called wave-number in analogy with wave-frequency ω.

T =
2π

ω

cos(ωt)

t

1

-1

Period

λ =
2π

β

cos(βz)

z

1

-1

Wavelength

– As depicted in the margin, monochromatic solutions A cos(ωt∓βz)

are periodic in position and time, with the wave-number β being

essentially a spatial-frequency, the spatial counterpart of ω.

This is an important point that you should try to understand

well — it has implications for signal processing courses related

to images and vision.

1



– In general, monochromatic solutions of 1D wave-equations ob-

tained in various branches of science and engineering can all be rep-

resented in the same format as above in terms of wave-frequency

/ wave-wavenumber pairs ω and β having a ratio

v ≡ ω

β

recognized as the wave-speed and specific dispersion relations

such as:

T =
2π

ω

cos(ωt)

t

1

-1

Period

λ =
2π

β

cos(βz)

z

1

-1

Wavelength

Dispersion relations

between

wavefrequency ω

and

wavenumber β

determine the

propagation veloc-

ity

v =
ω

β
= λf

for all types of

wave motions.

1. TEM waves in perfect dielectrics:

β = ω
√
µǫ,

2. Acoustic waves in monoatomic gases with temperature T (K)

and atomic mass m (kg):

β = ω

√

m
5
3KT

,

3. TEM waves in collisionless plasmas (ionized gases) with plasma

frequency ωp =
√

Ne2

mǫo
:

β =
1

c

√

ω2 − ω2
p.

2



– For any type of wave solution — TEM, acoustic, plasma wave

— once the dispersion relation is available (meaning that it has

been derived from fundamental physical laws governing the specific

wave type), wave propagation velocity is always obtained as

v =
ω

β

or, equivalently, as

v =
λ

T
= λf

where

λ ≡ 2π

β
Wavelength

and

T =
2π

ω
≡ 1

f
Waveperiod.

propagatingWaveCos.eps

3
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• Monochromatic x-polarized waves

E = Eo cos(ωt∓ βz) x̂
V

m

can also be expressed in phasor form as

Ẽ = Eoe
∓jβz x̂

V

m

such that

Re{Ẽejωt} = Eo cos(ωt∓ βz) x̂ = E

in view of Euler’s identity.

Example 1: Study the following table to understand monochromatic wave

fields and their phasors.

Field Phasor Comment

E = cos(ωt + βy) ẑ Ẽ = ejβy ẑ z-polarized wave propagating in −y direction

H̃ = −ejβy

η x̂ magnetic phasor that accompanies Ẽ above

H = sin(ωt− βz) ŷ H̃ = −je−jβz ŷ wave propagating in +z direction

Ẽ = −jηe−jβz x̂ electric field phasor of H̃ above

E = η sin(ωt− βz) x̂ which is an x-polarized field (see the right column)
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Example 2: Given that

H = x̂H+ cos(ωt− βz) + ŷH− sin(ωt+ βz)

representing the sum of wave fields propagating in opposite directions, the corre-
sponding phasor

H̃ = x̂H+e−jβz − jŷH−ejβz.

The corresponding E-field phasor is

Ẽ = −ŷηH+e−jβz + jx̂ηH−ejβz,

from which

E = −ŷηH+ cos(ωt− βz)− x̂ηH− sin(ωt+ βz).

Make sure to check that all the signs make sense, and if you think you have

caught an error, let us know.

• In general, we transform between plane TEM wave phasors Ẽ and H̃

as follows:

1. To obtain H̃ from Ẽ: divide Ẽ by η and rotate the vector direction

so that vector S̃ ≡ Ẽ × H̃
∗ points in the propagation direction of the

wave — more on complex vector S̃ later on.

2. To obtain Ẽ from H̃: multiply H̃ by η and rotate the vector direction

so that vector S̃ ≡ Ẽ × H̃
∗ points in the propagation direction of the

6



wave.
y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

Example 3: On z = 0 plane we have a monochromatic surface current specified as

Js = x̂f(t) = x̂2 cos(ωt)
A

m
= Re{x̂2 ejωt}.

Determine wave field phasors Ẽ± and H̃
± for plane TEM waves propagating away

from the z = 0 surface on both sides (assumed vacuum).

Solution: We know that an x-polarized surface current f(t) produces

Ex = −η

2
f(t∓ z

v
) and Hy = ∓1

2
f(t∓ z

v
)

in surrounding regions. Given that f(t) = 2 cos(ωt), this implies

Ex = −η cos(ωt∓ βz) and Hy = ∓ cos(ωt∓ βz)

where
β =

ω

c
and η = ηo ≈ 120πΩ

since the current sheet is surrounded by vacuum. Converting these into phasors,
we find

Ẽ
± = −ηe∓jβzx̂ and H̃

± = ∓e∓jβzŷ.
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y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

• In the last lecture we calculated the time-average E×H and Js ·E of

the fields examined in Example 3 using a time-domain approach. The

same calculations can be carried out in terms of phasors Ẽ, H̃, and J̃s

as follows:

〈E×H〉 = 1

2
Re{Ẽ× H̃

∗} and 〈Js · E〉 =
1

2
Re{J̃s · Ẽ∗}

where Ẽ× H̃
∗ ≡ S̃ is called complex Poynting vector. Instantaneous power

p(t) = v(t)i(t)

with time-harmonic signals is

v(t)i(t) = (
V ejωt + cc

2
)(
Iejωt + cc

2
)

where V and I are phasors of v(t) and
i(t) and cc indicates the conjugate of
the term to the left of + sign.
This can be expanded as

v(t)i(t) =
V I∗ + cc

4
+

V Iej2ωt + cc

4
.

The second term has a zero time aver-
age. It follows that time-average power

〈v(t)i(t)〉 = V I∗ + cc

4
=

1

2
Re{V I∗}

since

V I∗ + cc = V I∗ + V ∗I = 2Re{V I∗}.

(Also see ECE 210 text.)

– The proof of these are analogous to the proof of

〈p(t)〉 = 1

2
Re{V I∗}

for the average power of a circuit component in terms of voltage and current
phasors V and I (see margin).

For, instance, given that

J̃s = 2x̂
A

m
and Ẽ

±(z) = −ηe∓jβzx̂
V

m

in Example 3, it follows that

〈−Js(t) · E(0, t)〉 =
1

2
Re{−J̃s · Ẽ∗(0)} = η ≈ 120π

W

m2
,

in conformity with the result from last lecture.
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22 Phasor form of Maxwell’s equations and
damped waves in conducting media

• When the fields and the sources in Maxwell’s equations are all monochro-

∇ ·D = ρ

∇ ·B = 0

∇×E = −
∂B

∂t

∇×H = J +
∂D

∂t
.

matic functions of time expressed in terms of their phasors, Maxwell’s
equations can be transformed into the phasor domain.

– In the phasor domain all

∂

∂t
→ jω

and all variables D, ρ, etc. are replaced by their phasors D̃, ρ̃, and
so on. With those changes Maxwell’s equations take the form shown
in the margin.

∇ · D̃ = ρ̃

∇ · B̃ = 0

∇× Ẽ = −jωB̃

∇× H̃ = J̃ + jωD̃

– Also in these equations it is implied that

D̃ = ϵẼ

B̃ = µH̃

J̃ = σẼ

where ϵ, µ, and σ could be a function of frequency ω (as, strictly
speaking, they all are as seen in Lecture 11).

– We can derive from the phasor form Maxwell’s equations shown in
the margin the TEM wave properties obtained earlier on using the
time-domain equations by assuming ρ̃ = J̃ = 0.

1



We will do that, and and after that relax the requirement J̃ = 0 with
J̃ = σẼ to examine how TEM waves propagate in conducting media.

• With ρ̃ = J̃ = 0 the phasor form Maxwell’s equation take their simplified
forms shown in the margin.

∇ · Ẽ = 0

∇ · H̃ = 0

∇× Ẽ = −jωµH̃

∇× H̃ = jωϵẼ

– Using

∇× [∇× Ẽ = −jωµH̃] ⇒ −∇2Ẽ = −jωµ∇× H̃

which combines with the Ampere’s law to produce

∇2Ẽ + ω2µϵẼ = 0.

– For x-polarized waves with phasors

Ẽ = x̂Ẽx(z),

the phasor wave equation above simplifies as

∂2

∂z2
Ẽx + ω2µϵẼx = 0.

– Try solutions of the form

Ẽx(z) = e−γz or eγz

where γ is to be determined.

2



– Upon substitution into wave equation both of these lead to

(γ2 + ω2µϵ)Ẽx = 0,

which yields

γ2 + ω2µϵ = 0 ⇒ γ2 = −ω2µϵ

from which one possibility is

γ = jβ, with β ≡ ω
√
µϵ.

Thus viable phasor solutions are

Ẽx(z) = e∓jβz

as we already knew.

– Furthermore, using the phasor form Faraday’s law it is easy to show
that

H̃y = ±
e∓jβz

η
with η =

√

µ

ϵ
.

Note that we have recovered above the familiar properties
of plane TEM waves using phasor methods.

Next, the phasor method carries us to a new domain that cannot be easily
examined using time-domain methods.
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• With ρ̃ = 0 but J̃ = σẼ ̸= 0, implying non-zero conductivity σ, the
pertinent phasor form equations are as shown in the margin.

∇ · Ẽ = 0

∇ · H̃ = 0

∇× Ẽ = −jωµH̃

∇× H̃ = σẼ + jωϵẼ

= (σ + jωϵ)Ẽ

– This is the same set as before, except that

jωϵ has been replaced by σ + jωϵ.

Thus, we can make use of phasor wave solutions above after applying
the following modifications to γ and η:

1.

γ2 = −ω2µϵ = (jωµ)(jωϵ)
⇒⇒
σ ̸= 0

γ =
√

(jωµ)(σ + jωϵ)

2.

η =

√

µ

ϵ
=

√

jωµ

jωϵ
⇒⇒
σ ̸= 0

η =

√

jωµ

σ + jωϵ
.

Note that the modified γ and η satisfy

µ =
γη

jω

σ = Re{
γ

η
}

ϵ =
1

ω
Im{

γ

η
}

γη = jωµ and
γ

η
= σ + jωϵ

leading to useful relations shown in the margin (assuming real valued
σ and ϵ).
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• In terms of γ and η above, we can express an x-polarized plane wave
propagating in z direction in terms of phasors e

−αz

e
−αz cos(ωt − βz)|t=0

z

z

e
−αz cos(ωt − βz)

(a) Damped wave snapshot at t=0
    together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform
    for comparison

– β appears within cosine
argument and deter-
mines the wavelength

λ =
2π

β

and propagation speed

vp =
ω

β
.

– α controls wave attenu-
ation by

e∓αz

factor in propagation
direction.

Ẽ = x̂Eoe
∓γz and H̃ = ±ŷ

Eo

η
e∓γz

where Eo is an arbitrary complex constant (complex wave amplitude).

• In expanded forms γ and η appear as:

γ =
√

(jωµ)(σ + jωϵ) ≡ α+jβ, so that α = Re{γ} and β = Im{γ},

and

η =

√

jωµ

σ + jωϵ
≡ |η|ejτ so that |η| = |

√

jωµ

σ + jωϵ
| and τ = ∠

√

jωµ

σ + jωϵ
.

1. In the special case of a perfect dielectric with σ = 0, we find

γ = jω
√
µϵ ≡ jβ and η =

√

µ

ϵ
,

and, therefore,

Ẽ = x̂Eoe
∓jβz and H̃ = ±

ŷEoe∓jβz

η

as before. In this case α = τ = 0.
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2. Another case of imperfect dielectric (or “lousy” conductor) occurs
when σ is not zero, but it is so small that are justified in using

(1± a)p ≈ 1± pa, if |a| ≪ 1,

with p = 1
2 as follows: For

σ
ωϵ ≪ 1,

γ =
√

(jωµ)(σ + jωϵ) = jω
√
µϵ(1−j

σ

ωϵ
)1/2 ≈ jω

√
µϵ(1−j

σ

2ωϵ
) =

σ

2

√

µ

ϵ
+jω

√
µϵ;

hence

Ẽ ≈ x̂Eoe
∓(α+jβ)z with α =

σ

2

√

µ

ϵ
and β = ω

√
µϵ;

also in the same case

H̃ ≈ ±
ŷEoe∓(α+jβ)z

η
with η =

√

µ

ϵ(1− j σ
ωϵ)

≈
√

µ

ϵ
(1+j

σ

2ωϵ
) ≈

√

µ

ϵ
ej tan

−1 σ

2ωϵ ,

such that

|η| ≈
√

µ

ϵ
and τ = ∠η ≈

σ

2ωϵ
.

Note: γ and η both are complex valued, the consequences of which will
be examined later on.

3. A third case of good conductor corresponds to σ
ωϵ ≫ 1. In that case,

γ = jω

√

µϵ(1− j
σ

ωϵ
) ≈ ω

√

jµ
σ

ω
= (1+j)

√

ωµσ

2
and η ≈

√

µ

−j σω
=

√

jωµ

σ
=

√

ωµ

σ
ejπ/4.
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Hence,

α ≈ β ≈
√

ωµσ

2
=

√

πfµσ while |η| =
√

ωµ

σ
and τ = ∠η = 45o.

4. Finally, perfect conductor case corresponds to σ → ∞, in which
case Ẽx → 0 as we will show later on. Wave fields cannot exist in perfect
conductors.

e
−αz

e
−αz cos(ωt − βz)|t=0

z

z

e
−αz cos(ωt − βz)

(a) Damped wave snapshot at t=0
    together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform
    for comparison

• β appears within cosine
argument and deter-
mines the wavelength

λ =
2π

β

and propagation speed

vp =
ω

β
.

• α controls wave attenu-
ation by

e∓αz

factor in propagation
direction.

• Summarizing, in a homogeneous medium with arbitrary but con-
stant µ, ϵ, and σ, time-harmonic plane TEM waves are in terms of

E = x̂Re{Eoe
∓(α+jβ)zejωt} = x̂|Eo|e∓αz cos(ωt∓ βz + ∠Eo)

and accompanying magnetic fields

H = ±ŷRe{
Eo

η
e∓(α+jβ)zejωt} = ±ŷ

|Eo|
|η|

e∓αz cos(ωt∓ βz +∠Eo−∠η).

• Propagation velocity

vp =
ω

β
=

ω

Im{
√

(jωµ)(σ + jωϵ)}
,

now depends on frequency ω and it describes the speed of the nodes
(zero-crossings, not modified by the attenuation factor) of the field wave-
form. Subscript p is introduced to distinguish vp — also called phase

velocity — from group velocity vg discussed in ECE 450 (velocity of
narrowband wave packets).
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• Wavelength

λ =
2π

β
=

vp
f

now depends on frequency f via both the numerator and the denomi-
nator, and measures twice the distance between successive nodes of the
waveform.

e
−αz

e
−αz cos(ωt − βz)|t=0

z

z

e
−αz cos(ωt − βz)

(a) Damped wave snapshot at t=0
    together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform
    for comparison

– β appears within cosine
argument and deter-
mines the wavelength

λ =
2π

β

and propagation speed

vp =
ω

β
.

– α controls wave attenu-
ation by

e∓αz

factor in propagation
direction.

• Penetration depth (also called skin depth if very small)

δ ≡
1

α
=

1

Re{
√

(jωµ)(σ + jωϵ)}

is the distance for the field strength to be reduced by e−1 factor in its
direction of propagation.

– For a fixed σ, and a sufficiently large ω, the penetration depth

δ ≈
2

σ
√µ

ϵ

Imperfect dielectric formula

which can be very small if σ is large — with small δ the wave is
severely attenuated as it propagates.

– For a fixed σ, and a sufficiently small ω,

δ ≈
√

2

µωσ
=

1√
πfµσ

Good conductor ”skin depth” formula

which, although small with large σ, increases as ω decreases, making
low frequencies to be preferable in applications requiring propagat-
ing through lossy media with large σ, such as in sea-water.
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23 Imperfect dielectrics, good conductors

Condition β α |η| τ λ = 2π
β

δ = 1
α

Perfect

dielectric
σ = 0 ω

√
ǫµ 0

√

µ
ǫ 0 2π

ω
√
ǫµ ∞

Imperfect

dielectric
σ
ωǫ

≪ 1 ∼ ω
√
ǫµ β 1

2
σ
ωǫ

= σ
2

√

µ
ǫ

∼
√

µ
ǫ

∼ σ
2ωǫ

∼ 2π
ω
√
ǫµ

2
σ

√

ǫ
µ

Good

conductor
σ
ωǫ ≫ 1 ∼

√
πfµσ ∼

√
πfµσ

√

ωµ
σ 45◦ ∼ 2π√

πfµσ
∼ 1√

πfµσ

Perfect

conductor
σ = ∞ ∞ ∞ 0 - 0 0

• The table above summarizes TEM wave parameters in homogeneous

conducting media where the propagation velocity x-polarized phasor

Ẽ = x̂Eoe
∓αze∓jβz

accompanied by

H̃ = ±ŷEo
η e

∓αze∓jβz.

vp =
ω

β

(note that it can be frequency dependent) and field phasors can be

expressed in formats similar to that shown in the margin, keeping in

mind that propagation direction coincides with vector

S̃ ≡ Ẽ× H̃
∗

such that

〈S〉 = 〈E×H〉 = 1

2
Re{S̃}

is the average energy flux per unit area (time-average Poynting vector).
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Example 1: Consider the plane TEM wave

Ẽ = ŷ2e−αze−jβz V

m
,

in an imperfect dielectric. Determine H̃ and time-average Poynting vector
〈S〉. Compute 〈S〉 at z = 0 and z = 10 m, if ǫ = 4ǫo, µ = µo, σ = 10−3 S/m,
and ω = 2π · 109 rad/s

Solution: Using right hand rule, so that E×H points in propagation direction ẑ, we
find that

H̃ = −x̂
2

η
e−αze−jβz ≈ −x̂

2
√

µ/ǫ
e−αze−jβze−jτ A

m

using |η| =
√

µ
ǫ

from the table above for a perfect dielectric.

The avg. Poynting vector is

〈S〉 =
1

2
Re{Ẽ× H̃

∗} =
1

2
Re{ŷ2e−αze−jβz × (−x̂

2
√

µ/ǫ
e−αze−jβze−jτ )∗}

= −1

2
Re{ŷ2e−αz × x̂

2
√

µ/ǫ
e−αzejτ} = ẑ

2
√

µ/ǫ
e−2αz cos τ.

With the given parameters,

σ

ωǫ
=

10−3 · 36π × 109

2π · 109 · 4 =
9

2
10−3 ≪ 1,

τ ≈ σ

2ωǫ
≈ 9

4
10−3 rad

|η| ≈
√

µ

ǫ
=

√

µo

4ǫo
=

ηo
2

= 60πΩ

α ≈ σ

2

√

µ

ǫ
=

1

2
10−360π = 30π · 10−3

1

m
.

2



Hence, at z = 0,

〈S〉 = ẑ
2

√

µ/ǫ
cos τ ≈ ẑ

2

60π
= ẑ

1

30π

W

m2
,

whereas, at z = 10 m,

〈S〉 = ẑ
2

√

µ/ǫ
e−2·30π·10−3·10 cos τ ≈ ẑ

2

60π
e−6π/10 ≈ ẑ

0.15

30π

W

m2
.

• Note that in above example power transmitted per unit area has dropped

to 15% of its value upon propapagating over a relatively short distance

of 10 m.

– In the physical terms, the lost power of the wave is gained by the

propagation medium in the form of heat — average Joule heating ⇐This is what we

want to happen in a

microwave oven.

〈J · E〉 in the medium will be positive and account for the loss of

the wave power (as seen in a HW problem).

From a communications perspective, this rapid attenuation is problematic

since it is evident that the signal energy is being wasted as heat in the

medium rather than being transmitted efficiently to distant communication

targets.

As the next example shows, we are better off using lower frequencies in

under-water communcations.
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Example 2: Repeat Example 1 for ω = 2π · 103 rad/s and σ = 4 S/m (sea water) in
which case the propagation medium becomes a good conductor.

Solution: Using right hand rule, so that E×H points in propagation direction ẑ, we
have

H̃ = −x̂
2

η
e−αze−jβz ≈ −x̂

2

|η|e
−αze−jβze−jτ A

m

as well as

〈S〉 =
1

2
Re{Ẽ× H̃

∗} =
1

2
Re{ŷ2e−αze−jβz × (−x̂

2

|η|e
−αze−jβze−jτ)∗}

= −1

2
Re{ŷ2e−αz × x̂

2

|η|e
−αzejτ} = ẑ

2

|η|e
−2αz cos τ.

With the given parameters,

σ

ωǫ
=

4 · 36π × 109

2π · 103 · 4 = 18 · 106 ≫ 1,

which confirms that the medium behaves as a good conductor at this small ω,
and using the appropriate formulae from the table,

τ ≈ π

4
rad

|η| ≈
√

ωµ

σ
=

√

2π · 103 · 4π · 10−7

4
= π

√

2× 10−4 ≈ π
√
2

100
Ω

α ≈
√

πfµσ =
√
π · 103 · 4π · 10−7 · 4 =

√
42π210−4 =

π

25

1

m
.

Hence, at z = 0,

〈S〉 = ẑ
2

|η| cos τ ≈ ẑ
200

π
√
2
cos

π

4
= ẑ

100

π

W

m2
,

4



whereas, at z = 10 m,

〈S〉 = ẑ
100

π
e−2· π

25
·10 ≈ ẑ

100

π
0.081

W

m2
.

• As Example 2 illustrates, at a frequency of ω = 2π · 103 rad/s or f = 1

kHz, wave power is reduced to about 8% over a 10 m distance in sea

water. Less reduction in power is possible over the same distance if at

a smaller frequency f since α ∝
√
f .

– The disadvantage of being forced to use smaler frequencies is of

course having a smaller available bandwidth at small frequencies.

Thus communication with submarines at great depths will only be

possible at very slow rates.

The next example identifies the penetration depth in sea water at 1 kHz.
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Example 3: What is the penetration depth δ = α−1 in a medium with σ = 4 S/m,
ǫ = 81ǫo, and µ = µo for ω = 2π · 103 rad/s.

Solution: With the given parameters we have

σ

ωǫ
=

4 · 36π × 109

2π · 103 · 81 =
72× 109

81× 103
≈ 106 ≫ 1,

i.e., good conductor situation. Hence the penetration depth is

δ ≈ 1√
πfµσ

=
1√

π103 · 4π · 10−74
=

1√
42π2 · 10−4

=
100

4π
=

25

π
≈ 7.95m.
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24 Signal transmission, circular polarization

Since in perfect dielectrics the propagation velocity vp = v and the intrinsic

impedance η are frequency independent (i.e., propagation is non-dispersive),

d’Alembert plane wave solutions of the form

E = x̂f(t− z

v
) and H = ŷ

f(t− z
v)

η

are valid in such media.

t

t

-4 -2 2 4 6

-6

-4

-2

2

4

6

-4 -2 2 4 6

-6

-4

-2

2

4

6

m(t)

m(t) cos(ωt)

• Consider a waveform

f(t) = m(t) cos(ωt),

where

– ω is some specific frequency having a corresponding period T = 2π
ω ,

– m(t) is some arbitrary signal (e.g., a voice signal, a message)

changing slowly compared to period T .

In that case,

– f(t) specified above can be called narrowband AM, and

– ω the carrier frequency of modulating cosine of the message

signal m(t).
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The corresponding x-polarized wave fields propagating in z direction

can then be represented as Field 1

E = m(t− z

v
) cos(ωt− βz)x̂ and H =

m(t− z
v)

η
cos(ωt− βz)ŷ

where β = ω
√
µǫ as usual1.

• With reference to the expressions above, we could say that the AM

wave field has an x-polarized carrier.

• By contrast, Field 2

E = m(t− z

v
) cos(ωt− βz)ŷ

represents an AM wave field with a y-polarized carrier, and so does Field 3

E = m(t− z

v
) sin(ωt− βz)ŷ

but with a carrier that has been time-delayed by a quarter period.

• Suppose Fields 1 and 3 above were transmitted simultaneously and

therefore superpose. In that case we will have a wave field with Circular

polarized

carrierE = m(t− z

v
)[cos(ωt− βz)x̂ + sin(ωt− βz)ŷ]

1In dispersive media where β is a non-linear function of ω, narrowband AM can propagate as

m(t− z

vg
) cos(ωt− βz)x̂ where vg ≡

∂ω

∂β

is known as group velocity — covered in detail in ECE 450.

2



which has a circular polarized carrier. Since this is just a superpo-

sition of two d’Alembert waves, the accompanying H is easily found to

be

x

y
z

t = 0

t > 0

CIRCULAR POLARIZATION:

Field vector rotates instead
of oscillating. 

The rotation frequency is also 
the wave frequency.

cos(ωt− βz)x̂ + sin(ωt− βz)ŷ

RIGHT CIRCULAR

E

H = m(t− z

v
)[cos(ωt− βz)ŷ − sin(ωt− βz)x̂]/η.

– Circular-polarized AM wave fields just introduced are in some

practical applications better to use than the linear-polarized waves

because of, say, the peculiarities of a propagation medium (e.g,

Earth’s ionosphere or the interplanetary medium).

– Since a circular-polarized wave field is a linear combination of

linear-polarized waves, it has a phasor that is a linear combination

of phasors of its linear components, as in Right-circular

cos(ωt−βz)x̂+sin(ωt−βz)ŷ ⇔ e−jβzx̂−je−jβzŷ = (x̂−jŷ)e−jβz

or Left-circular

x

y
z

t = 0

t > 0

cos(ωt− βz)x̂− sin(ωt− βz)ŷ

LEFT CIRCULAR

When left-hand thumb is pointed
along propagation direction z
the fingers curl in the rotation
direction of the field vector.

E

cos(ωt−βz)x̂−sin(ωt−βz)ŷ ⇔ e−jβzx̂+je−jβzŷ = (x̂+jŷ)e−jβz.

• In the last step above, we have introduced two flavors of circularly

polarized waves, which correspond to fields vectors rotating in opposite

directions at any position in space when viewed toward the direction the

wave propagates— clockwise for right-circular, counter-clockwise

for left circular.
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• Also,

x

y
z

t = 0

t > 0

x̂− jŷ

RIGHT CIRCULAR

x-comp leads y-comp because of -j 
 

E

– for the right-circular wave propagating in z direction, the field

vector simplified at z = 0 as

cos(ωt)x̂ + sin(ωt)ŷ ⇔ x̂− jŷ

rotates in the direction that your right-hand fingers curl when

the thumb is directed in propagation direction z, whereas

– for the left-circular wave propagating in z direction, likewise,

vector

cos(ωt)x̂− sin(ωt)ŷ ⇔ x̂ + jŷ

rotates in the direction that your left-hand fingers curl when the

thumb is directed in propagation direction z.

x

y
z

t = 0

t > 0

x̂ + jŷ

LEFT CIRCULAR

x-comp lags y-comp because of +j

E

In general, the “handednes” or “helicity” of a circular polarized

wave is always obtained by matching your right or left hand to

the specified propagation and rotation directions — see example

below.

Furthermore, the rotation direction is most easily seen if the

wave is expressed in phasor form by seeing which component leads

(or lags) which. Here is an explanation by example:
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Example 1: A circular polarized wave field vector is given as

Ẽ = (ẑ + jŷ)ejβx.

Determine the propagation and rotation directions of the field vector as well as
its helicity.

Solution: The propagation direction is −x since the exponent in ejβx lacks a minus
sign.

At x = 0, the wave field vector rotates as

E = Re{(ẑ + jŷ)ejωt} = ẑ cos(ωt)− ŷ sin(ωt),

of which the y-component leads the z-component by 90◦ of phase, or, equivalently,
by a quarter period in time — therefore, the vector points in y-direction before it
points in z-direction (or in z-direction before it points in −y-direction), rotating
from y- toward z-axis.

When I direct my right thumb in −x direction, my fingers curl from z- toward y-axis,
which is curling in the wrong direction. Hence this wave is not right-circular! It
is left-circular.

x

yz

t = 0

t > 0

ẑ + jŷ

LEFT CIRCULAR

(i) z-comp lags y-comp because of +j.

(ii)E-vector rotates from y towards z.

(iii) since the wave propagates in -x
direction it is LEFT CIRCULAR

E

Given any propagation direction, a carrier field of an arbitrary polar-

ization can always be expressed as weighted superpositions of any pair of

orthogonal polarized carrier fields — such orthogonal pairs are considered

to be complete sets of basis functions for expressing waves with arbitrary

5



polarizations.

• EXAMPLE: Right- and left circular waves propagating in z directions

are weighted superpositions of orthogonal x- and y-polarized fields

as in (expressed in terms of phasors): basis functions Circulars

in terms of

linears
x̂e−jβz and ŷe−jβz

superpose to form right- and left-circular waves

(x̂− jŷ)e−jβz and (x̂ + jŷ)e−jβz

using the weights

1, −j and 1, j

respectively.

• EXAMPLE: x- and y-polarized waves propagating in z directions

are weighted superpositions of orthogonal right- and left-circular

fields as in (expressed in terms of phasors): basis functions Linears

in terms of

circulars
(x̂− jŷ)e−jβz and (x̂ + jŷ)e−jβz

superpose to form linear polarized waves

x̂e−jβz and ŷe−jβz

using the weights
1

2
,
1

2
and − 1

2j
,
1

2j

respectively.

6



• It can be argued that right- and left-circular wave pair forms an in-

trinsically more fundamental set of basis functions than, say, x̂- and

ŷ-polarized waves, because while the selection of which direction is x

and which direction is y can be arbitrary, there is no arbitrariness in

how helicity is assigned to circular polarized modes propagating in a

given direction2.

• Also, oscillating charges will radiate linear-polarized fields, whereas ro-

tating charges will radiate circular-polarized fields (in the direction nor-

mal to the rotation plane) — so, source dynamics selects the radiated

wave polarization.

• Wave polarization is important because

– it depends on physical geometry and dynamics of the wave source,

– it may depend on the physical properties of the region the wave

propagates through,

– it will determine the direction of Lorentz force on any test charge

or electrical load,

– angular momentum carried by the wave depends on polarization,

etc.
2Furthermore RCP and LCP plane waves consist of photons with spin angular momenta of +~ and

−~, respectively, corresponding to the eigenvalues of the quantum mechanical spin operator, while the
photons constituting LP waves will be in a “superposition state” of the eigenvectors of the spin operator
having the eigenvalues ±~ — upon spin measurements the photons of a LP wave will furnish one of +~

and −~ with equal (50%) probabilities, unlike the RCP and LCP wave photons furnishing +~ and −~,
respectively, with 100% probabilities.
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Note that this figure

only shows one linear

component of the sur-

face current on

z = 0 plane. One linear

component causes a lin-

ear polarized radiation.

An orthogonal pair of

linear components will

conspire to radiate a cir-

cular polarized wave as

in Example 2 when they

are 90◦ out of phase.

y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

Example 2: On z = 0 plane we have a time-varying surface current density

Js(t) = m(t)[cos(ωt)x̂+ sin(ωt)ŷ]
A

m

with a carrier frequency of ω. Determine the radiated wave fields E
± and the

polarization (and the helicity if appropriate) of the carrier.

Solution: We have already learned that a surface current Js(t) on z = 0 plane will
produce TEM wave fields

E
± = −η

2
Js(t∓

z

v
)

in surrounding regions. With the given Js(t) , this implies

E
± = −η

2
m(t∓ z

v
)[cos(ωt∓ βz)x̂+ sin(ωt∓ βz)ŷ]

V

m
,

which has a circular-polarized carrier

cos(ωt∓ βz)x̂+ sin(ωt∓ βz)ŷ

that varies, on z = 0 plane, as

cos(ωt)x̂+ sin(ωt)ŷ.

This vector rotates from x- toward y-axis, and therefore the carrier of E
+ is

right-circular and the carrier of E− is left-circular.
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Example 3: In Example 2, what is the average power density of the circular polarized
carrier signal

Ec = cos(ωt− βz)x̂+ sin(ωt− βz)ŷ
V

m
in the region z > 0, assumed to be vacuum?

Solution: In phasor notation Ec and is given as

Ẽc = (x̂− jŷ)e−jβz V

m
.

The corresponding Hc phasor is

H̃c =
1

ηo
(ŷ + jx̂)e−jβz V

m
.

Therefore, the average power density is found to be

1

2
Re{Ẽc × H̃

∗
c} =

1

2ηo
Re{(x̂− jŷ)× (ŷ + jx̂)∗} =

1

2ηo
(ẑ + ẑ) =

1

ηo
ẑ.

This is twice the power content of a linearly polarized wave field of an equal
amplitude!

Make sure you check and follow all the sign changes that take place in

Example 3.

9



25 Wave reflection and transmission

In this lecture we will examine the phenomenon of plane-wave reflections at

an interface separating two homogeneous regions where Maxwell’s equations

allow for traveling TEM wave solutions. The solutions will also need to

n̂ · (D+ −D−) = ρs

n̂ · (B+ −B−) = 0

n̂× (E+ − E−) = 0

n̂× (H+ −H−) = Js

satisfy the boundary condition equations repeated in the margin. We will

consider a propagation scenario in which (see margin):

Region 1 Region 2

Hi

x

y

z

Ei Et

Ht

Hr

Er

1. Region 1 where z < 0 is occupied by a perfect dielectric with medium

parameters µ1, ǫ1, and σ1 = 0,

2. Region 2 where z > 0 is homogeneous with medium parameters µ2, ǫ2,

and σ2,

3. Interface z = 0 contains no surface charge or current except possibly

in σ2 → ∞ limit which will be considered separately at the end.

• In Region 1 we envision an incident plane-wave with linear-polarized field phasors

Ẽi = x̂Eoe
−jβ1z and H̃i = ŷ

Eo

η1
e−jβ1z,

where

– Eo is the wave amplitude due to far away source located in z → −∞ region,

– η1 =
√

µ1

ǫ1
and β1 = ω

√
µ1ǫ1.

1



Fields above satisfy Maxwell’s equations in Region 1, but if there were no

other fields in Regions 1 and 2 boundary condition equations requiring

continuous tangential E and H at the z = 0 interface would be violated.

In order to comply with the boundary condition equations we postulate

a set of reflected and transmitted wave fields in Regions 1 and 2 as follows: Incident:

Ẽi = x̂Eoe
−jβ1z,

H̃i = ŷ
Eo

η1
e−jβ1z,

Reflected:

Ẽr = x̂ΓEoe
jβ1z,

H̃r = −ŷ
ΓEo

η1
ejβ1z,

Transmitted:

Ẽt = x̂τEoe
−γ2z,

H̃t = ŷ
τEo

η2
e−γ2z.

• In Region 1 we postulate a reflected plane-wave with linear-polarized field phasors

Ẽr = x̂ΓEoe
jβ1z and H̃r = −ŷ

ΓEo

η1
ejβ1z

including an unknown Γ that we will refer to as reflection coefficient.

– Note that the reflected wave propagates in −z direction (direction of H̃r and
the exponential terms have been adjusted accordingly).

• In Region 2 we postulate a transmitted plane-wave with linear-polarized field

phasors

Ẽt = x̂τEoe
−γ2z and H̃t = ŷ

τEo

η2
e−γ2z

including an unknown τ that we will refer to as transmission coefficient.

– Note that the transmitted wave propagates in z direction, and

– since Region 2 is conducting we have

η2 =

√

jωµ2

σ2 + jωǫ2

and
γ2 =

√

(jωµ2)(σ2 + jωǫ2) = α2 + jβ2.
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• To determine the unknowns Γ and τ we enforce the following boundary

conditions at z = 0 where the fields simplify as shown in the margin: Incident at z = 0:

Ẽi = x̂Eo, H̃i = ŷ
Eo

η1
,

Reflected at z = 0:

Ẽr = x̂ΓEo, H̃r = −ŷ
ΓEo

η1

Transmitted at z = 0:

Ẽt = x̂τEo, H̃t = ŷ
τEo

η2

1. Tangential Ẽ continuous at z = 0: This requires Ẽix + Ẽrx = Ẽtx,

leading to

(1 + Γ)Eo = τEo ⇒ 1+Γ=τ

2. Tangential H̃ continuous at z = 0: This requires H̃iy + H̃ry = H̃ty,

leading to

(1− Γ)
Eo

η1
= τ

Eo

η2
⇒ 1-Γ=η1

η2
τ

Replacing τ by 1 + Γ in the second equation, we can solve for the

reflection coefficient as

Γ=η2−η1
η2+η1

and substituting this in turn in the first equation we can solve for the

transmission coefficient as

τ= 2η2
η2+η1

The results are summarized in the margin on the next page.
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Reflection coeff.:

Γ =
η2 − η1
η2 + η1

,

Transmission coeff.:

τ =
2η2

η2 + η1
.

Memorize the Γ for-

mula, and memorize

τ as “one plus Γ”.

Above,

η1 =

√

µ1

ǫ1

and

η2 =

√

jωµ2

σ2 + jωǫ2
.

Special cases:

1. Region 2 is a perfect conductor with σ2 → ∞: In that case

η2 → 0, and consequently

Γ = −1 and τ = 0.

Incident wave cannot penetrate the perfect conductor, and it reflects

totally back into Region 1 — we will study this idealized limiting case

more carefully later on.

Practical application of total reflection: mirrors

2. Region 2 is the same as Region 1: In that case η2 = η1, and

consequently

Γ = 0 and τ = 1.

This is the matched impedance case when no reflection takes place

and the incident wave is transmitted in its entirety.

3. Region 2 is lossless, i.e., σ2 = 0: Unless η2 = η1 there will be

reflected as well as transmitted waves.

Partial reflections can be reduced by applying a “anti-glare” coat-

ing1 on the surface, a practice known as “impedance matching”.

1This is a λ/4 thick layer of a material having a characteristic impedance given by
√
η1η2 — the reason

for why this “quarter-wave matching” works will be discussed when we study transmission lines later on.
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Region 1 Region 2

Hi

x

y

z

Ei Et

Ht

Hr

Er

Example 1: An plane-wave in vacuum,

Ẽi = x̂
√
120πe−jβ1z V

m
,

is incident at z = 0 on a dielectric medium with µ = µo and ǫ = 9

4
ǫo. Determine

the average Poynting vectors 〈Si〉, 〈Sr〉, and 〈St〉 of the incident, reflected, and
transmitted fields.

Solution: The intrinsic impedance of the second medium occupying z > 0 is

η2 =

√

µo

9

4
ǫo

=
2

3
ηo.

Therefore, the reflection coefficient is

Γ =
η2 − η1
η2 + η1

=
2

3
ηo − ηo

2

3
ηo + ηo

=
2

3
− 1

2

3
+ 1

=
2− 3

2 + 3
= −1

5

and the transmission coefficient is

τ = 1 + Γ = 1− 1

5
=

4

5
.

The reflected wave therefore has the field phasors

Ẽr = −1

5
x̂
√
120πejβ1z and H̃r =

1

5ηo
ŷ
√
120πejβ1z

and

〈Sr〉 =
1

2
Re{Ẽr × H̃∗

r} = −ẑ
1

2
(
1

5
)2
120π

ηo
≈ −ẑ

1

2
(
1

5
)2

W

m2
.
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The transmitted wave, likewise, has the field phasors

Ẽt =
4

5
x̂
√
120πe−jβ2z and H̃t =

4

52

3
ηo
ŷ
√
120πe−jβ2z

and

〈St〉 =
1

2
Re{Ẽt × H̃∗

t} = ẑ
1

2
(
4

5
)2
3

2

120π

ηo
≈ ẑ

1

2
(
4

5
)2
3

2

W

m2
.

As for the incident wave

Ẽi = x̂
√
120πe−jβ1z and H̃i =

1

ηo
ŷ
√
120πe−jβ1z

and

〈Si〉 =
1

2
Re{Ẽi × H̃∗

i} = ẑ
1

2

120π

ηo
≈ ẑ

1

2

W

m2
.

Note: We have

|〈Sr〉| + |〈St〉| =
1

2
(
1

25
+

16

25

3

2
) =

1

2
(
1

25
+

24

25
) =

1

2
= |〈Si〉|

in compliance with energy conservation (as expected) — energy flux per unit

area of the transmitted and reflected waves add up the that of the

incident wave!
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26 Standing waves, radiation pressure

We continue in this lecture with our studies of wave reflection and transmis-

sion at a plane boundary between two homogeneous media.

• In case of total reflection from a perfectly conducting mirror placed at

z = 0 surface, Γ = −1, and the incident and reflected waves in z < 0

region combine to produce standing waves of electric and magnetic

field:

Region 1 Region 2

Hi

x

y

z

Ei Et = 0

Ht = 0

Hr

Er

– Incident wave (a traveling wave going in z-direction):

Ẽi = x̂Eoe
−jβ1z and H̃i = ŷ

Eo

η1
e−jβ1z,

– Reflected wave (a traveling wave going in −z-direction):

Ẽr = −x̂Eoe
jβ1z and H̃r = ŷ

Eo

η1
ejβ1z,

– Standing wave:

Ẽ = Ẽi+Ẽr = x̂Eo(e
−jβ1z−ejβ1z) and H̃ = H̃i+H̃r = ŷ

Eo

η1
(e−jβ1z+ejβ1z)

which simplify as

Standing

waves

Ẽ = −jx̂2Eo sin(β1z) and H̃ = ŷ
2Eo

η1
cos(β1z).

1



These are called standing wave phasors because when we go

to the time-domain (by multiplying with ejωt and taking the real

time as usual) we obtain:

E(z, t) = x̂2Eo sin(β1z) sin(ωt) and H(z, t) = ŷ
2Eo

η1
cos(β1z) cos(ωt);

these, unlike d’Alembert solutions of the format f(t∓ z
v
), describe os-

cillations in time t, with different amplitudes at different positions z

(see margin and the animation linked in class calendar).

λ

2

z

Ex(z, t) ∝ sin(βz) sin(ωt)

z

Hy(z, t) ∝ cos(βz) cos(ωt)

λ =
2π

β

Note: Nulls in Ex and Hy are
separated by half wavelength.

Adjacent nulls of Ex and Hy 
are separated by quarter
wavelength. 

It is useful to think of nulls
of Ex as "shorts" in analogy
to shorts in circuits where v=0.

Conductor shorts Ex on its 
surface where a current flows.

Also useful to think of nulls
of Hy as "opens" in analogy
to opens in circuits where i=0.

– Standing waves carry no net energy, that is, with standing wave

fields we have

〈E×H〉 = 0,

because of the cancellation of the power transported by its travel-

ing wave components in opposite directions.
Verification: Using the phasors

Ẽ = −jx̂2Eo sin(β1z) and H̃ = ŷ
2Eo

η1
cos(β1z),

we have

〈E×H〉 =
1

2
Re{Ẽ× H̃∗} =

1

2
Re{−jx̂2Eo sin(β1z)× ŷ

2Eo

η1
cos(β1z)}

= ẑ
2E2

o

η1
sin(β1z) cos(β1z)Re{−j} = 0.
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– Note that E(0, t) = 0 on z = 0 surface satisfying the tangential

electric boundary condition as expected (recall that the fields are

zero within the perfect conducting mirror).

λ

2

z

Ex(z, t) ∝ sin(βz) sin(ωt)

z

Hy(z, t) ∝ cos(βz) cos(ωt)

λ =
2π

β

Note: Nulls in Ex and Hy are
separated by half wavelength.

Adjacent nulls of Ex and Hy 
are separated by quarter
wavelength. 

It is useful to think of nulls
of Ex as "shorts" in analogy
to shorts in circuits where v=0.

Conductor shorts Ex on its 
surface where a current flows.

Also useful to think of nulls
of Hy as "opens" in analogy
to opens in circuits where i=0.

– Also note that

H(0, t) = ŷ
2Eo

η1
cos(ωt)

on z = 0 surface. Since this tangential magnetic field is not zero,

boundary condition equations imply that there must be an oscil-

lating surface current

Js = x̂
2Eo

η1
cos(ωt) A

m,

satisfying

−ẑ ×H(0, t) = Js.

Js on mirror surfaces is really a convenient idealization of volume cur-

rents flowing in thin layers — just a few skin depths — near good-

conductor surfaces (real-life mirrors are good but not perfect conduc-

tors!). Radiation due to Js in effect causes the reflected wave and also

cancels out the incident wave field in z > 0.

Next we examine reflections from a good conductor and see of how

the limiting case of a perfect conductor is naturally reached.
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Ẽt = x̂τEoe
−γ2z

H̃t = ŷ
τEo

η2
e−γ2z

J̃t = σ2Ẽt = x̂σ2τEoe
−γ2z

B̃t = µ2H̃t = ŷ
µ2τEo

η2
e−γ2z

• Going back to the partial reflection case, consider the transmitted fields

Ẽt and H̃t in Region 2 shown in the margin. Also shown in the margin

are the phasors for current density Jt and magnetic flux density Bt.

In the box below we integrate the volumetric current density Jt of a good

conductor from z = 0 to ∞ and find out that this “depth integral” matches

the surface current density found above for the case of perfect conductor. In

this calculation we assume that Region 1 is vacuum, and also take µ2 = µo:

Effective surface current: Assuming that Region 2 is a good conductor,

η2 =

√

jωµ2

σ2 + jωǫ2
≈

√

jωµ2

σ2
and γ2 =

√

jωµ2(σ2 + jωǫ2) ≈
√

jωµ2σ2

and therefore

τ =
2η2

ηo + η2
≈ 2η2

ηo
and σ2τ ≈ 2σ2η2

ηo
=

2
√
jωµ2σ2

ηo
=

2γ2
ηo

.

The depth integral of the volumetric current density in Region 2, that is, the effective

surface current of the region is then
∫ ∞

0

J̃tdz = x̂

∫ ∞

0

σ2τEoe
−γ2zdz = x̂Eo

1

γ2
(σ2τ) = x̂

2Eo

ηo

in phasor form, matching the phasor of the time-domain result from above, namely

Js = x̂
2Eo

ηo
cos(ωt) A

m

representing the surface current on an idealized perfect conductor surface.
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Surface resistance: Let J̃s stand for the effective surface current of a good con-
ductor with a propagation constant

γ ≈
√

jωµσ = α+ jβ = α + jα

and a volumetric current density J̃(z) such that

J̃s =

∫ ∞

z=0

J̃(z)dz =

∫ ∞

z=0

J̃(0)e−γzdz =
J̃(0)

γ
.

In that case

J̃(z) = J̃sγe
−γz and E(z) =

J̃sγ

σ
e−γz

inside the good conductor in terms of the effective surface current J̃s, and the average
power dissipated per unit volume (Joule heating) is

〈J(z) · E(z)〉 = 1

2
|J̃sγ|2

e−2αz

σ
=

1

2
|J̃s|2

2α2e−2αz

σ
.

The depth integral of the same quantity, that is the power dissipated per unit area,
is then

∫ ∞

0

〈J(z) ·E(z)〉dz =
1

2
Rs|J̃s|2,

with

Rs ≡
α

σ
=

√
πfµσ

σ
=

√

πfµ

σ
(Ω)

called the surface resistance.
The surface resistance concept is useful to model loss effects in waveguides and

cavity resonators as studied in ECE 450. Also, we can make use of surface resistance
when modeling lossy transmission lines (see Lecture 39).

5



• Let’s finally calculate the magnetic component of the Lorentz force on

charge carriers of a good conductor due to the penetrating fields: Radiation pressure propor-

tional to

〈Si〉/c

shows that plane-TEM waves

not only carry and transport

energy, but also momentum.

TEM waves not only

heat , but also push!

((It can also be shown that the momen-
tum density of the wave is

〈Si〉/c2 N.s/m3

and (spin) angular momentum density

±〈Si〉/ωc N.s/m2

for right- and left-circular waves. Mo-
mentum per photon of energy ~ω can be
obtained by dividing the above expres-
sions by |〈Si〉|/ωc~, the number density
of photons in the wave field.))

Radiation pressure: If there are N free charge carriers per unit volume inside a
reflecting mirror, then

NF = Nqv ×Bt = Jt ×Bt

will be the force per unit volume of the mirror, expressed in terms of current density
Jt = Nqv and the magnetic flux density Bt.

Its integral over all z can be interpreted as the total force per unit area of the
mirror,

Prad =

∫ ∞

0

Jt ×Bt dz,

having a magnitude known as radiation pressure of the reflecting wave. This is a
time-varying quantity, with a time-average

〈Prad〉 =

∫ ∞

0

1

2
Re{J̃× B̃∗}dz

= ẑ

∫ ∞

0

1

2
Re{(σ2τEo)(

µ2τEo

η2
)}e−2α2zdz

= ẑ
|Eo|2
2

Re{(2γ2
ηo

)(
µ2

η2

2η2
ηo

)} 1

2α2
= ẑ2

|Eo|2
2ηo

Re{γ2}
α2

µ2

ηo

= ẑ2
|Eo|2
2ηo

µo

ηo
= 2〈Si〉/c,

where

〈Si〉 ≡ ẑ
|Eo|2
2ηo

is the time-average Poynting vector of the incident wave reflected from the mirror (factor
of 2 in 〈Prad〉 is due to the recoil of the wave off the mirror; see Rothman and Boughn,
Am. J. Phys., 77 , 122, 1977).
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27 Guided TEM waves on TL systems

• An x̂ polarized plane TEM wave propagating in z direction is depicted in the mar-

gin.

– A pair of conducting plates placed at x = 0 and x = d would not perturb
the fields except that charge and current density variations would be induced
on plate surfaces at x = 0 and x = d (on both sides) to satisfy Maxwell’s
boundary condition equations.

z

x

y

E × H

E

H
Unguided uniform plane
wave propagation in a 
homogeneous medium

W

d

z

x

y

Plate 2

Plate 1E × H

E

H I

I

• If charge and currents were confined only to interior surfaces of the plates facing one

another, fields E and H accompanying them would be restricted to the region in

between the plates, constituting what we would call guided waves.

– Such a guided wave field confined to the region between the plates will sat-
isfy Maxwell’s equations including a minor fringing component that can be
neglected when the plate width W is much larger than plate separation d.

In the following discussion of guided waves in parallel-plate transmission lines

(TL) we will assume W ≫ d and neglect the effects of fringing fields.

– Guided waves produce wavelike surface charge and current variations on plate
surfaces.

– Conversely, wavelike charge and current variations on plate surfaces would
produce guided wave fields.

It is sufficient to apply a time-varying current and/or charge density at some location
z on a parallel-plate TL — e.g., by a time-varying voltage or current source — in
order to “excite” the TL with propagating guided fields.

1



How such excitations propagate away from their “source points” on TL systems will
be our main subject of study for the rest of the semester.

• In a parallel-plate TL we ignore any fringing fields and assume that

TEM wave fields
W

d

z

x

y

Plate 2

Plate 1E × H

E

H I

I

E = x̂Ex(z, t) and H = ŷHy(z, t)

occupy the region between the plates. For these fields uniform in x and

y, Faraday’s and Ampere’s laws reduce to scalar expressions

∇×E = −µ
∂H

∂t
⇒ ∂Ex

∂z
= −µ

∂Hy

∂t

and

∇×H = σE + ǫ
∂E

∂t
⇒ −∂Hy

∂z
= σEx + ǫ

∂Ex

∂t
.

• Now, multiply both equations by d and let Note that voltage drop

V =

∫

1

2

E · dl = Exd

is uniquely defined — inde-

pendent of integration path

— on constant z surfaces be-
cause with TEM fields

Bz = µHz = 0,

and consequently circulation

∮

C

E · dl = − d

dt

∫

S

B · dS = 0

when C is on constant z plane

and dS = ±dxdyẑ.

V ≡ Exd voltage drop from plate 2 to plate 1

to obtain

∂V

∂z
= −µd

∂Hy

∂t
and − d

∂Hy

∂z
= ǫ

∂V

∂t
+ σV.

• Next, multiply these with W and let

I ≡ HyW current in z-direction on plate 2

(because Jsz = Hy on plate 2) to obtain

W
∂V

∂z
= −µd

∂I

∂t
and − d

∂I

∂z
= ǫW

∂V

∂t
+ σWV.
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• We can re-write these equations as

−∂V

∂z
= L∂I

∂t
and − ∂I

∂z
= C∂V

∂t
+ GV

utilizing

L = µ
d

W
, C = ǫ

W

d
, G = σ

W

d
appropriate for the parallel-plate TL — we recognize these parameters

as inductance, capacitance, and conductance of the parallel plate TL. Telegrapher’s

equations:

−∂V

∂z
= L∂I

∂t

−∂I

∂z
= C∂V

∂t

– In the equations above the GV term accounts for Ohmic losses of

wave fields having to do with currents leaking between the wires

(plates) of the TL.

– Another possible loss term that we have not picked up — because

we assumed infinite conducting plates — is a missing RI term in

the right-hand-side of the first equation.

Rather than correcting for that at this stage, we will drop the GV term

from the second equation, and focus our attention for a while (until

the last day of the semester, in fact) on ideal lossless transmission lines

governed by the equations shown in the margin — they are known as

known as telegrapher’s equations1.

1Telegrapher’s equations were first compiled by Oliver Heaviside (of close-up method, unit-step, and
countless other contributions) in 1880’s. Telegraphy was being used worldwide by 1850’s as a means of
rapid communications.
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• Except for − ∂
∂z

on the left, the telegrapher’s equations look like the

V − I relations of inductors and capacitors (which is the best way of

remembering them). Telegrapher’s

equations:

−∂V

∂z
= L∂I

∂t

−∂I

∂z
= C∂V

∂t

where

C = ǫGF, L =
µ

GF
,

with “geometrical factor”

GF =
W

d
parallel-plate

=
2π

ln b

a

coax

=
π

cosh−1 D

2a

twin-lead

• The equations can be readily combined to obtain a 1D scalar wave

equation
∂2V

∂z2
= LC∂

2V

∂t2
.

In analogy to
∂2Ex

∂z2
= µǫ

∂2Ex

∂t2
,

the wave equation for V has d’Alembert wave solutions

V (z, t) = f(t∓ z

v
) where v ≡ 1√

LC
=

1√
µǫ

.

• In that case the second telegrapher’s equation demands

−∂I

∂z
= C∂V

∂t
= Cf ′(t∓ z

v
)

implying an anti-derivative

I(z, t) = ±Cv f(t∓ z

v
) = ±f(t∓ z

v)

Zo

with

Zo ≡
1

Cv =

√
LC
C =

√

L
C =

1

GF

√

µ

ǫ
.
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• In summary, d’Alembert wave solutions of telegrapher’s equations are

V (z, t) = f(t∓ z

v
) and I(z, t) = ±f(t∓ z

v)

Zo

with a propagation speed

v =
1√
LC

=
1√
µǫ

that equals the wave speed of the associated electric and magnetic fields,

and voltage-to-current ratio representing a characteristic impedance

Zo =

√

L
C =

1

GF

√

µ

ǫ
.

Telegrapher’s equations and their d’Alembert solutions provide us with a

“handle” on the following physics:

• Suppose that + and - terminals of a 3 V battery makes contact with

the terminals of a charge neutral TL at t = 0 as depicted in the margin.

We will assume that V (z, t) = I(z, t) = 0 on the TL for t < 0.

As soon as contact is made between the terminals of the battery and the

TL, the excess + and - charges on battery terminals will “spill onto” the TL

terminals as shown in the figure for t = 0+:

Wire 2

Wire 1

++

--

t < 0a)

Wire 2

Wire 1

++

--

t = 0+b)
++

--

3 V

3 V

I

I

V

Wire 2

Wire 1

++

--

t > 0+c)
+++++

-----

3 V

I

I

V z = vt

0 z

• what really happens is,
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– electrons move from the - terminal of the battery onto the bottom

wire of the TL,

– replenished by an equal amount of electrons moving from the top

wire into the battery via its + terminal,

giving the overall impression of current flows I (in opposite direction

to electron motion) as marked on the two wires in the diagram.

– currents I and voltage V marked in the diagram are confined only

to location z = 0+ at t = 0+, while there is still zero current on

the rest of the TL!!!

Wire 2

Wire 1

++

--

t < 0a)

Wire 2

Wire 1

++

--

t = 0+b)
++

--

3 V

3 V

I

I

V

Wire 2

Wire 1

++

--

t > 0+c)
+++++

-----

3 V

I

I

V z = vt

0 z

Having unequal currents on a length of wire is in conflict with our

notions from earlier circuit courses, but that’s because earlier courses

taught us “lumped-circuit analysis”, an approximate technique jus-

tified when it’s OK to ignore certain time delays of charge movements

in the circuit (when wire lengths are sufficiently short).

Having unequal currents on the TL wire is really what happens

– because, for instance, electrons at some z > 0 on the top wire will

start moving towards the battery terminal only after the neighbor-

ing electrons at z− deplete the region leaving some excess positive

charge.

Thus, currents I on the wires, and voltage V defined and measured

across the wires, spread out of z = 0 region at a finite speed v, in

6



analogy with ripples spreading out on a pond surface when perturbed

by a falling pebble.

• Telegrapher’s equations and their d’Alembert solutions will

allow us to calculate how I and V evolve on the TL in quan-

titative terms.

To appreciate the distinction between lumped and distributed circuit anal-

ysis, we next develop a lumped circuit model of a very short length of a TL

over which lumped circuit notions may be applicable:

−∂V

∂z
= L∂I

∂t

−∂I

∂z
= C∂V

∂t

∆zC

z z + ∆z

V (z)

I(z)

∆zL+

-

I(z + ∆z)

Wire 2

Wire 1

• Let us re-write the first telegrapher’s equation as

−∆V ≡ V (z, t)− V (z +∆z, t) = ∆zL∂I

∂t

after approximating the left side as a ratio of infinitesimals.

– This relation shows that in the current flow direction there is an

infinitesimal inductive voltage drop of ∆zL∂I
∂t

between points z

and z+∆z on the wire carrying current I ≡ I(z, t) ≈ I(z+∆z, t).

• Likewise, the second equation re-arranged as

−∆I ≡ I(z, t)− I(z +∆z, t) = ∆zC∂V
∂t

,

– this shows that an infinitesimal capacitor current ∆zC ∂V
∂t

flows out

of a node located between z and z +∆z on the wire with current

I into a node on the second wire at the same location.
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Evidently, a short section ∆z of the TL has an equivalent T-network with

1. a series inductance ∆zL carrying a current I(z, t) ≈ I(z +∆z, t), and

2. a shunt capacitance ∆zC carrying a voltage V (z + ∆z, t) ≈ V (z, t)

as shown in the margin.

∆zC

z z + ∆z

V (z)

I(z)

∆zL+

-

I(z + ∆z)

Wire 2

Wire 1

This lumped-circuit equivalent is only accurate for ∆z so small that

I(z, t) ≈ I(z +∆z, t) and V (z +∆z, t) ≈ V (z, t)

are both true, which is of course possible only if ∆z ≪ λ, λ being the shortest

wavelength in I(z, t) ∝ H(z, t) and V (z, t) ∝ E(z, t) waveforms. TL’s can also support non-TEM

modes having non-zero compo-

nents of Hz or Ez. These modes

are non-propagating (evanescent)

at low frequencies and remain lo-

calized near their excitation re-

gions (e.g., discontinuity points on

the line) if d <
λ

2
(pp TL) or if

a+ b <
λ

π
(coax). At high frequen-

cies when these modes cannot be

avoided with practical dimensions

d, a, and b, it may be practicable

to use them rather than the TEM

mode. Use single-wire waveguides

in that case instead of two-wire

TL’s.

• Going back to parallel-plate TL in TEM mode, observe that the total

power transported in the guide will be the Poynting vector E × H =

ExHyẑ times the cross-sectional area of the guide, namely, Wd.

Thus, power transported in z direction is

p(z, t) = WdEx(z, t)Hy(z, t),

= (Ex(z, t)d)(Hy(z, t)W ) = V (z, t)I(z, t)

the familiar formula from circuit theory.

Hence, the circuit theory formula

P =
1

2
Re{Ṽ Ĩ∗}

for average power will also hold in sinusoidal-steady state TL problems when

we use phasors Ṽ (z) and Ĩ(z) to represent the V (z, t) and I(z, t) waveforms.
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28 Distributed circuits and bounce diagrams

Last lecture we learned that voltage and current variations on TL’s are gov-

erned by telegrapher’s equations and their d’Alembert solutions — the latter

can be expressed as

V (z, t) = f(t− z

v
) + g(t +

z

v
) and I(z, t) =

f(t− z
v)

Zo
− g(t + z

v)

Zo

in terms of

v =
1√
LC

and Zo =

√

L
C

and functions f(t) and g(t) corresponding to signal waveforms propagated in

+z and −z directions, respectively.

+
-

Wire 2

Wire 1

+

-

0

fi(t)

Rg

RL

I(z, t)

V (z, t)

z
l

Source
ckt

Transmission line

Load

Zo

I(z, t)

+

-

IL

VL

• In this lecture we will learn how to solve distributed circuit prob-

lems containing TL segments and two terminal elements such as resis-

tors and voltage (or current) sources. In solving the problems, we will

apply the usual rules of lumped circuit analysis at element terminals

and treat the TL’s in terms of d’Alembert solutions above.

• Consider a TL with a characteristic impedance Zo extending from z = 0

to z = l, where a two-terminal source circuit (e.g., a receiving antenna)

modeled by a Thevenin equivalent with voltage fi(t) and resistance

Rg is connected between the TL terminals at z = 0 and a load (e.g.,

a receiver circuit) modeled by a resistance RL terminates the line at

z = l (see margin).
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– We want to determine voltage and current signals V (z, t) and

I(z, t) on the TL and the load RL for time t > 0 in terms of

source signal fi(t) assuming that fi(t) = 0 for t < 0.

• Using the d’Alembert solutions V (z, t) and I(z, t) from above at z = l,

we have

V (ℓ, t)

I(ℓ, t)
=

f(t− ℓ
v) + g(t + ℓ

v)

f(t− ℓ
v )

Zo
− g(t+ ℓ

v )

Zo

= Zo

f(t− ℓ
v) + g(t + ℓ

v)

f(t− ℓ
v)− g(t + ℓ

v)
=

VL

IL
= RL,

from which we obtain

+
-

Wire 2

Wire 1

+

-

0

fi(t)

Rg

RL

I(z, t)

V (z, t)

z
l

Source
ckt

Transmission line

Load

Zo

I(z, t)

+

-

IL

VL

g(t +
l

v
) =

RL − Zo

RL + Zo
︸ ︷︷ ︸

f(t− l

v
) ⇒ g(t) = ΓLf(t−

2l

v
)

ΓL

where

ΓL =
RL − Zo

RL + Zo

is the load reflection coefficient in the TL circuit. We can re-write

the d’Alembert solution for V (z, t) and I(z, t) in terms of only f(t) as

V (z, t) = f(t−z

v
)+ΓLf(t+

z

v
−2l

v
) and I(z, t) =

f(t− z
v)

Zo
−ΓLf(t +

z
v − 2l

v )

Zo
.

• Assuming that fi(t) = 0 = f(t) for t < 0, we can relate f(t) to fi(t) in

t > 0 interval using the KVL equation at z = 0 that states

fi(t) = RgI(0, t) + V (0, t),
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which is, using V (z, t) and I(z, t) at z = 0,

fi(t) = Rg (
f(t)

Zo
− ΓLf(t− 2l

v )

Zo
)

︸ ︷︷ ︸

+ f(t) + ΓLf(t−
2l

v
)

︸ ︷︷ ︸

.

I(0, t) V (0, t)

Now, since f(t− 2l
v
) = 0 for t− 2l

v
< 0, we find out that for the epoch

(or time interval) 0 < t < 2l
v ,

fi(t) = Rg
f(t)

Zo
+ f(t) ⇒ f(t) =

Zo

Rg + Zo
︸ ︷︷ ︸

fi(t)

τg

where

+
-

Wire 2

Wire 1

+

-

0

fi(t)

Rg

RL

I(z, t)

V (z, t)

z
l

Source
ckt

Transmission line

Load

Zo

I(z, t)

+

-

IL

VL

τg =
Zo

Rg + Zo

is the injection coefficient of the TL circuit1.

• Thus, for the epoch 0 < t < 2l
v , we have the voltage and current

solutions

V (z, t) = τgfi(t−
z

v
)+ΓLτgfi(t+

z

v
−2l

v
) and I(z, t) =

τgfi(t− z
v)

Zo
−ΓLτgfi(t +

z
v − 2l

v )

Zo

on the line.
1Note how f(t) appears to be related to fi(t) according to a voltage division rule with Zo representing

the resistance across which voltage f(t) is measured.
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– So far fi(t) function is arbitrary and the above results would also

be valid for fi(t) = δ(t), Dirac’s impulse, in which case

V (z, t) = τgδ(t−
z

v
)+ΓLτgδ(t+

z

v
−2l

v
) and I(z, t) =

τgδ(t− z
v
)

Zo
−ΓLτgδ(t +

z
v
− 2l

v
)

Zo

would be the voltage and current impulse response functions

of the TL circuit for the 0 < t < 2l
v

epoch.

• To extend the impulse response functions above to the “next epoch”
2l
v < t < 4l

v , we note that at z = 0 the KVL equation with fi(t) = δ(t)

reads as

+
-

+

-

0

δ(t)

Rg I(z, t)

V (z, t)

z
l

Zo

I(z, t)
RL

+

-

IL

VL

3l

v

τgΓ
3

LΓ
2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ
2

LΓg

τgΓ
2

LΓ
2

g

2l

v

4l

v

l

v

Bounce diagram
δ(t) = Rg (

f(t)

Zo
− ΓLf(t− 2l

v )

Zo
)

︸ ︷︷ ︸

+ f(t) + ΓLf(t−
2l

v
)

︸ ︷︷ ︸

.

I(0, t) V (0, t)

which can be re-arranged as

δ(t) = (1 +
Rg

Zo
)f(t) + (1− Rg

Zo
)ΓL f(t−

2l

v
)

︸ ︷︷ ︸

,

τgδ(t−
2l

v
)

where for f(t − 2l
v
) we used a delayed copy of f(t) = τgfi(t) solution

for f(t) from the previous epoch in view of the time delay 2l
v contained

within f(t− 2l
v
).
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– Hence, solving this for f(t), we find, for this epoch,

f(t) = τgδ(t) +
Rg − Zo

Rg + Zo
︸ ︷︷ ︸

ΓLτgδ(t−
2l

v
),

Γg

where

Γg =
Rg − Zo

Rg + Zo

is the source reflection coefficient of the TL circuit.

– Substituting f(t) for the epoch 2l
v
< t < 4l

v
within voltage and

current formulae

V (z, t) = f(t−z

v
)+ΓLf(t+

z

v
−2l

v
) and I(z, t) =

f(t− z
v
)

Zo
−ΓLf(t +

z
v
− 2l

v
)

Zo

we obtain the “extended” voltage and current impulse response

functions

V (z, t) = τgδ(t−
z

v
)+ΓLτgδ(t+

z

v
−2l

v
)+ΓgΓLτgδ(t−

z

v
−2l

v
)+ΓgΓ

2
Lτgδ(t+

z

v
−4l

v
)

and

I(z, t) = Z−1
o [τgδ(t−

z

v
)−ΓLτgδ(t+

z

v
−2l

v
)+ΓgΓLτgδ(t−

z

v
−2l

v
)−ΓgΓ

2
Lτgδ(t+

z

v
−4l

v
)]

respectively.
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◦ At this point the algebra is pretty messy, but a straightforward

pattern is emerging (to obviate the need for algebraic analysis

for the upcoming epochs) that is best appreciated with the

help of bounce diagrams explained next:

+
-

+

-

0

δ(t)

Rg I(z, t)

V (z, t)

z
l

Zo

I(z, t)
RL

+

-

IL

VL

3l

v

τgΓ
3

LΓ
2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ
2

LΓg

τgΓ
2

LΓ
2

g

2l

v

4l

v

l

v

Bounce diagram– A bounce diagram is a plot of the “trajectories” of traveling im-

pulses found on transmission line segments excited by impulse in-

puts.

– The horizontal axis represents position z of the traveling impulses

while time t is represented by a downward pointing axis.

– The first slanted line on the top of the diagram, representing the

traveling impulse

τgδ(t−
z

v
),

(first term of hz(t) = V (z, t)) is “reflected” at time t = ℓ
v

from load

RL to turn into a backward propagating impulse

τgΓLδ(t +
z

v
− 2ℓ

v
)

represented by the second line of the diagram.

– The backward propagating impulse reaches z = 0 at t = 2ℓ
v and is

reflected once more with a reflection coefficient

Γg =
Rg − Zo

Rg + Zo
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to become a forward propagating impulse

τgΓLΓgδ(t−
z

v
− 2ℓ

v
)

represented by the third line of the diagram.

◦ Reflection at Rg is in effect the same physical process as re-

flection at RL and therefore its coefficient Γg is identical with

ΓL except for the replacement of RL by Rg.

– The bounce diagram is advanced in time with further reflections

occurring at both ends.

+
-

+

-

0

δ(t)

Rg I(z, t)

V (z, t)

z
l

Zo

I(z, t)
RL

+

-

IL

VL

3l

v

τgΓ
3

LΓ
2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ
2

LΓg

τgΓ
2

LΓ
2

g

2l

v

4l

v

l

v

Bounce diagram
– We show the calculated weights of traveling impulses directly on

the diagram just above the slanted lines representing the trajec-

tories of each traveling impulse (each having a lifetime of ℓ/v)

• Using the bounce diagram, the full expressions for the voltage and
current impulse response functions of the circuit can be written as

V (z, t) = τg

∞
∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2ℓ

v
)

+τgΓL

∞
∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2ℓ

v
)

and

I(z, t) =
τg
Zo

∞
∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2ℓ

v
)

− τg
Zo

ΓL

∞
∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2ℓ

v
).

7



• Although these series formulae look daunting, only the lower order

terms usually matter — that is true because |ΓL| ≤ 1 and |Γg| ≤ 1 and

thus (ΓLΓg)
n is typically a rapidly diminishing function of n (unless

the ckt is “dissipation free” and resonant, a concept explored in Lecture

31).

+
-

+

-

0

δ(t)

Rg I(z, t)

V (z, t)

z
l

Zo

I(z, t)
RL

+

-

IL

VL

3l

v

τgΓ
3

LΓ
2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ
2

LΓg

τgΓ
2

LΓ
2

g

2l

v

4l

v

l

v

Bounce diagram• We typically rely on the bounce diagram technique more so than the

series expressions developed above. This will be illustrated by several

examples in the next lecture.

– The main idea is to combine delayed versions of the circuit input

fi(t) with the impulse weights indicated on the bounce diagram,

since, in general, the convolution δ(t− Tz) ∗ fi(t) = fi(t− Tz) for

any z-dependent delay such as z
v
, z
v
− 2ℓ

v
, etc...
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29 Bounce diagrams

• Last lecture we obtained the implulse-response functions Source matched to

line:

+
-

+

-

0

f(t)

Zo I(z, t)

V (z, t)

z
l

Zo

I(z, t)
RL

V (z, t) = τg[δ(t−
z

v
) + ΓLδ(t +

z

v
− 2l

v
)]

and

I(z, t) =
τg
Zo

[δ(t− z

v
)− ΓLδ(t +

z

v
− 2l

v
)]

for the voltage and current in the TL circuit shown in the margin where

the source is matched to the line so that τg =
1
2 — circuit response with

an arbitrary input f(t) is obtained by convolving these with f(t) (as

shown in Example 1 in last lecture).

• The impulse-response for V (z, t) is depicted in the margin in the form

of a bounce diagram, in which

z

l

t

τg

τgΓL2l

v

l

v

Bounce diagram

– the trajectories of the impulses constituting the impulse response

are plotted, with

◦ z axis in the horizontal, and

◦ t axis in the vertical extending from top to bottom

– and coefficients of each impulse noted in the diagram next to the

trajectory lines.

– the blue line sloping down on the top is a depiction of forward

propagating impulse τgδ(t− z
v),

1



– the next line down is the depiction of backward propagating im-

pulse τgΓLδ(t +
z
v − 2l

v ).

Bounce diagrams are graphical representations of impulse re-

sponse functions derived in TL circuit problems, and are pri-

marily used to determine the impulse response functions,

rather than the other way around as will be illustrated below.

• We show in the margin a circuit with an arbitrary

+
-

+

-

0

f(t)

Rg I(z, t)

V (z, t)

z
l

Zo

I(z, t)
RL

3l

v

τgΓ
3

LΓ
2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ
2

LΓg

τgΓ
2

LΓ
2

g

2l

v

4l

v

l

v

Bounce diagramRg and τg =
Zo

Rg + Zo
,

for which the bounce diagram is not terminated at t = 2l
v because the

backward propagating impulse on the line arriving at z = 0 at time

t = 2l
v

is reflected from z = 0 with a reflection coefficient of

Γg =
Rg − Zo

Rg + Zo
.

– Reflections of negative-going impulses incident on the source cir-

cuit are justified because these impulses just see the resistor Rg at

the generator end — the source voltage f(t) = δ(t) is by then just

a short is series with Rg — unmatched to Zo, just like the forward

going impulses seeing a load RL unmatched to Zo and reflecting

with a coefficient

ΓL =
RL − Zo

RL + Zo
.

2



• Once the bounce diagram for voltage has been constructed as shown
above, then the impulse response can be written by inspection as

3l

v

τgΓ
3

LΓ
2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ
2

LΓg

τgΓ
2

LΓ
2

g

2l

v

4l

v

l

v

Bounce diagram

V (z, t) = τg

∞
∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2l

v
)

+τgΓL

∞
∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2l

v
).

Also,

I(z, t) =
τg
Zo

∞
∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2l

v
)

− τg
Zo

ΓL

∞
∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2l

v
).

– It can also be shown that the first term of V (z, t) above is derived

from the formal solution of the equation

V +(t) = τgδ(t) + ΓLΓgV
+(t− 2l

v
)

which is obtained from

I(0, t) =
δ(t)− V (0, t)

Rg

enforced at z = 0. We have effectively by-passed such a formal

approach to the problem by using the bounce diagram technique.

3



• These awful series formulae above are hardly needed in most appli-

cations when only the first few terms of the series are sufficient for

reasonably accurate results (like in the next example).

4



+
-

+

-

0

u(t)

I(z, t)

V (z, t)

z
l

Zo = 50 Ω
I(z, t)

RL = 100 Ω

z = 1200 m

3l

v

z
l

t

1

1

3
2l

v

4l

v

l

v

Bounce diagram

Γg = −1 ΓL =
1

3

−

1

3

−

1

9

1

9

1

27

−

1

27

0 10 20 30 40 50 60
t us

0.5

1.0

1.5

2.0

vH4,tL

Animated version of this is

linked in the class calendar.

Example 1: Consider a TL circuit where Zo = 50Ω, v = c, l = 2400 m, Rg = 0, and
RL = 100Ω. Determine and plot V (1200, t) if f(t) = u(t).

Solution: For this circuit

τg =
Zo

Rg + Zo

= 1, Γg =
Rg − Zo

Rg + Zo

= −1, and ΓL =
RL − Zo

RL + Zo

=
1

3
.

Also, the transit time across the TL is

l

v
=

2400m

300× 106 m/s
= 8µs.

From the bounce diagram shown in the margin, the impulse response for z = 1200
m (the location marked by the vertical dashed line) is found to be

V (1200, t) = δ(t− 4) +
1

3
δ(t− 12)− 1

3
δ(t− 20)− 1

9
δ(t− 28) +

1

9
δ(t− 36) + · · ·

Replacing the δ(t) in this expression with the unit-step u(t), the specified source
function f(t), we get

V (1200, t) = u(t− 4)+
1

3
u(t− 12)− 1

3
u(t− 20)− 1

9
u(t− 28)+

1

9
u(t− 36)+ · · ·

which is plotted in the margin.
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3l

v

z
l

t

1

1

3
2l

v

4l

v

l

v

Bounce diagram

Γg = −1 ΓL =
1

3

−

1

3

−

1

9

1

9

1

27

−

1

27

0 10 20 30 40 50 60
t us

0.5

1.0

1.5

2.0

vH4,tL

• Note that as t → ∞, V (1200, t) → 1 V in Example 1, as if DC condi-

tions prevail and the TL becomes a pair of wires in the lumped circuit

sense.

– DC steady-state corresponds to ω = 0 and signal wavelength λ →
∞. In that limit l ≪ λ is always valid and TL can be treated like

an ordinary lumped circuit.

– Of course this simplification can only occur with f(t) ∝ u(t), or

its delayed versions, which are all asymptotically DC in t → ∞
limit. The simplification does not apply for f(t) = sin(ωt)u(t), for

example.
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Example 2: In the TL circuit described in Example 1, determine V (z, t) and I(z, t)
for a new source signal f(t) = rect( t

T
)+2rect( t−T

T
), T = 1 µs. Plot V (z, t) versus

z at t = 3 µs and t = 11 µs.

Solution: With τg = 1, Γg = −1, ΓL = 1
3 , and 2l

c
= 16µs, we obtain, by convolving

with the general impulse response, the voltage response

V (z, t) =
∞
∑

n=0

(−1

3
)nf(t− z

c
− n16) +

1

3

∞
∑

n=0

(−1

3
)nf(t+

z

c
− (n+ 1)16)

where z
c

is to be entered in µs units. Also,

I(z, t) =
1

50

∞
∑

n=0

(−1

3
)nf(t− z

c
− n16)− 1

50

1

3

∞
∑

n=0

(−1

3
)nf(t+

z

c
− (n+ 1)16).

At t = 3 µs, the voltage variation is

V (z, 3) =
∞
∑

n=0

(−1

3
)nf(3− z

c
− n16) +

1

3

∞
∑

n=0

(−1

3
)nf(3 +

z

c
− (n+ 1)16),

which is plotted in the margin using f(t) = rect(t) + 2rect(t − 1). Likewise, at
t = 11 µs,

V (z, 11) =
∞
∑

n=0

(−1

3
)nf(11− z

c
− n16) +

1

3

∞
∑

n=0

(−1

3
)nf(11 +

z

c
− (n+ 1)16).

-2 -1 1 2 3 4
t us

0.5

1.0

1.5

2.0

fHtL

500 1000 1500 2000
z m

0.5

1.0

1.5

2.0

VHz,3L

0 500 1000 1500 2000
z m

0.5

1.0

1.5

2.0

VHz,11L

Animated version of this is

linked in the class calendar.
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30 Multi-line circuits

• In this lecture we will extend the bounce diagram technique to solve

distributed circuit problems involving multiple transmission lines.

• One example of such a circuit is shown in the margin where two distinct

TL’s of equal lengths have been joined directly at a distance l
2 away

from the generator.

+
-

0

f(t)

Rg = 2Z1

RL = Z2

zl

Load
Z1 Z2 = 2Z1

0 l

4

81

τg = Γg = Γ12 =
1

3
τ12 =

4

3
ΓL = 0

1

3

1

9

1

27

1

81

4

9

t

l/2

v2 = 2v1
v1

– The impulse response of the system can be found by first con-

structing the bounce diagram for the TL system as shown in the

margin.

– In this bounce diagram, z = l
2

happens to be the location of ad-

ditional reflections as well as transmissions because of the sudden

change of Zo from Z1 to Z2 = 2Z2.

These reflections and transmissions between line j and k — transmis-

sion from j to k, and reflection from k back to j — can be computed

with reflection coefficient

Γjk =
Zk − Zj

Zk + Zj

and transmission coefficient

τjk = 1 + Γjk

that ensure the voltage and current continuity at the junction

1



– Zj is the characteristic impedance of the line of the incident pulse,

while

– Zk is the impedance of the cascaded line into which the transmitted

pulse is injected.

Verification:

+
-

0

f(t)

Rg = 2Z1

RL = Z2

zl

Load
Z1 Z2 = 2Z1

0 l

4

81

τg = Γg = Γ12 =
1

3
τ12 =

4

3
ΓL = 0

1

3

1

9

1

27

1

81

4

9

t

l/2

v2 = 2v1
v1

– Let

V +
j (1 + Γjk) and V +

j (1− Γjk)/Zj

denote the total voltage and current on line Zj expressed in terms

of incident voltage wave V + (of d’Alembert type), and

– let

V +
j τjk and V +

j τjk/Zk

denote the voltage and current on line Zk adjacent to line Zj.

This notation identifies Γjk and τjk as reflection and transmission coef-

ficients at the junction.

– Taking

V +
j (1 + Γjk) = V +

j τjk

and

V +
j (1− Γjk)/Zj = V +

j τjk/Zk

in order to enforce voltage and current continuity, we can solve for

Γjk and τjk expressions stated above.
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+
-

0

f(t)

Rg = 2Z1

RL = Z2

zl

Load
Z1 Z2 = 2Z1

0 l

4

81

τg = Γg = Γ12 =
1

3
τ12 =

4

3
ΓL = 0

1

3

1

9

1

27

1

81

4

9

t

l/2

v2 = 2v1
v1

Example 1: In the circuit shown in the margin with two TL segments, line 2 has twice
the characteristic impedance and propagation velocity of line 1, i.e.,

Z2 = 2Z1 and v2 = 2v1.

Determine L2 and C2 in terms of L1 and C1.

Solution: We have

Z2 = 2Z1 ⇒ L2

C2
= 4

L1

C1
and

v2 = 2v1 ⇒ 1

L2C2
= 4

1

L1C1
.

The product of the two equations gives

1

C2
2

= 16
1

C2
1

⇒ C2 =
1

4
C1,

while their ratio leads to
L2 = L1.
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+
-

0

f(t)

Rg = 2Z1

RL = Z2

zl

Load
Z1 Z2 = 2Z1

0 l

4

81

τg = Γg = Γ12 =
1

3
τ12 =

4

3
ΓL = 0

1

3

1

9

1

27

1

81

4

9

t

l/2

v2 = 2v1
v1

t

500 1000 1500 2000
z m

-1.0

-0.5

0.5

1.0

VHz,3 usL

Example 2: In the circuit of Example 1, determine V (z, t) and I(z, t) if

f(t) = sin(2πt)u(t), t in µs,

and l = 2400 m, v1 = 150m/µs, and Z1 = 25Ω.

Solution: From the bounce diagram we infer the following impulse-response for the
voltage variable:

V (z, t) =
1

3

∞
∑

n=0

(
1

3
)2n[δ(t− z

v1
− n

l

v1
) +

1

3
δ(t+

z

v1
− (n+ 1)

l

v1
)]

for z < l
2
, and

V (z, t) =
1

3

∞
∑

n=0

(
1

3
)2n

4

3
δ(t− z

v2
− (4n+ 1)

l/2

v2
)

for l
2 < z < l. The impulse response for the current is

I(z, t) =
1

3Z1

∞
∑

n=0

(
1

3
)2n[δ(t− z

v1
− n

l

v1
)− 1

3
δ(t+

z

v1
− (n+ 1)

l

v1
)]

for z < l
2 , and

I(z, t) =
1

3Z2

∞
∑

n=0

(
1

3
)2n

4

3
δ(t− z

v2
− (4n+ 1)

l/2

v2
)

for l
2
< z < l. Using

l

v1
=

2400

150
= 16µs

and replacing δ(t) with f(t) = sin(2πt)u(t) the plot depicted in the margin was
obtained.
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RZ1 Z2

z

V
++

V
+
− V

−

Z1

V
++

Z2

V
+ + V

−

+

-

+

-Example 3: Two TL’s with characteristic impedances Z1 and Z2 are joined at a junc-
tion that also includes a “shunt” resistance R as shown in the diagram in the
margin. Determine the reflection coefficient Γ12 and transmission coefficient τ12
at the junction.

Solution: Consider a voltage wave

V +(t− z

v1
)

coming from the left producing reflected and transmitted waves

V −(t+
z

v1
) and V ++(t− z

v2
)

on lines 1 and 2 traveling to the left and right, respectively, on two sides of the
junction. Using an abbreviated notation, KVL and KCL applied at the junction
can be expressed as

V + + V − = V ++ and
V +

Z1
− V −

Z1
=

V ++

R
+

V ++

Z2
,

where in the KCL equation the first term on the right is the current flowing down
the resistor R, and the second term is the TL current on line 2 (as marked in the
circuit diagrams in the margin). The equations can be rearranged as

V + + V − = V ++

V + − V − =
Z1

Zeq

V ++,

where

Zeq ≡
RZ2

R + Z2

5



is the parallel combination of R and Z2. Solving these equations, we find that

Γ12 ≡
V −

V +
=

Zeq − Z1

Zeq + Z1

and

τ12 =
V ++

V +
=

2Zeq

Zeq + Z1
.

By, symmetry, the coefficients

Γ21 =
Zeq − Z2

Zeq + Z2

and

τ21 =
2Zeq

Zeq + Z2

would describe reflection and transmission when a wave is incident from right
provided that

Zeq ≡
RZ1

R + Z1

is used. R

Z1 Z2

z

V
++

V
+
− V

−

Z1

V
++

Z2

V
+ + V

−

+

-

+

-

Hint: in this ckt Γ12 has the

usual form in terms of Zeq ≡
R+Z2. For τ12, we need 1+Γ12

multiplied by a voltage divi-

sion factor Z2/(R + Z2).Exercise: Two TL’s with characteristic impedances Z1 and Z2 are joined at a junction

that also includes a series resistance R as shown in the margin. Determine the

reflection coefficient Γ12 and transmission coefficient τ12 at the junction.
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31 Periodic oscillations in lossless TL ckts
V (t)I(t)
+

-

C

L• Lossless LC circuits (see margin) can support source-free and co-sinusoidal

voltage and current oscillations at a frequency of

ω =
1√
LC

known as LC resonance frequency.

• Lossless TL circuits can also support source-free voltage and current

oscillations, but the number of resonance frequencies is infinite and the

oscillation waveforms are not restricted to co-sinusoidal forms.

Openλ

4

|I|

|V (z, t)|

zl0

Open

A TL segment — a “stub”,
so to speak — open circuited
at both ends can support
voltage and current oscilla-
tions such that the current
waveform vanishes at both
ends. Absolute values of a
possible set of voltage and
current waveforms satisfying
this boundary condition are
depicted above.

– Resonance frequencies of lossless TL’s are harmonically related,

and therefore superpositions of resonant oscillations on TL’s can

add up to arbitrary periodic waveforms as in Fourier series repre-

sentation of periodic functions.

In this lecture we will examine the periodic oscillations and resonances

encountered in lossless and source-free TL circuits.

1



• Consider first a TL segment of some length ℓ having no electrical con-

nection to any elements at either end, as shown in the margin.

– Effectively, both ends of the TL have been “open circuited”, and

thus TL current I(z, t) needs to vanish at z = 0 and z = ℓ. Since

I(z, t) =
f(t− z

v
)

Zo
− g(t + z

v
)

Zo

in general, these boundary conditions

Openλ

4

|I|

|V (z, t)|

zl0

Open

A TL “stub” open circuited
at both ends can support
voltage and current oscilla-
tions such that the current
waveform vanishes at both
ends. Absolute values of a
possible set of voltage and
current waveforms satisfying
this boundary condition are
depicted above.

I(0, t) =
f(t)

Zo
− g(t)

Zo
= 0

and

I(l, t) =
f(t− ℓ

v)

Zo
− g(t + ℓ

v)

Zo
= 0

require that

◦ g(t) = f(t)

◦ f(t− ℓ
v) = f(t + ℓ

v) ⇒ f(t) = f(t + 2ℓ
v ).

– the first condition says that forward and backward going waves

are described in terms of a single time function f(t),

– while the second condition indicates that function f(t) is neces-

sarily periodic with a

◦ period T = 2ℓ
v

◦ fundamental frequency ωo =
2π
T = πv

ℓ

2



Since no other constraint is imposed, any waveform with the spec-

ified period is admissible, and the most general such expression is

given by the Fourier series

f(t) = Fo +
∞
∑

n=1

Fn cos(nωot + θn)

having harmonically related frequencies nωo and arbitrary Fourier

coefficients Fn and θn.

– Hence, in general, the line current

I(z, t) =
f(t− z

v
)− f(t + z

v
)

Zo

=

∞
∑

n=1

Fn

Zo
[cos(nωot + θn − nβoz)− cos(nωot + θn + nβoz)]

where βo ≡ ωo/v = π/ℓ is the fundamental wavenumber.

– The same result written in phasor form is

Ĩ(z) =
∞
∑

n=1

Fn

Zo
ejθn[e−jnβoz − ejnβoz] =

∞
∑

n=1

Fn

Zo
ejθn(−2j) sin(nβoz),

which also means that (back in the time domain)

I(z, t) =
∞
∑

n=1

2Fn

Zo
sin(nωot + θn) sin(nβoz).

3



Also1

V (z, t) =
∞
∑

n=1

2Fn cos(nωot + θn) cos(nβoz)

from the phasor Ṽ (z) =
∑

n Fne
jθn[e−jnβoz + ejnβoz].

In summary:

50 100 150 200 250 300
z HmL

-1.0

-0.5

0.5

1.0

A time-snapshot of the cur-
rent standing wave modes
n = 1, 2, 3, 4 on a TL segment
300 m long, open ended on
both sides. Each mode n has
n half wavelengths fitted into
the line length l and high n
modes oscillate with higher
frequencies. See animation
of these modes linked in the
class calendar.

– Periodic variations of arbitrary complexity — or timbre, in analogy

with musical instruments — in V (z, t) and I(z, t) are allowed on an

open circuited (on both ends) TL segment of length ℓ and consist

of superpositions of resonant modes (see margin)

cos(n
πv

ℓ
t + θn) cos(n

π

ℓ
z) and sin(n

πv

ℓ
t + θn) sin(n

π

ℓ
z),

respectively, in the range n ≥ 1, each one being a standing wave.

– Each resonant mode or standing wave of index n ≥ 1 has a

◦ resonance frequency

ω =
πv

ℓ
n rad/s or f =

v

2ℓ
n Hz

◦ resonance wavelength

λ =
v

f
=

2ℓ

n
,

1Note that an arbitrary DC term can also be included in V (z, t).
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implying that

ℓ = n
λ

2
,

that is, the line length is an integer multiple of half-

wavelength at each resonance.

• The resonances examined above also apply to TL’s of length ℓ shorted

at both ends, provided that the mode equations above are swapped

between voltage and current — that is, periodic variations of arbitrary

complexity in I(z, t) and V (z, t) consist of superpositions of resonant

modes

cos(n
πv

ℓ
t + θn) cos(n

π

ℓ
z) and sin(n

πv

ℓ
t + θn) sin(n

π

ℓ
z),

respectively, in the range n ≥ 1.

Note that in this case the voltage modes vanish at z = 0 and z = ℓ as

required by the boundary condition V (0, t) = V (ℓ, t) = 0 imposed by

having shorts at both ends.

5



• For TL’s of length ℓ open at one end shorted at the other end,

resonant wavelengths and frequencies can be identified by requiring ℓ

to be an odd multiple of λ
4

Shortλ

4

|I|

|V |

zl0

Open

A TL stub open at one end
short at the other can sup-
port voltage and current os-
cillations such that the cur-
rent waveform vanishes at
the open end while the volt-
age waveform vanishes at the
shorted end. Absolute values
of a possible set of voltage
and current waveforms sat-
isfying this boundary condi-
tion are depicted above. Res-
onant standing waves modes
on this line will have voltage
and current nulls separated
by an odd multiple of a quar-
ter wavelength.

– the reason for this is, the nulls of waveforms ∝ cos(βz) and sin(βz)

are separated by odd multiples of

λ

4
=

2π/β

4
=

π

2β
.

– Hence, resonance condition is

ℓ =
λ

4
(2n + 1), n ≥ 0,

and since

fλ = v

it follows that the resonance frequencies are

f =
v

2ℓ
(
1

2
+ n) and ω =

πv

ℓ
(
1

2
+ n) for n ≥ 0.

6



100 200 300 400 500 600
z HmL

-1.0

-0.5

0.5

1.0

A time-snapshot of the volt-
age standing wave modes n =
0, 1, 2, 3 on a TL segment 600
m long, open ended at z =
0 and shorted at z = 600
m. Each mode n has 2n +
1 quarter wavelengths fitted
into the line length l and the
high n modes oscillate with
higher frequencies. See ani-
mation of these modes linked
in the class calendar.

Example 1: A lossless TL of 600 m length is left open at z = 0 and shorted at
z = l = 600 m. Determine (a) resonant frequencies of the line, (b) resonant
current modes, (c) resonant voltage modes obtained from the current modes
using the telegrapher’s equations. The line has a characteristic impedance of
Zo = 50Ω and a propagation velocity v = c.

Solution: (a) The line must be an odd multiple of quarter wavelengths at the resonant
frequencies. Therefore,

600m = (2n+ 1)
λ

4
⇒ 600m = (2n+ 1)

c/f

4

leading to

f = (2n+ 1)
300m/µs

4 · 600m
= (2n+ 1)

1

8
MHz, n ≥ 0.

(b) Since the current modes need to vanish at z = 0, we can express them in terms
of a sine function as

sin(βz) sin(ωt)

where
ω = 2πf = (2n+ 1)

π

4
Mrad/s,

and

β =
2π

λ
= (2n+ 1)

π

1200
rad/m.

In explicit terms, current modes are

In(z, t) = sin((2n+ 1)
π

1200
z) sin((2n+ 1)

π

4
t)

where z is in m and t in µs.

7



(c) Let’s find the voltage modes Vn(z, t) from the current modes above using one of
the telegrapher’s equations,

−∂V

∂z
= L∂I

∂t
.

Substituting In(z, t) into this equation and differentiating we find

∂V

∂z
= −(2n+ 1)

π

4
L sin((2n+ 1)

π

1200
z) cos((2n+ 1)

π

4
t).

Next finding the anti-derivative of the above, we conclude

Vn(z, t) = 300L cos((2n+ 1)
π

1200
z) cos((2n+ 1)

π

4
t).

A snapshot of the animation of resonant voltage modes is shown in the margin.

Note that the amplitudes of current and voltage modes cannot be assigned indepedent

of one another — above we set the current amplitudes to unity and obtained
300L for voltage amplitudes. 100 200 300 400 500 600

z HmL

-1.0

-0.5

0.5

1.0
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• How can one get source free oscillations in a TL?

One answer is, the TL might have been connected to a source in the

past before being disconnected from it.

t = 1 µs

3 V

0
z

t = 0

600 m

V (z, 1)

– Consider the circuit shown in the margin where a 3V battery is

switched in and out for 1 µs on a line of length l = 600 m. Also, resistors R at tempera-

ture T connected to TL ter-

minals can transfer thermal

noise energy to the TL. If

the resistors are disconnected

at some point in time, the

energy left on the TL will

be shared between its res-

onant modes (up to a fre-

quency limit KT/~ imposed

by quantum mechanics) at an

average level of KT joules

(per mode) where K is the

Boltzmann constant . Lossy

lines with finite conductivity

also produce thermal noise.

Thermal noise is easy to

detect and routinely inter-

feres with weak communi-

cation signals that we care

about!

For v = c, we can write the voltage and the current on the line at

t = 1µs (by inspection) as

V (z, 1) = 3rect(
z − 150

300
)V and I(z, 1) =

3rect(z−150
300

)

Zo
A.

After t = 1µs both ends of the TL will be open, and, therefore, only

periodic waveforms with a

– fundamental period of T = 2ℓ
v = 1200

300 = 4µs and

– fundamental frequency of ωo =
2π
T
= π

2
Mrad/s

will be allowed on the source free line.

Therefore, V (z, t) and I(z, t) for t > 1µs can be expressed as a weighted

superposition of the resonant modes of the line with resonant frequen-

cies nωo, subject to the initial conditions V (z, 1) and I(z, 1) given

above.
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32 Input impedance and microwave resonators Series Parallel

C

L

L C

• The input impedance and admittance of the series and parallel

LC resonators shown in the margin are, respectively,

Zs = j(ωL− 1

ωC
) and Yp = j(ωC − 1

ωL
),

both of which vanish at the common resonance frequency of these net-

works, namely

ω =
1√
LC

≡ ωo.

– Recall that LC resonators play an important role in the design of

filter and tuning circuits.

In this lecture we will examine the input impedance of microwave

resonators consisting of open or short circuited TL stubs.

• In the last lecture we learned that when a shorted stub is open circuited

at its input port, it shows resonance if the stub length ℓ is an odd

multiple of λ
4 .

– The corresponding resonant frequencies are

f =
v

2ℓ
(
1

2
+ n) for n = 0, 1, 2, 3, · · ·

1



and the input port of the stub coincides with a voltage max and

a current null, i.e., I(0, t) = 0 — thus the input impedance Zin of

the stub is infinite at these resonances, just like the impedance of

the parallel LC-circuit depicted above.

– Thus this set of resonant frequencies are referred to as parallel

resonances of the shorted stub.

• We also learned that when the stub length ℓ is an an integer multiple

of λ
2
, its voltage at the input terminal is necessarily zero, implying that

the input impedance Zin must also be zero.

– The corresponding resonant frequencies are

f =
v

2ℓ
n for n = 1, 2, 3, · · ·

and are termed series resonances of the shorted stub, in analogy

with the zero impedance of the series LC-circuit depicted above.

f0
v

2ℓ
Series Resonances

v

4ℓ
Parallel Resonances

+
-

short

fi(t)

l

RL
VL(t)
+

-

The diagram in the margin marks the locations of parallel and series

resonance frequencies of the shorted stub associated with infinite and zero

input impedance Zin.

Thus, a shorted stub, included in a circuit such as the one shown in the

margin, will exhibit extreme behavior at these special frequencies — namely

it will appear as a

2



• short at its series resonances, causing the entire input signal fi(t) to

appear as VL(t) across the load RL, and

• open at its parallel resonances, causing VL(t) across the load RL to be

notched out.
f0

v

2ℓ
Series Resonances

v

4ℓ
Parallel Resonances

+
-

short

fi(t)

l

RL
VL(t)
+

-

We next focus our attention on how Zin of the stub appears at other

frequencies not coinciding with any of the resonances discussed

above.

• In the following we will assume that the TL stub, as well as the circuit

it is connected to, are all in sinusoidal steady state at a frequency

determined by the frequency of the sinusoidal source fi(t).

– In that case d’Alembert solutions will also be co-sinusoidal at the

source frequency ω and we can express V (z, t) and I(z, t) on the

line as

V (z, t) = Re{V +ejω(t−
z
v )}+Re{V −ejω(t+

z
v )} ⇔ Ṽ (z) = V +e−jβz+V −ejβz

and

I(z, t) =
Re{V +ejω(t−

z
v )} − Re{V −ejω(t+

z
v )}

Zo
⇔ Ĩ(z) =

V +e−jβz − V −ejβz

Zo
,

where

– β = ω
v = ω

√
LC is the wavenumber at frequency ω, and

3



– V + and V − are phasors of forward and backward propagating

voltage waves on the line evaluated at z = 0.

We have expressed the phasor counterparts of co-sinusoidal waves V (z, t)

and I(z, t) above on the right, for it will be necessary to use phasors in

defining an input impedance — the impedance concept belongs to the

frequency domain!

• Before applying the boundary condition at the shorted end of the TL

stub, it will be convenient to shift the origin of our coordinate system

to coincide with the shorted termination rather than the input port of

the TL.

• It will also be convenient to refer to “−z” as “d”, with the variable d

growing to the left from the short termination toward the input terminal

of the line.

Short

l

Input
port Zo

−l z0

0ld

LOADGENERATOR,
Circuit

In that case, the input impedance of the shorted stub can be denoted

as

Z(l) =
Ṽ (d = l)

Ĩ(d = l)
,

where

Ṽ (d) ≡ V +ejβd + V −e−jβd and Ĩ(d) ≡ V +ejβd − V −e−jβd

Zo
.

• An immediate benefit of our new notation comes when we apply the

voltage boundary condition at the short termination.

4



– We apply it as

V (0, t) = 0 ⇔ Ṽ (0) = V + + V − = 0

from which it follows that

Short

l

Input
port Zo

−l z0

0ld

LOADGENERATOR,
Circuit

V − = −V +

and thus

Ṽ (d) ≡ V +(ejβd − e−jβd) = j2V + sin(βd)

and

Ĩ(d) ≡ V +(ejβd + e−jβd)

Zo
= Yo2V

+ cos(βd),

where

Yo ≡
1

Zo
Characteristic admittance.

– Finally the input impedance of the shorted stub is

Z(l) =
Ṽ (l)

Ĩ(l)
= jZo tan(βl).

Note that: input impedance Z(l) = 0 + jX(l) is (see margin for X(l))

Π

4

Π

2

3 Π

4
Π

5 Π

4

3 Π

2

7 Π

4
2 Π

Βl

-5

5

tanHΒlL

1. purely reactive for all l,

2. has a positive imaginary part and therefore it is inductive for

βl =
2π

λ
l <

π

2
rad = 90o ⇒ 0 < l <

λ

4
= Quarter wavelength.
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3. has a negative imaginary part and therefore it is capacitive for

π

2
< βl =

2π

λ
l < π rad = 180o ⇒ λ

4
< l <

λ

2
= Half wavelength.

4. is periodic with a period of λ
2

over l, which means that

all possible reactive impedances of the form jX are realized for

0 < l < λ
2 .

• a shorted TL stub of length 0 < l < λ
2 spans all possible impedances

that can be provided by all possible inductors and capacitors!

for a length l ≪ λ
4 shorted stub is a pure inductor with impedance

Z(l) = jZo tan(βl) ≈ jZoβl = j

√

L
Cω

√
LCl = jωLl.

• here we used tan(βl) ≈ βl, which is valid when βl ≪ 1 in radians.

5. at l = λ
4

the input admittance of the shorted stub,

Y (l) =
1

Z(l)
=

1

jZo tan(βl)
= −jYo cot(βl),

vanishes, meaning that

• a shorted stub of length l = λ
4 appears at its input terminals like

an open (see margin).

Short
termn.

l =
λ

4

Open
input

ZoY (l) = 0

Z(l) = 0
Open
termn.

l =
λ

4

Short
input

Zo

6



6. at l = λ
2

the input impedance of the shorted stub returns back to

zero, which in turn indicates, in view of (5), that

• an open ended stub of length l = λ
4

must appear at its input

terminals like a short (see margin).

Next set of examples illustrate the uses of shorted/opened TL stubs as circuit

elements.

+
-

short

fi(t)

l

RL
VL(t)
+

-

50 100 150 200 250 300
f HMHzL

0.2

0.4

0.6

0.8

1.0

Amplitude Resp.

Example 1: A shorted TL stub of length l = 3 m is connected in series with a resistor
RL = 50Ω as shown in the diagram in the margin. Plot the magnitude of the

frequency response H(ω) = ṼL

F̃
as a function of frequency f = ω

2π
if Zo = 50Ω

and v = c on the stub. Interpret the amplitude response curve |H(ω)| in terms
of resonance frequencies of the shorted line.

Solution: Using β = ω
c

and voltage division, we find that frequency response

H(ω) =
ṼL

F̃i

=
RL

RL + jZo tan(βl)
=

1

1 + j tan(ω
c
l)
.

The plot of |H(ω)| with the given parameters is shown in the margin. The peaks
of the amplitude response occur at the series resonance frequencies of the shorted
stub when its input impedance is zero (an effective short). The nulls of the
amplitude response correspond to parallel resonances of the stub when it appears
like an open at its input terminals.

7



short

L l

Series network:

short

L

l

Parallel network:

Example 2: Consider a shorted TL connected at d = l to an inductor L. Determine
the resonances of the combined network.

Solution: The input impedance of the shorted line is

Z(l) = jZo tan(βl) = jZo tan(ω
√
LCl)

whereas inductor L has an impedance ZL = jωL. If the inductor and shorted stub
are connected in series (see margin), then the series resonances of the network
will be observed when the network input impedance

ZL + Z(l) = jωL + jZo tan(ω
√
LCl)

equals zero. The parallel resonances of the network will be observed when the
impedance is infinite. While the series resonance frequencies of the stub will be
shifted because of the inductor, parallel resonances will not shift (infinities due
to tan function cannot be shifted by the finite additive term due to the inductor).
The shifted series resonance frequencies ωn can be found graphically by plotting
ZL + Z(l) and looking for the zero crossings.

If the inductor and shorted stub are connected in parallel, then the parallel resonances

of the network will be observed when the network input admittance

YL + Y (l) =
1

jωL
+

1

jZo tan(ω
√
LCl)

equals zero (same as infinite input impedance). The series resonances , on the
other hand, will be observed when the admittance is infinite (same as zero input
impedance). Series resonances of the stub will not be shifted with, unlike its
parallel resonances. The shifted parallel resonance frequencies ωn will equal the
series resonance frequencies of the series connected network described above.
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+
-

short

fi(t)

l

C

RL
VL(t)
+

-

Can change the short
location on the stub
to tune the filter

50 100 150 200 250 300
f HMHzL

0.2

0.4

0.6

0.8

1.0

Amplitude Resp.

Example 3: A shorted TL stub of length l = 3 m is connected in series with a a
capacitor C = 10 pf and a resistor RL = 50Ω as shown in the diagram in the

margin. Plot the magnitude of the frequency response H(ω) = ṼL

F̃
as a function

of frequency f = ω
2π

if Zo = 50Ω and v = c on the stub. Interpret the amplitude
response curve |H(ω)| in terms of resonance frequencies of the shorted line.

Solution: Using β = ω
c

and voltage division, we find that frequency response

H(ω) =
ṼL

F̃i

=
RL

RL + 1

jωC
+ jZo tan(βl)

=
1

1 + 1

jωRLC
+ j tan(ω

c
l)
.

The plot of |H(ω)| with the given parameters is shown in the margin. The peaks
of the amplitude response occur at the shifted series resonance frequencies of the
shorted T.L. stub. The nulls of the amplitude response correspond to parallel
resonances of the stub when it appears open.

9



Example 4: (a) If in the TL circuit shown in the margin IR = 2∠0o A, what is the
line length l in terms of wavelength λ of the given source frequency on the line?

(b) Repeat for IR = 0.

Note: starting in this example we are dropping the tildes on

the phasors.

Solution: (a) If IR = 2∠0o A, then KCL application at the source terminal implies
that I(l) = 0.

In that case the TL has an open at d = l. Since d = 0 is also an open,
we need to have l to be an integer multiple of λ

2
.

In other words, the condition of IR = 2∠0o will only be realized in the
above circuit if the source frequency is such that the TL length l happens to be
some integer multiple of λ

2
at the given frequency.

(b) If IR = 0, then V (l) = (50Ω)IR = 0, implying that the T.L. has a short at d = l.

Since d = 0 is an open, we need to have l some odd multiple of λ
4
.

0
d

+

-

+

-

26 0 A

50 Ω

V (0)

I(0) = 0

V (l)

I(l)

l

IR
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33 TL circuits with half- and quarter-wave trans-

formers

• Last lecture we established that phasor solutions of telegrapher’s equa-

tions for TL’s in sinusoidal steady-state can be expressed as

V (d) = V +ejβd + V −e−jβd and I(d) =
V +ejβd − V −e−jβd

Zo

in a new coordinate system shown in the margin.

l

Input
port Zo

−l z0

0ld

LOADGENERATOR,
Circuit

ZL = RL + jXL

I(d)

V (d)
+

-

By convention the load is located on the right, at z = 0 = d, and the

TL input connected to a generator or some source circuit is shown on

the left at d = l.

We have replaced the short termination of the previous lecture with an

arbitrary load impedance

ZL = RL + jXL.

In this lecture we will discuss sinusoidal steady-state TL cir-

cuit problems having arbitrary reactive loads but with line

lengths l constrained to be integer multiples of λ
4

(at the op-

eration frequency).

The constraint will be lifted next lecture when we will de-

velop the general analysis tools for sinusoidal steady-state TL

circuits.

1



• In the TL circuit shown in the margin an arbitrary load ZL is connected

to a TL of length l = λ
2 at the source frequency.

Given that

e±jβ λ
2 = e±j 2π

λ
λ
2 = e±jπ = −1,

the general phasor relations

V (d) = V +ejβd + V −e−jβd and I(d) =
V +ejβd − V −e−jβd

Zo

imply

+

-

0

ZL

Iin

Vin

λ

2

Zo

IL = −Iin

+

-

VL = −Vin

Half-wave transformer:

Vin ≡ V (
λ

2
) = −V + − V − = −V (0) = −VL,

Iin ≡ I(
λ

2
) =

−V + + V −

Zo
= −I(0) = −IL.

We conclude that a λ
2-transformer

– inverts the algebraic sign of its voltage and current inputs at the

load end (and vice versa), and

– has an input impedance identical with the load impedance since

Zin ≡ Vin

Iin
=

−VL

−IL
= ZL.

These very simple results are easy to remember and use.
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• In the TL circuit shown in the margin an arbitrary load ZL is connected

to a TL of length l = λ
4 at the source frequency.

Given that

e±jβ λ
4 = e±j 2πλ

λ
4 = e±j π

2 = ±j,

general phasor relations

V (d) = V +ejβd + V −e−jβd and I(d) =
V +ejβd − V −e−jβd

Zo

imply

+

-

0

ZL

Iin

Vin

λ

4

Zo

IL = −j
Vin

Zo

+

-

VL = −jIinZo

Quarter-wave transformer:

ZinZL = Z
2
o

Vin ≡ V (
λ

4
) = jV + − jV − = jI(0)Zo = jILZo,

Iin ≡ I(
λ

4
) =

jV + + jV −

Zo
= j

V (0)

Zo
= j

VL

Zo
.

We conclude that a λ
4-transformer Quarter-wave

current-forcing

equation:

IL = −j
Vin

Zo
.

Load voltage

VL = ZLIL

once IL is available

from above equation.

– has an input impedance

Zin ≡ Vin

Iin
=

jILZo

jVL/Zo
=

Z2
o

VL/IL
=

Z2
o

ZL
,

– and provides a load current

IL = −j
Vin

Zo
,

proportional to input voltage Vin but independent of load impedance

ZL.
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+

-

0

ZL = 50 + j50 Ω

Iin

Vin

λ

4

Zo = 50 Ω

+

-

Zin =
Z2

o

ZL

0

50 + j50 Ω

λ

4

Zo = 50 Ω

+

-

+
-Vg = 100 6 0 V

Example 1: Given ZL = 50+ j50Ω, what is Zin for a λ
4

transformer with Zo = 50Ω?

Solution: It is

Zin =
Z2

o

ZL

=
502

50 + j50
=

50

1 + j1
=

50

1 + j1

1− j1

1− j1
= 25− j25Ω.

Notice that an inductive ZL has been turned into a capacitive Zin by λ
4

trans-
former.

Example 2: The load and the transformer of Example 1 are connected to a source
with voltage phasor Vg = 100∠0o V at the input port. What is the load current
IL and what is the average power absorbed by the load?

Solution: Since Vin = Vg = 100∠0o V, the current-forcing formula for the quarter-wave
transformer implies

IL = −j
Vin

Zo

= −j
100

50
= −j2A.

To find the average power absorbed, we first note that load voltage

VL = ZLIL = (50 + j50)(−j2) = 100− j100V.

Thus,

PL =
1

2
Re{VLI

∗
L} =

1

2
Re{(100− j100)(j2)} = 100W.
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Zo = 50 Ω

00.75λd

ZL =

I(d)

V (d)

+

-

0.5λ 0.25λ

+
-

Zg = 25 Ω

j10 V 100 Ω

Vg =

Example 3: Load ZL = 100Ω is connected to a T.L. with length l = 0.75λ. At the
generator end, d = 0.75λ, a source with open circuit voltage Vg = j10 V and
Thevenin impedance Zg = 25Ω is connected. Determine VL and IL if Zo = 50Ω.

Solution: First we determine input impedance Zin by noting that ZL = 100Ω trans-
forms to itself, namely 100Ω at d = 0.5λ, but then it transforms from d = 0.5λ
to 0.75λ as

Zin =
Z2

o

Z(0.5λ)
=

502

100
= 25Ω.

Hence, using voltage division, we find,

Vin = Vg

Zin

Zg + Zin

= j10
25

25 + 25
= j5V.

Next, using half-wave transformer rule, we notice that

V (0.25λ) = −Vin = −j5V,

and finally applying the quarter-wave current forcing equation with V (0.25λ) we
get

IL = −j
V (0.25λ)

Zo

= −j
−j5

50
= −0.1A.

Clearly, then, the load voltage is

VL = ZLIL = (100Ω)(−0.1A) = −10V.

5



+

-

0

ZL1Vin

λ

4

IL1 = −j
Vin

Zo

ZL2

IL2 = −j
Vin

Zo

Zo2

Zo1

Example 4: In the circuit shown in the margin, ZL1 = 50Ω, ZL2 = 100Ω, and Zo1 =
Zo2 = 50Ω. Determine IL1 and IL2 if Vin = 5V. Both T.L. sections are quarter-
wave transformers.

Solution: Using the current-forcing equation, we have

IL1 = IL2 = −j
Vin

Zo

= −j
5

50
= −j0.1A.

Consequently,
VL1 = IL1ZL1 = −j0.1A × 50Ω = −j5V

and
VL2 = IL2ZL2 = −j0.1A × 100Ω = −j10V.

Thus, total avg power absorbed is

P =
1

2
Re{VL1I

∗
L1}+

1

2
Re{VL2I

∗
L2}

= =
1

2
Re{−j5× j0.1}+ 1

2
Re{−j10× j0.1} = 0.75W.
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34 Line impedance, generalized reflection coef-

ficient, Smith Chart

• Consider a TL of an arbitrary length l terminated by an arbitrary load

ZL = RL + jXL.

as depicted in the margin.

l

Input
port Zo

−l z0

0ld

LOADGENERATOR,
Circuit

ZL = RL + jXL

I(d)

V (d)
+

-

Voltage and current phasors are known to vary on the line as

V (d) = V +ejβd + V −e−jβd and I(d) =
V +ejβd − V −e−jβd

Zo
.

In this lecture we will develop the general analysis tools needed

to determine the unknowns of these phasors, namely V + and

V −, in terms of source circuit specifications.

• Our analysis starts at the load end of the TL where V (0) and I(0)

stand for the load voltage and current, obeying Ohm’s law

V (0) = ZLI(0).

Hence, using V (0) and I(0) from above, we have

V + + V − = ZL
V + − V −

Zo
⇒ V − =

ZL − Zo

ZL + Zo
V +.

1



– Define a load reflection coefficient “Load reflection coefficient”

is a well justified name for

ΓL since the forward travel-

ing wave with phasor V +ejβd

gets reflected from the load.

ΓL ≡ ZL − Zo

ZL + Zo

and re-write the voltage and current phasors as

V (d) = V +ejβd[1+ΓLe
−j2βd] and I(d) =

V +ejβd[1− ΓLe
−j2βd]

Zo
.

– Define a generalized reflection coefficient The term “generalized reflec-

tion coefficient” is also well

justified even if there is no

reflection taking place at ar-

bitrary d — the reason is, if

the line were cut at location

d and the stub with the load

were replaced by a lumped

load having a reflection co-

efficient equal to Γ(d), then

there would be no modifica-

tion of the voltage and cur-

rent variations on the line to-

wards the generator.

Γ(d) ≡ ΓLe
−j2βd

and re-write the voltage and current phasors as

V (d) = V +ejβd[1 + Γ(d)] and I(d) =
V +ejβd[1− Γ(d)]

Zo
.

– Line impedance is then defined as

Z(d) =
V (d)

I(d)
= Zo

1 + Γ(d)

1− Γ(d)

for all values of d on the line extending from the load point d = 0

all the way to the input port at d = l.

With the dependence on d of Z(d) as well as Γ(d) tacitly implied,

we can re-write this important relation and its inverse as Each location d on the line

has an impedance Z and a re-

flection coefficient Γ linked by

these equations.

Z

Zo
=

1 + Γ

1− Γ
⇔ Γ =

Z − Zo

Z + Zo
.

2



Properties of Z(d) = R(d) + jX(d) and Γ(d) = ΓLe
−j2βd linked by the

relations
Z

Zo
=

1 + Γ

1− Γ
⇔ Γ =

Z − Zo

Z + Zo
:

1. For real valued Zo and R(d) ≥ 0 , |Γ(d)| ≤ 1:

Verification:

|Γ| = |Z − Zo|
|Z + Zo|

=
|(R− Zo) + jX|
|(R + Zo) + jX| =

√

(R− Zo)2 +X2

√

(R + Zo)2 +X2
.

Since with R ≥ 0
√

(R− Zo)2 +X2 ≤
√

(R + Zo)2 +X2 ⇒ |Γ| ≤ 1.

2. Since

|Γ| = |ΓL| and ∠Γ(d) = ∠ΓL − 2βd

property (1) implies that Γ(d) is a complex number which is constrained

to be on or within the unit-circle on the complex plane.

3. Relationships
Z

Zo
=

1 + Γ

1− Γ
⇔ Γ =

Z − Zo

Z + Zo

between Γ and Z are known as bilinear transformations — here the

term bilinear refers to the numerator as well as the denominator of

these transformations being linear in the variable being transformed

(from right to left).

3



Bilinear (or Möbius) transformations are known to have the general

property of mapping straight lines into circles on the complex num-

ber plane.

• Bilinear transformations between

Γ ≡ Γr + jΓi ≡ (Γr,Γi)

and
Z

Zo
≡ z ≡ r + jx,

known as normalized impedance, lead to an ingenious graphical aid

known as the Smith Chart.

– On a Smith Chart (SC), straight lines on the right hand side of

the complex number plane (see margin), represented by

Re

Im

Unit 
Radius
Circle

x=const.

r=const.

z=r+jx

r = const. and x = const.,

are mapped onto circular loci of

(Γr,Γi) = Γ =
Z − Zo

Z + Zo
=

z − 1

z + 1

occupying the region of the plane bordered by the unit circle.

Circles corresponding to z = const.+ jx and z = r+ jconst.constitute

a griding of the unit circle and its interior. By means of this grid,

the normalized impedance z corresponding to every possible Γ can be

directly read off the SC.

4



• SC can be constructed by first noting that

Γ =
z − 1

z + 1
=

r + jx− 1

r + jx + 1
=

[(r − 1) + jx][(r + 1)− jx]

(r + 1)2 + x2
=

(r2 + x2 − 1) + j2x

(r + 1)2 + x2
≡ Γr+jΓi;

thus

Γr =
(r2 + x2 − 1)

(r + 1)2 + x2
and Γi =

2x

(r + 1)2 + x2
,

and by direct substitution we can verify the following equations

(Γr −
r

r + 1
)2 + Γ2

i = (
1

r + 1
)2 and (Γr − 1)2 + (Γi −

1

x
)2 = (

1

x
)2

describing r and x dependent circles, respectively, on complex plane

constituting the grid lines of the SC.

• Typical SC usage:

.2 .5 1 2 r=5

x=-5

-2

-1

-.5

-.2

x=5

2

1

.5

.2

0

80.447214, 0.0368959<

2.+ 1. ä

0.4- 0.2 ä

2.61803

SmithChart

1-1

Γi

Γr

Smith Chart is the unit cir-
cle and its interior on the
complex number plane corre-
sponding to the generalized

reflection coefficient Γ. The
gridding allows direct identi-
fication of the bilinear trans-
form of Γ, namely the nor-

malized line impedance z.

1. Locate and mark z(0) — normalized load impedance — on the

SC, which places you at a distance |Γ(0)| = |ΓL| from the origin

of the complex plane (and the SC), at an angle of θ = ∠Γ(0).

2. Draw a constant |Γ| = |ΓL| circle with a compass going through

point z(0) on the SC (the read circle in the margin). Rotate clock-

wise on the circle by an angle of

2βd =
4π

λ
d rad =

d

λ/2
360◦

to land on z(d) that can be read off using the SC gridding.

5



– Rotation by an angle of 2βd amounts to

rotation by full circle for d = λ
2 ,

rotation by half circle for d = λ
4 ,

rotation by quarter circle for d = λ
8
, etc.

3. Also, .2 .5 1 2 r=5

x=-5

-2

-1

-.5

-.2

x=5

2

1

.5

.2

0

80.447214, 0.0368959<

2.+ 1. ä

0.4- 0.2 ä

2.61803

SmithChart

y(d) ≡ 1

z(d)

which is the normalized line admittance is located on the SC

on the constant |Γ| = |ΓL| circle across the point corresponding to

z(d).

Verification: Since

z =
1 + Γ

1− Γ
⇒ y =

1

z
=

1− Γ

1 + Γ
=

1 + (−Γ)

1− (−Γ)
;

hence whereas z is the transform of Γ, y is the transform of −Γ,

having the same magnitude as Γ but an angle off by ±180◦.

– Therefore, “reflect” on the SC across the origin to jump

from z(d) to y(d) if you need the value of the normalized

admittance.

Our first SC example is given next.

6



Zo = 50 Ω

0d

ZL = 50 + j100 Ω

I(d)

V (d)

+

-

0.125λ

(a) At load point:

.2 .5 1 2 r=5

x=-5

-2

-1

-.5

-.2

x=5

2

1

.5

.2

0

80.707107, 0.0625<

1.+ 2. ä

0.2- 0.4 ä

5.82843

SmithChart

(b) at input point:

.2 .5 1 2 r=5

x=-5

-2

-1

-.5

-.2

x=5

2

1

.5

.2

0

80.707107, -0.0625<

1.- 2. ä

0.2+ 0.4 ä

5.82843

SmithChart

Example 1: A transmission line is terminated by an inductive load of

ZL = 50 + j100Ω.

Determine the input impedance Zin = Z(l) of the line at a distance

d = l =
λ

8

if the characteristic impedance of the line is Zo = 50Ω. Also determine the
normalized input admittance y(l).

Solution: The normalized load impedance is

z(0) =
ZL

Zo

=
50 + j100

50
= 1 + j2.

Enter z(0) on the SC and then rotate clockwise by λ
8
⇔(quarter circle) to obtain

the normalized input impedance

z(l) = 1− j2,

and the normalized input admittance

y(l) = 0.2 + j0.4

right across z(l). The input impedance is

Zin = Zoz(l) = 50(1− j2) = 50− j100Ω.

7



Blow up of the SC’s used in Example 1:

(a) At load point

.2 .5 1 2 r=5

x=-5

-2

-1

-.5

-.2

x=5

2

1

.5

.2

0

80.707107, 0.0625<

1.+ 2. ä

0.2- 0.4 ä

5.82843

SmithChart

(b) at input point

.2 .5 1 2 r=5

x=-5

-2

-1

-.5

-.2

x=5

2

1

.5

.2

0

80.707107, -0.0625<

1.- 2. ä

0.2+ 0.4 ä

5.82843

SmithChart

• A SmithChartTool linked from the class calendar (a javascript util-

ity that requires a Safari or Firefox browser to work properly) marks

and prints z(d) in red and y(d) in magenta across from z(d) on the

constant-|ΓL| circle (shown in red) as in the above examples. Also

– printed in black is the real valued normalized impedance z(dmax) discussed in
the upcoming lectures (also known as VSWR).

– also printed in red is |ΓL|∠Γ(d) where the second entry is expressed in terms
of an equivalent d

λ
such that d

λ
= 0.5 corresponds to an angle of 360◦. This

way of referring to ∠Γ(d) will be convenient in many SC applications that we
will see.

8



35 Smith Chart examples

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0
!0.447214, 0.0368959"

2.# 1. $

0.4" 0.2 $
2.61803

SmithChart

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.447214, 0.136896"
0.600056# 0.663401 $

0.749913" 0.829077 $

2.61803

SmithChart

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.361132, 0.176393"
0.555603# 0.368536 $

1.24991" 0.829077 $

2.13054

SmithChart

Example 1: A load ZL = 100 + j50Ω is connected across a TL with Zo = 50Ω and
l = 0.4λ. At the generator end, d = l, the line is shunted by an impedance
Zs = 100Ω. What are the input impedance Zin and admittance Yin of the line,
including the shunt connected element.

Solution: Normalized load impedance

z(0) =
ZL

Zo
=

100 + j50

50
= 2 + j1

is entered in the SC shown in the margin on the top. Clockwise rotation (from
load toward generator) at fixed |Γ| (red circle) by

0.4λ ⇔ 0.8× 360◦ = 288◦

takes us to
z(l) ≈ 0.6 + j0.66 and y(l) ≈ 0.75− j0.83

as shown on the SC in the middle. Hence, including the shunt element with
normalized input impedance zsi = 2 and admittance ysi =

1

2
, we obtain

yin = y(l) + ysi ≈ 1.25− j0.83

for the overall normalized input admittance of the shunted line as shown on the
SC in the bottom — the corresponding normalized input impedance is

zin =
1

yi
≈ 0.56 + j0.37.

Hence, the unnormalized input impedance and admittance are

Zin = Zozin ≈ 27.8 + j18.4Ω and Yin = Yoyin ≈ 0.025− j0.017 S.

1



Zo = 50 Ω

00.4λd

ZL =

I(d)

V (d)

+

-

+-

Zg = 25 Ω

100 ! 0 V 100 + j50 Ω

Vg = Zs = 100 Ω

Example 2: The TL network described in Example 1 is connected to a generator with
open circuit voltage phasor Vg = 100∠0 V and internal impedance Zg = 25Ω.
What is the average power (a) input of the shunted line, (b) delivered to the
shunt element, delivered to the load.

Solution:

(a) Using the input impedance
Zin ≈ 27.8 + j18.4Ω,

from Example 1, we can write

Vin = Vg
Zin

Zg + Zin
and Iin =

Vg

Zg + Zin
.

Therefore, the average power input of the shunted line is

P =
1

2
Re{VinI

∗
in} =

1

2
Re{ VgZin

Zg + Zin
(

Vg

Zg + Zin
)∗}

=
|Vg|2

2|Zg + Zin|2
Re{Zin} =

1002

2|25 + 27.8 + j18.4|227.8 ≈ 44.44W.

(b) The shunt element Zs = 100Ω sees the same voltage Vin and conducts a current
Vin/Zs. Therefore it absorbs an average power of

P =
1

2
Re{Vin(

Vin

Zs
)∗} =

|Vin|2

2Zs
=

|VgZin|2

2Zs|Zg + Zin|2

≈ |100 · (27.8 + j18.4)|2

2 · 100 · |25 + 27.8 + j18.4|2 ≈ 17.78W.

The remainder of 44.44 W will be absorbed in ZL.
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.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.447214, 0.0881041"
1.# 1. $

0.5" 0.5 $

2.61803

SmithChart

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.447214, "0.111896"
0.759461" 0.837617 $

0.594079# 0.655216 $

2.61803

SmithChart

Zo = 50 Ω

00.3λd

ZL =?

I(d)

V (d)

+

-

Zin = 50 + j50 Ω

Example 3: A TL of length l = 0.3λ has an input impedance Zin = 50 + j50Ω.
Determine the load impedance ZL = Z(0) and YL = Y (0) given that Zo = 50Ω
for the line.

Solution: First enter the normalized inpur impedance

zin =
Zin

Zo
=

50 + j50

50
= 1 + j

in the SC as shown in the margin on the top. Counter-clockwise rotation (from
generator toward load) at fixed |Γ| (red circle) by

0.3λ ⇔ 0.6× 360◦ = 216◦

takes us to
z(0) ≈ 0.76− j0.84 and y(0) ≈ 0.59 + j0.66

as shown on the next SC at the load point. Hence, we find

ZL = Zoz(0) ≈ 50 · (0.76− j0.84) = 37.97− j41.88Ω

and
YL = Yoy(0) ≈

1

50
(0.59 + j0.66) = 0.012 + j0.013 S.
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Zo = 50 Ω

00.2λd

ΓL = 0.5

I(d)

V (d)

+

-

0.5λ

Zo = 50 Ω

ΓLs = −0.5

Zin =?

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0 !0.5, 0"
3.0.333333

3.

SmithChart

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.5, "0.2"
0.364251" 0.285469 $

1.70075# 1.3329 $

3.

SmithChart

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0 !0.5, 0.25"
0.333333 3.

3.

SmithChart

Example 4: A TL of length l = 0.5λ and Zo = 50Ω has a load reflection coefficient
ΓL = 0.5 and and a shunt connected TL at d = 0.2λ. The shunt connected TL
has l = 0.3λ, Zo = 50Ω, and a load reflection coefficient ΓL = −0.5. Determine
the input impedance of the line.

Solution: Recall that the SC covers the unit circle of the complex plane and therefore
the complex number

ΓL = 0.5 + j0 = 0.5

can be entered directly in the SC as shown on the top SC in the margin. Clockwise
rotation (from load toward generator) at fixed |Γ| (red circle) by

0.2λ ⇔ 0.4× 360◦ = 144◦

takes us to

z(0.2λ) ≈ 0.36− j0.29 and y(0.2λ) ≈ 1.7 + j1.33

as shown on the SC in the middle. Likewise, entering

ΓLs = −0.5 + j0 = −0.5
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.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.5, "0.05"
1.70075" 1.3329 $

0.364251# 0.285469 $

3.

SmithChart

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.558955, "0.209976"
0.3" 0.235114 $

2.065# 1.61837 $

3.53468

SmithChart

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0

!0.558955, "0.00997561"
3.38216" 0.687537 $

0.283936# 0.0577194 $

3.53468

SmithChart

for the shunt connected stub in the third SC and rotating clockwise by

0.3λ ⇔ 0.6× 360◦ = 216◦

we obtain

zs(0.3λ) ≈ 1.7− j1.33 and ys(0.3λ) ≈ 0.36 + j0.29.

We proceed by combining the normalized admittances as

yc = y(0.2λ) + ys(0.3λ) ≈ (1.7 + j1.33) + (0.36 + j0.29) = 2.065 + j1.61837,

and entering it in the next SC. Finally rotating clockwise once again by

0.3λ ⇔ 0.6× 360◦ = 216◦

we obtain, from the last SC

zin ≈ 3.38− j0.69 ⇒ Zin = zinZo ≈ 169− j34.4Ω.
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Example 5: What is the load impedance ZLs terminating the shunt connected stub
in Example 4?

Solution: Given that the corresponding reflection coefficient is

ΓLs = −0.5,

it follows from the bilinear transformation linking zLs and ΓLs that

zLs =
1 + ΓLs

1− ΓLs
=

1− 0.5

1 + 0.5
=

1

3
.

Hence, the impedance is
ZLs = ZozLs =

50

3
Ω.

Example 6: What is the load impedance ZL in Example 4?

Solution: This is similar to Example 5. Given that the load reflection coefficient is

ΓL = 0.5,

it follows from the bilinear transformation linking zL and ΓL that

zL =
1 + ΓL

1− ΓL
=

1 + 0.5

1− 0.5
= 3.

Hence, the impedance is
ZL = ZozL = 150Ω.
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36 Smith Chart and VSWR

• Consider the general phasor expressions

V (d) = V +ejβd(1 + ΓLe
−j2βd) and I(d) =

V +ejβd(1− ΓLe−j2βd)

Zo

describing the voltage and current variations on TL’s in sinusoidal
steady-state.

+-

Wire 2

Wire 1

+

-

0
F = Vg

Zg

ZL

I(d)

V (d)

l

Transmission line

Load

Zo

Generator

d

dmax

|V (d)|

dmin

|V (d)|min

|V (d)|max

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0 VSWR

SmithChart

1

Γ(d)
1 + Γ(d)

|1 + Γ(d)| maximizes for d = dmax

Γ(dmax) = |ΓL|

|1 + Γ(d)| minimizes for d = dmin

such that Γ(dmin) = −Γ(dmax)

Complex addition displayed
graphically superposed on a
Smith Chart

z(dmax)
=VSWR

– Unless ΓL = 0, these phasors contain reflected components, which
means that voltage and current variations on the line “contain”
standing waves.

In that case the phasors go through cycles of magnitude variations as a
function of d, and in the voltage magnitude in particular (see margin)
varying as

|V (d)| = |V +||1 + ΓLe
−j2βd| = |V +||1 + Γ(d)|

takes maximum and minimum values of

|V (d)|max = |V +|(1 + |ΓL|) and |V (d)|min = |V +|(1− |ΓL|)

at locations d = dmax and dmin such that

Γ(dmax) = ΓLe
−j2βdmax = |ΓL| and Γ(dmin) = ΓLe

−j2βdmin = −|ΓL|,

and
dmax − dmin is an odd multiple of

λ

4
.

1



– These results can be most easily understood and verified graphi-
cally on a SC as shown in the margin. +-

Wire 2

Wire 1

+

-

0
F = Vg

Zg

ZL

I(d)

V (d)

l

Transmission line

Load

Zo

Generator

d

dmax

|V (d)|

dmin

|V (d)|min

|V (d)|max

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0 VSWR

SmithChart

1

Γ(d)
1 + Γ(d)

|1 + Γ(d)| maximizes for d = dmax

Γ(dmax) = |ΓL|

|1 + Γ(d)| minimizes for d = dmin

such that Γ(dmin) = −Γ(dmax)

Complex addition displayed
graphically superposed on a
Smith Chart

z(dmax)
=VSWR

• We define a parameter known as voltage standing wave ratio, or
VSWR for short, by

VSWR ≡
|V (dmax)|
|V (dmin)|

=
1 + |ΓL|
1− |ΓL|

⇔ |ΓL| =
VSWR − 1

VSWR + 1
.

Notice that the VSWR and |ΓL| form a bilinear transform pair just
like

z =
1 + Γ

1− Γ
⇔ Γ =

z − 1

z + 1
.

Since
Γ(dmax) = |ΓL| ⇒ VSWR =

1 + Γ(dmax)

1− Γ(dmax)
,

this analogy between the transform pairs also implies that

z(dmax) = VSWR,

as explicitly marked on the the SC shown in the margin . Consequently,

– the VSWR of any TL can be directly read off from its SC plot
as the normalized impedance value z(dmax) on constant-|ΓL| circle
crossing the positive real axis of the complex plane.
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• The extreme values the VSWR can take are:

1. VSWR=1 if |ΓL| = 0 and the TL carries no reflected wave.
2. VSWR=∞ if |ΓL| = 1 corresponding to having a short, open, or

a purely reactive load that causes a total reflection.

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0 VSWR

SmithChart

1

Γ(d)
1 + Γ(d)

|1 + Γ(d)| maximizes for d = dmax

Γ(dmax) = |ΓL|

|1 + Γ(d)| minimizes for d = dmin

such that Γ(dmin) = −Γ(dmax)

z(dmax)
=VSWR
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• In the lab it is easy and useful to determine the VSWR and dmax or
dmin of a TL circuit with an unknown load, since +-

Wire 2

Wire 1

+

-

0
F = Vg

Zg

ZL

I(d)

V (d)

l

Transmission line

Load

Zo

Generator

d

dmax

|V (d)|

dmin

|V (d)|min

|V (d)|max

.2 .5 1 2 r!5

x!"5

"2

"1

".5

".2

x!5

2

1

.5

.2

0 VSWR

SmithChart

1

Γ(d)
1 + Γ(d)

|1 + Γ(d)| maximizes for d = dmax

Γ(dmax) = |ΓL|

|1 + Γ(d)| minimizes for d = dmin

such that Γ(dmin) = −Γ(dmax)

Complex addition displayed
graphically superposed on a
Smith Chart

z(dmax)
=VSWR

1. given the VSWR,
|ΓL| =

VSWR − 1

VSWR + 1
is easily determined, and

2. given dmax or dmin the complex ΓL or its transform zL can be easily
obtained.

Say dmax is known: then,

• since (as we have seen above)

Γ(dmax) = ΓLe
−j2βdmax = |ΓL|

it follows that

ΓL = |ΓL|ej2βdmax ⇒ zL =
1 + ΓL

1− ΓL
.

• alternatively, zL can be obtained directly on the SC by rotating counter-
clockwise by dmax from the location of

z(dmax) = VSWR.

These techniques are illustrated in the next example.
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Example 1: An unknown load ZL on a Zo = 50Ω TL has

V (dmin) = 20V, , dmin = 0.125λ and VSWR=4.

Determine (a) the load impedance ZL, and (b) the average power PL absorbed
by the load.

Solution:

(a) As shown in the top SC in the margin, VSWR=4 is entered in the SC as
z(dmax) = 4 + j0, and constant |ΓL| circle is then drawn (red circle) passing
through z(dmax) = 4.

Right across z(dmax) = 4 on the circle is z(dmin) = 0.25.

A counter-clockwise rotation from z(dmin) = 0.25 by one fourth of a full circle corre-
sponding to a displacement of dmin = 0.125λ (a full circle corresponds to a λ/2
displacement) takes us to

zL ≈ 0.4706− j0.8823

as shown in the second SC. Hence, this gives

ZL = ZozL = 50(0.4706− j0.8823) = 23.53− j44.12Ω.

(b) We will calculate PL by using V (dmin) and I(dmin). Since

z(dmin) = 0.25 it follows that Z(dmin) =
1

4
50Ω = 12.5Ω.

5



Therefore the voltage and current phasors at the voltage minimum location are

V (dmin) = 20V and I(dmin) =
20V

12.5Ω
.

Average power transported toward the load at d− dmin is, therefore,

P (dmin) =
1

2
Re{V (dmin)I(dmin)

∗} =
1

2
Re{20

20

12.5
} =

400

25
W = 16W.

Since the TL is assumed to be lossless we should have

PL = P (dmin) = 16W.

+-

Wire 2

Wire 1

+

-

0
F = Vg

Zg

ZL

I(d)

V (d)

l

Transmission line

Load

Zo

Generator

d

dmax

|V (d)|

dmin

|V (d)|min

|V (d)|max

Example 2: If the TL circuit in Example 1 has l = 0.625λ, and a generator with an
internal impedance Zg = 50Ω, determine the generator voltage Vg.

Solution: Given that l = 0.625λ and dmin = 0.125λ, we note that there is just one
half-wave transformer between l = 0.625λ and dmin = 0.125λ. Therefore

Vin = −V (dmin) = −20V and Zin = Z(dmin) = 12.5Ω.

But also

Vin = Vg
Zin

Zg + Zin
.

Consequently,

Vg = Vin
Zg + Zin

Zin
= −20

50 + 12.5

12.5
= −20

62.5

12.5
= −100V.
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Example 3: Determine V + and V − in the circuit of Examples 1 and 2 above such that
the voltage phasor on the line is given by

V (d) = V +ejβd + V −e−jβd.

Solution: Looking back to Example 1 (also see the SC’s in the margin), we first note
that

|ΓL| =
VSWR − 1

VSWR + 1
=

4− 1

4 + 1
= 0.6 = Γ(dmax) = −Γ(dmin).

Hence, evaluating V (d) at d = dmin, we have

V (dmin) = V +ejβdmin(1 + Γ(dmin))

= V +(ej
2π

λ

λ

8 )(1 + (−0.6)) = 0.4ej
π

4V + = 20V,

from which
V + = 50e−j π

4 V.

Since
ΓL = Γ(0) = Γ(dmin)e

j2βdmin = −0.6ej
π

2 ,

it follows that

V − = ΓLV
+ = −0.6ej

π

2 × 50e−j π

4 = −30ej
π

4 V.
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Example 4: Determine the load voltage and current VL = V (0) and IL = I(0) in the
circuit of Examples 1-3 above.

Solution: In general,

V (d) = V +ejβd − V −e−jβd and I(d) =
V +ejβd − V −e−jβd

Zo
.

Therefore,

VL = V (0) = V + + V − and IL = I(0) =
V + − V −

Zo
.

Using Zo = 50Ω and

V + = 50e−j π

4 V and V − = −30ej
π

4 V

from Example 3, we find that

VL = 50e−j π

4 − 30ej
π

4 V and IL =
50e−j π

4 + 30ej
π

4

50
= e−j π

4 + 0.6ej
π

4 A.
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37 Smith Chart and impedance matching

• In lossless TL circuits the average power input Pin at the generator end

precisely matches the average power delivered to the load, PL.

In fact, Pin and PL also match the average power P (d) transported on

the line at an arbitrary d.

+
-

+

-

0

F = Vg

Zg
ZL

I(d)

V (d)

l

Load

Zo

d

Power tx’ed toward the load:

|V +|2
2Zo

.

Power tx’ed toward the gen-

erator:

|V −|2
2Zo

.

Power reflection coefficient:

|ΓL|2.

Power transmission coeff.:

1− |ΓL|2.

• We have in general

P (d) =
1

2
Re{V (d)I∗(d)}

=
1

2
Re{(V +ejβd + V −e−jβd)(

V +ejβd − V −e−jβd

Zo
)∗}

=
1

2
Re{|V

+|2
Zo

− |V −|2
Zo

+
V −V +∗e−j2βd − (V −V +∗e−j2βd)∗

Zo
}

=
|V +|2
2Zo

− |V −|2
2Zo

.

– Note that P (d) is the difference of power transported
|V +|2
2Zo

toward the load by the “forward-going” wave, and

|V −|2
2Zo

toward the generator by the reflected wave.

– Also note that

P (d) =
|V +|2
2Zo

− |V −|2
2Zo

=
|V +|2
2Zo

(1− |ΓL|2)

so that |ΓL|2 is an effective power reflection coefficient.

1



• In TL circuits with load impedances ZL unmatched to the character-

istic impedance Zo, the reflected power

|V +|2
2Zo

|ΓL|2

will be non-zero and the VSWR>1.

+
-

+

-

0

F = Vg

Zg
ZL

I(d)

V (d)

l

Load

Zo

d

This a condition not favored by practical signal generators used in

TL circuits.

• Most generators are designed (in their biasing arrangements) to oper-

ate in circuits with low VSWR (close to unity), requiring Zin closely

matched to Rg, most frequently 50 Ω, an optimal characteristic impedance

value for coax-lines (when line losses are taken into account).

• Thus a standard procedure is to use TL’s with Zo = Rg, and uti-

lize a lossless impedance matching network on the TL if the load

impedance ZL 6= Zo.

– This practice is called impedance matching.

Impedance matching achieves VSWR=1 between the generator and the match-

ing network inserted at a location between the load and the generator.

• The inserted network should be designed to yield an input impedance

equal Zo at its input terminals.

The following examples illustrate different ways of achieving an

impedance match.

2



ZLZo

d1

Zq =

√
ZoZ(d1)

Quarter-wave matching

λ

4

0ld

Example 1: Quarter-wave matching of resistive loads:

Consider a TL with ZL = 25Ω and Rg = Zo = 50Ω. Since ZL 6= Zo the load is
unmatched and the VSWR>1.

To reduce the VSWR on the line connected to the generator to unity, we can insert
a quarter-wave transformer right after ZL — i.e., at d1 = 0 in the circuit
shown in the margin — with a characteristic impedance

Zq =
√
25× 50 =

√
1250 = 35.35Ω.

The impedance at the input terminals of the quarter-wave transformer (on the left)
is then Zo, i.e., 50 Ω, implying a perfect impedance match.

• Quarter-wave matching illustrated above is a very commonly used match-

ing technique.

• It is a straightforward application of the quarter-wave transformer impedance

formula

Zin =
Z2
q

ZL

for a transformer with characteristic impedance Zq.

3



ZLZo

d1

Zq =

√
ZoZ(d1)

Quarter-wave matching

λ

4

0ld
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Note that:

z(d1) = z(dmax) = VSWR ≈ 2.62

as marked on the SC.
Also

dmax ≈ 0.088λ

since, as marked on the SC,
the angle of ΓL is 0.088λ.

Example 2: Quarter-wave matching of reactive loads:

Consider a TL with ZL = 50 + j50Ω and Rg = Zo = 50Ω. Since ZL 6= Zo the load
is unmatched and the VSWR>1.

We cannot insert the quarter-wave transformer right after the load because then we
would need a complex valued Zq implying a lossy matching network.

Instead, we insert a quarter wave transformer a distance d1 to the left of ZL,
where d1 is selected, using a SC, to have a purely resistive Z(d1). In that case,
the quarter-wave transformer impedance formula

Zq =
√

Z(d1)× 50

yields a real valued Zq as needed. This procedure leads to having d1 = dmax or
d1 = dmin corresponding to the positions of voltage maxima and minima on the
line.

As shown in the margin,

Z(d1) = 50(2.62 + j0) = 131Ω.

for
d1 ≈ 0.250λ− 0.162λ = 0.088λ

is a suitable choice for quarter-wave matching. In that case we need

Zq =
√
131× 50 = 50×

√
2.62Ω

for the quarter wave transformer in order match to load to a line with Zo = 50Ω.
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ZLZo

Shorted
stub

ls

y(d1) + ystub = 1Want

d1
0ld

Single-stub 
tuning
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Example 3: Single-stub tuning:

Consider a TL with ZL = 100− j50Ω and Rg = Zo = 50Ω. Since ZL 6= Zo the load
is unmatched and the VSWR>1.

We will insert a shorted-stub a distance d1 to the left of ZL in parallel with the line
to achieve an impedance match.

Distance d1 will be selected, using a SC, to have a normalized admittance of

y(d1) = 1 + jb

so that a stub, with a normalized input admittance

ystub = −jb,

can be added in parallel to have a combined admittance of

y(d1) + ystub = 1 + j0

and achieve a perfect impedance match (i.e., VSWR=1).

In specific

zL =
ZL

Zo

= 2− j1 and yL =
1

zL
= 0.4 + j0.2

as shown on the SC on the top in the margin. We rotate clockwise on the SC by
an amount corresponding to d1 to obtain

y(d1) = 1 + j1

on the “g = 1” or “y = 1 + jb” circle as shown in the bottom SC. From the
amount of rotation we determine

d1 ≈ 0.162λ− 0.037λ = 0.125λ.
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The required input impedance of the shorted stub to achieve

y(d1) + ystub = 1 + j0

is
ystub = −1j.

To achieve this input admittance the required stub length is

ls =
λ

8
= 0.125λ

as determined from the SC — start at y = ∞ point on the SC on the far right
(corresponding to the short termination), and then rotate clockwise (toward the
generator) until the normalized admittance reads −j1; the amount of rotation
indicates the required ls.

• Another matching technique called double-stub tuning uses two
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shorted stubs of lengths l1 and l2 located at fixed values of d1 and d2.

– Typically d1 is zero or λ
4 , and

– d2 = d1 + 3λ8 .

Vary l1 and l2 until VSWR is reduced to 1 near the generator end.

The advantage of double-stub tuning is avoiding changes of stub loca-

tions when ZL is changed. It’s implementation on a SC is considerably

more complicated than single-stub tuning.

6



38 Distribution networks

• A corporate ladder network that combines 4

identical loads ZL into a single equivalent input

impedance ZL is shown in the margin.

• In this network 6 different quarter-wave trans-

formers with arbitrary but identical characteris-

tic impedances Zo are utilized.

You should be able to compute the load volt-

ages VL in the network in terms of input volt-

age Vin applied across the input port by using

the current-forcing formula for the quarter-wave

transformer introduced earlier on.

ZL ZL ZLZL

Zin = ZL

Loads

Quarter-
wave tx’s

Quarter- 
wave tx’s

All quarter-wave
tx’s have the 
same Z_o

Input impedance is the
same as load impedance

By symmetry, the loads absorb equal avg power,
a quarter of the input power each.

CORPORATE LADDER NETWORK

Input
port

• If, in a corporate ladder network, ZL = Zo, then TL segment lengths

connected to each ZL can be varied at will without affecting the input

impedance ZL = Zo (why?).

• Allowing variable length TL’s connected to each ZL makes it possible to

adjust and vary the phase of the voltage and current of each ZL — this

is useful, for instance, in feeding phased antenna arrays (ZL represents

an antenna load) to achieve steerable radiation patterns.
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• A hybrid combiner network shown in the mar-

gin can be used to excite two identical TL loads

R (e.g., antenna arrays impedance matched to

have input impedances R) with independent sig-

nal generators VA and VB having equal internal

resistances R matched to the load resistance.

• The hybrid “rat-race” combiner is built with 6

quarter-wave transformers of identical

Zo =
√
2R,

in which case the generators VA and VB see

impedance-matched loads (at the hybrid inputs

where they are connected) and produce load

voltages proportional to VA ± VB as shown in

the diagram.

+
-

+
-

λ

4

VA

VB

R

R

R

R

VA

2

VB

2

−j
VA − VB

2
√

2
−j

VA + VB

2
√

2

Zo =

√
2R Zo =

√
2R

Zo =

√
2R Zo =

√
2R

Zo =

√
2R

Zo =

√
2R

LOAD LOAD

INPUT A

INPUT B

HYBRID COMBINER --- SUM and DIFFERENCE OF ISOLATED
GENERATOR SIGNALS V_A AND V_B ARE APPLIED TO LOADS R

• Generators A and B with open ckt voltages VA and VB are isolated from one another’s influence

because of “destructive interference” between the two paths from each generator to the other one

(two paths have a λ
2

length difference).

• This very special situation allows one to calculate the various terminal voltages on the hybrid

due to VA and VB one-at-a-time as if loads R were isolated from generator-B and -A (by “virtual

shorts” existing across generator terminals when VB and VA are suppressed) in turns, and then

superpose the results.

2



• Terminal voltages obtained with that procedure (those shown on the diagram) turn

out to be valid when both generators are active as can easily be checked for self-

consistency by using the current-forcing equations introduced earlier. For instance,

the total current into generator-A terminal (flowing from both sides) is

IA = − j

R
√
2
(−j

VA − VB

2
√
2

)− j

R
√
2
(−j

VA + VB

2
√
2

) = −VA

2R
,

and hence the voltage drop from the same terminal to the ground is

IAR + VA = −VA

2R
R + VA =

VA

2

as marked explicitly on the diagram. All self-consistency tests that can be applied

with the given expressions are passed, and so the results given are valid.

• The input and output ports of a

hybrid combiner can be swapped

while still maintaining the proper-

ties of the hybrid — namely, input

impedance R, and output signals the

sum and difference of generator volt-

ages.

+
-

+
-

λ

4

VA

VB

R

R

R

R

VA

2

VB

2

−j
VA − VB

2
√

2
−j

VA + VB

2
√

2

Zo =

√
2R Zo =

√
2R

Zo =

√
2R Zo =

√
2R

Zo =

√
2R

Zo =

√
2R

LOAD LOAD

INPUT A

INPUT B

HYBRID COMBINER --- SUM and DIFFERENCE OF ISOLATED
GENERATOR SIGNALS V_A AND V_B ARE APPLIED TO LOADS R
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39 Lossy lines

∆zC

z z + ∆z

∆zL+

-

∆zC

z z + ∆z

V (z)

I(z)

∆zL+

-

I(z + ∆z)∆zR

∆zG

IDEAL LOSSLESS T.L.:

REALISTIC LOSSY T.L.:

I(z + ∆z)I(z)

V (z)

• Lossless TL’s we have been studying so far are idealizations of real TL’s

which are invariably lossy.

– Here, we are making reference to Ohmic energy losses in the

conducting wires of the TL, as well as to losses in the imperfect

dielectric separating the two conductors.

• The effect of wire losses in TL’s is modelled by adding a ∆zR resis-

tance in series with ∆zL inductor in the equivalent circuit model of an

infinitesimal (∆z ≪ λ) TL section as shown in the margin.

• In addition, a shunt conductance ∆zG in parallel with capacitance ∆zC
accounts in the lossy model for dielectric losses. Using perturbation theory, it can

be shown that for a coax of inner
and outer radii a and b,

R =

√

fµ

πσ
(
1

a
+

1

b
),

while for a parallel-plate transmis-
sion line of width W ,

R =
4π

W

√

fµ

πσ
,

in terms of conductivity σ and per-
meability µ of the T.L. conductors.

• While the phasor form of telegrapher’s equations for a lossless TL is

−∂V

∂z
= jωLI and − ∂I

∂z
= jωCV,

for lossy lines — where impedance per unit length jωL must be replaced

by jωL +R and conductance per unit length jωC by jωC + G — the

equations take the form

−∂V

∂z
= (jωL +R)I and − ∂I

∂z
= (jωC + G)V.

1



• We will next show that

1. lossless line solutions can be readily modified to account for loss

effects introduced by Ohmic energy losses in R and G,

2. lossless line results we have learned up till now are by and large

valid even on lossy lines provided that

(a) frequency ω is sufficiently large, and

(b) voltage and current solutions V ±e±jβd and V ±
±Zo

e±jβd are mod-

ified by multiplying an attenuation term e±αd which only mat-

ters in practice when d ≫ λ.

• Note that lossless line solutions of telegrapher’s equations can be re-

stated as

V = V ±e±γd and I =
V ±

±Zo
e±γd,

where

γ = jβ = jω
√
LC =

√

(jωL)(jωC) and Zo =

√

L
C =

√

jωL
jωC .

– Replacing jωL by jωL +R, and jωC by jωC + G, we obtain

γ =
√

(jωL +R)(jωC + G) and Zo =

√

jωL +R
jωC + G

in the lossy case.

2



While waves governed by lossy γ and Zo (see margin) can exhibit substan-

tially different beavior than the lossless waves (examined in the previous

sections), at high frequencies the wave properties are reasonably similar as

alluded in item (2) above. We next examine this simplified high-frequency

limit.

γ =
√

(jωL +R)(jωC + G)

Zo =

√

jωL +R
jωC + G

• At high frequencies ω, such that ωL ≫ R and ωC ≫ G, we have

– characteristic impedance

Zo =

√

jωL +R
jωC + G ≈

√

L
C

just as in the lossless case1, and

– complex propagation constant

γ =
√

(jωL +R)(jωC + G) = jω
√
LC

√

1 +
R
jωL

√

1 +
G

jωC

≈ jω
√
LC(1 + R

j2ωL)(1 +
G

j2ωC ) ≈ jω
√
LC +

1

2
(
R
Zo

+ GZo)

= jβ + α

with

β ≈ ω
√
LC and α ≈ β(

R
2ωL +

G
2ωC ) =

1

2
(
R
Zo

+ GZo).

1In fact Zo =
√

L

C
is exact even for a lossy line if L

R
= C

G
.
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• Note that β = 2π
λ

is the same as in the lossless case, and since

α ≈ β(
R
2ωL +

G
2ωC ) ≪ β,

the “penetration depth” δ ≡ 1
α of voltage and current waves on the TL

is much longer than a wavelength λ = 2π
β

in this regime.

In summary, in the high-frequency regime, characteristic impedance Zo

and wavenumber β are (practically) the same as they are on lossless lines,

but signals do attenuate by a factor e±αd which should not be (and cannot

be) neglected over long distances d exceeding many wavelengths λ.

• At lower frequencies where the above approximations cannot be justi-

fied, a more careful analysis of lossy line equations is warranted.

• Finally, for an air-filled coax with inner and outer radii a and b, it can

be shown that the attenuation constant

α =
1

2

R
Zo

=
1

2

√

fµo
πσ

1
b(1 +

b
a)

ηo
2π ln(

b
a)

,

which minimizes, at a fixed outer radius b, for b
a
≈ 3.6, which in turn

results in an “optimal” characteristic impedance of

Zo =
ηo
2π

ln(
b

a
) = 60 ln(

b

a
) Ω ≈ 75 Ω

for the same coax. Note that this result is independent of σ, the con-

ductivity of inner and outer conductors of the coax.
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– For a dielectric filled coax having ǫ = 9
4
ǫo — implying vp =

2
3
c =

2×108 m/s — the same ratio b
a ≈ 3.6 of outer and inner conductor

radii leads to Zo ≈ 50 Ω, the most common Zo encountered in

practical applications.

– The above result should also explain why having a thicker coax —

larger b — is better when losses are a concern.
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