
ECE 455
Lecture 6

Linear Optics

Nonlinear
Optics

χ(2) Processes

χ(3) Processes

Non-
Parametric
Processes

Applications

Nonlinear Optics
ECE 455 Optical Electronics

Gary Eden
Tom Galvin

If changes need to be made to these notes,
please contact Austin Steinforth: steinfo2@illinois.edu

ECE Illinois



ECE 455
Lecture 6

Linear Optics

Nonlinear
Optics

χ(2) Processes

χ(3) Processes

Non-
Parametric
Processes

Applications

Introduction

In this section, the following subjects will be covered:

What is meant by ’nonlinear optics’

Second and third order optical nonlinear effects

Applications of nonlinear phenomenon
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Linear Optics I

To understand what is meant by nonlinear, it is first
necessary to understand what is meant by linear

The electric displacement field is most generally written as:

Di (ω) = ε0Ei (ω) + Pi (ω) (1)

In linear optics, it is assumed that the dipole induced by
an electric field is linearly proportional the the strength of
that field:

Pi (ω) = ε0χ
(1)
ij (ω : ω1)Ej (ω1) (2)

This results from assuming the effect of the optical electric
field on the medium is perturbative

The net effect of the induced polarization is to change the
effective speed of light in the material as:

n(ω) =
√
χ(1)(ω) + 1 (3)
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Linear Optics II

Linear optical phenomenon are characterized by
interactions of materials with a single photon

All of the phenomenon discussed in this class so far are
linear optic effects

Pulses sent through linear materials may be amplified and
phase distorted, but the output frequency is equal to the
input frequency

Linear optical phenomenon are independent of the
intensity of the field

Lenses, mirrors, prisms, gratings, optical fibers, and
cavities can all be described by the theory of linear optics.
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Nonlinear Optics

Nonlinear optical phenomenon are characterized by
interactions of materials with multiple photons

Nonlinear optical phenomenon are in general a strong
function of the intensity

When any system is driven hard enough, it will exhibit
nonlinear behavior.

With ordinary light intensities, nonlinear optic effects are
too small to be noticed
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Linear and Nonlinear Behavior

E

P

Linear material response

E

P

Nonlinear material response
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Generation of New Frequencies I

The polarization response can be written as a power series:

P = ε0

[
χ(1)E + χ(2)E 2 + χ(3)E 3 + ...

]
(4)

Suppose the input field is:

Ein(t) = E0cos(ω0t) (5)

We know the χ(1)E term is the linear part of the polarization
and is responsible for the index of refraction. The polarization
from this linear term is:

P
(1)
out(t) = ε0χ

(1)E0cos(ω0t) (6)
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Generation of New Frequencies II

The polarization from the χ(2) term is:

P
(2)
out(t) = ε0χ

(2)E 2
0 cos

2(ω0t)

= ε0χ
(2)E 2

0

1

2
[1 + cos(2ω0t)] (7)

There are two new frequencies which weren’t present in the
original signal: 2ω0 and 0. Now consider the cubic term

P
(3)
out(t) = ε0χ

(3)E 3
0 cos

3(ω0t)

= ε0χ
(3)E 3

0

1

2
cos(ω0t) [1 + cos(2ω0t)]

= ε0χ
(3)E 3

0

1

2
[cos(ω0t) + cos(ω0t)cos(2ω0t)]

= ε0χ
(3)E 3

0

[
3

4
cos(ω0t) +

1

4
cos(3ω0t)

]
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Example: New Frequencies

Problem: Two lasers with frequencies ω1 and ω2 pass through
a material with a χ(3) coefficient. Find all frequencies at which
there is a polarization response.
Solution: If we were to continue as we have been doing, we
would expand

P
(3)
out = ε0χ

(3) (E0cos(ω1t) + E0cos(ω2t))3 (8)

and simplify it with sine and cosine identities.

However, we can recognize that when sines and cosines are
multiplied, they generate frequencies with the sum and
difference of the arguments. The polarization response
frequencies will be:

ω ∈ {ω1, 3ω1, ω2, 3ω2, |2ω1 ± ω2|, |ω1 ± 2ω2|} (9)
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General Rule for finding new frequencies

Our insight from the last example can be formalized with the
aid of Fourier transform theory: Multiplication in the time
domain is convolution in the frequency domain.

In general, if n frequencies are incident upon a medium with a
kth order nonlinearity, the frequencies at which the material will
respond are:

ωout = |ωi ± ωj ...± ωq| (10)

where ωi , ωj , ...ωq ∈ {ω1, ω2, ..., ωn}.

In practice, most of these frequencies will not be observed
because they will destructively interfere macroscopically.
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Einstein Notation I

The linear response of a material to an optical field may in
general be represented with the vector equation

~P(1)(ω) = ε0χ̄
(1)(ω)~E (ω) (11)

which is a compact way of writing Px (ω)
Py (ω)
Pz (ω)

 = ε0

 χxx (ω) χxy (ω) χxz (ω)
χyx (ω) χyy (ω) χyz (ω)
χzx (ω) χzy (ω) χzz (ω)

 Ex (ω)
Ey (ω)
Ez (ω)


(12)

The above matrix equation doesn’t seem so bad; The tensor
has 9 terms (not all independent). However the tensor for the
second-order nonlinear response contains 27 terms!

We need a compact way of representing these equations.
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Einstein Notation II

Repeated subscript indices imply summation over spatial
coordinates x, y and z. The following equation represents the
Einstein notation for the linear polarization.

Pi (ω) = ε0χ
(1)
ij (ω : ω1)Ej (ω1) (13)

For example, when considering the y coordinate, this becomes

Py (ω) = ε0

[
χ

(1)
yx (ω : ω1)Ex (ω1) + χ

(1)
yy (ω : ω1)Ey (ω1)

+χ
(1)
yz (ω : ω1)Ez (ω1)

]
(14)

Equations 11, 12, and 13 are all equivalent ways of expressing
the same idea.
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The χ(n) Tensors

The expression

χ
(2)
ijk (ω : ω1, ω2) (15)

should be interpreted in the following manner:

The coefficient of the material response at frequency ω and
polarization i due to fields with frequencies ω1 and ω2 and
polarizations j and k respectively.
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The Nonlinear Wave Equation

In a sourceless material medium, Maxwell’s four equations are

∇× ~E = −∂
~B

∂t
(16)

∇× ~H =
∂ ~D

∂t
(17)

∇ · ~B = 0 (18)

∇ · ~D = 0 (19)

If we take the curl of Equation 16 and assume a non-magnetic
material (~B = µ0

~H), then we may substitute Equation 17 into
Equation 16

∇×∇× ~E = −µ0
∂2 ~D

∂t2
(20)
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The Nonlinear Wave Equation

In linear optics, the next step would be to substitute ~D = ε̄ ~E
and go on our merry way, but the relationship between ~D and
~E is more complicated in nonlinear optics.

~D = ε0
~E + ~P (21)

= ε0
~E + ~P(1) + ~PNL (22)

= ε0

(
1 + χ̄(1)

)
~E + ~PNL (23)

= ε0ε̄
(1) ~E + ~PNL (24)

substituting this back into Equation 20

∇×∇× ~E +
ε̄(1)

c2

∂2 ~E

∂t2
= − 1

ε0c2

∂2 ~PNL

∂t2
(25)
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The Nonlinear Wave Equation

The next step in deriving the nonlinear wave equation is to

apply the vector identity ∇×∇× ~E = ∇ ·
(
∇~E
)
−∇2 ~E .

However, unlike linear optics, the equation ∇ ·
(
∇~E
)

= 0 is

only approximate. However it is a good approximation as long
as the pulses are not too ’short.’ The resulting wave equation is

−∇2 ~E +
ε̄(1)

c2

∂2 ~E

∂t2
= − 1

ε0c2

∂2 ~PNL

∂t2
(26)

What would the corresponding linear wave equation look like?
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χ(2) Processes

In order to possess even-ordered nonlinear coefficients, the
material must lack inversion symmetry

All nonlinear processes must obey the conservation of
energy:

ω3 = ω1 + ω2 (27)

They must also obey the conservation of momentum:

~k3 = ~k1 + ~k2 (28)

By convention
ω3 > ω2 ≥ ω1 (29)

In the context of frequency mixing, ω3, ω2 and ω1 are
referred to as the pump, signal, and idler respectively
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Second Harmonic Generation

The simplest χ(2) interaction is second harmonic
generation (SHG)

Two photons from the source are combined into a single
photon

~ω1 + ~ω1 → ~(2ω1)
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Second Harmonic Generation Math I

Let us examine the mathematics behind SHG. Let ω1 be the
fundamental optical frequency, and define k1 ≡ k(ω1) = ω1n1

c

and k2 ≡ k(2ω1) = 2ω1n2
c . The electric field in the medium will

consist of two parts: the fundamental frequency and its second
harmonic.

E (z , t) =
1

2

[
A1(z)eı(ω1t−k1z) + A2(z)eı(2ω1t−k2z) + c .c

]
(30)

The nonlinear polarization will then be:

PNL(z , t) = 2ε0deff E
2(z , t)

=
ε0deff

2

[
A2

1e
ı(2ω1t−2k1z) + 2A2A

∗
1e
ı(ω1t−(k2−k1)z) + c .c .

]
Note some terms of the nonlinear polarization (such as
A2

2e
ı(4ω1t−2k2z)) have been discarded. We’ll see why in a few

slides
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Second Harmonic Generation Math II

Substituting the above into the nonlinear wave equation (26),
we obtain:

1

2

[
−d2A1

dz2
+ ı2k1

dA1

dz
+ k2

1A1 −
(ω1n1

c

)2
A1

]
· eı(ω1t−k1z) +

1

2

[
−d2A2

dz2
+ ı2k2

dA1

dz
+ k2

2A2 −
(ω2n2

c

)2
A2

]
· eı(2ω1t−k2z) +

+c .c . =
deff

c2

[
2ω2

1A
2
1e
ı(2ω1t−2k1z) + ω2

1A2A
∗
1e
ı(ω1t−(k2−k1)z) + c .c .

]
(31)

The above equation looks horrible, but fortunately, it can be
simplified:

First note that since ki ≡ ωi ni
c , the last two terms in the

brackets both cancel.

It will also be assumed that d2Ai
dz2 � ki

dAi
dz . This is

commonly known as the slowly varying envelope
approximation
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Second Harmonic Generation Math III

From phase matching considerations, the equation can be
broken into two equations: the parts that vary as eıω1t and
those which vary as eı2ω1t

dA1

dz
=
−ıω1deff

n1c
A2A

∗
1e

−ı∆kz (32)

dA2

dz
=
−ıω1deff

n2c
A2

1e
ı∆kz (33)

where ∆k ≡ k2 − 2k1

Equations 41 and 42 are coupled nonlinear differential
equations.
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The Undepleted Pump Approximation

In the limit of low conversion efficiency A1 can be considered
constant. In this limit, Equation 42 can be integrated simply:

A2(L) =
−ıω1deff

n2c
A2

1

∫ L

0
eı∆kzdz

=
−ı2ω1deff

n2c∆k
A2

1e
ı∆kL

2 sin

(
∆kL

2

)
(34)

The conversion efficiency is then

I2ω1

Iω1

=
A∗

2A2

A∗
1A1

=

(
2ω1deff

n2c∆k

)2

|A1|2 sin2

(
∆kL

2

)
(35)
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Second Harmonic Generation Picture
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Final Thoughts on SHG

Small index differences severely lower conversion efficiency:
The ∆n = 0 curve on the previous slide is far off the scale.

∆n = 0 is known at the phase matching condition

Processes which are not phase matched are not
macroscopically observed because their efficiency is low

With careful design, conversion efficiencies approaching
100% can be achieved

For extremely short crystals, ∆n has no effect!
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Visual Image of Phase Matching Condition
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Birefringent Media I

Obeying the conservation of momentum is non-trivial
because in general n is a function of ω

k(ω) =
ωn(ω)

c
(36)

Therefore in general k(ω1 + ω2) 6= k(ω1) + k(ω2)

In order to overcome this difficulty, the properties of
birefringent crystals are used

Uniaxial media have indices of refraction of the form:

n̄ =

 no 0 0
0 no 0
0 0 ne

 (37)
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Birefringent Media II

For a plane wave whose ~k vector
makes an angle θ with the ẑ axis,
there will be two indices of
refraction, depending on the
polarization of the wave:

The ordinary index of
refraction is no

The extraordinary index of
refraction can be found with
the following equation:

1

n2(θ)
=

sin2(θ)

n2
e

+
cos2(θ)

n2
o

(38)

n
o

n
e

θ
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Birefringent Media III

Type I Phasematching involves the following two types
of interactions

o + o → e
e + e → o

Type II Phasematching
o + e → o
o + e → e
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Second Harmonic Generation Example I

Problem: BBO is a negative uniaxial crystal (ne < no). The
indices of refraction for the ordinary and extraordinary axes are
given by:

n2
o(λ) = 2.7359 +

0.01878

λ2 − 0.01822
− 0.01354λ2

n2
e (λ) = 2.3753 +

0.01224

λ2 − 0.01667
− 0.01516λ2

where λ is expressed in µm. Find the phasematching angle to
create the second harmonic of 780 nm light.
Solution: Because BBO is negative uniaxial, the 780 nm must
be input as the ordinary wave. The frequency doubled output
will be an extraordinary wave.
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Second Harmonic Generation Example II

Evaluating the previous two equations, we find the indices of
refraction to be:

no(780 nm) = 2.7595

no(390 nm) = 2.8741

ne(390 nm) = 2.4634

Setting the ordinary index at 780 nm to be equal to the
extraordinary index at 390 nm yields the following equation:

1

n2
o(780 nm)

=
1

n2(θpm)
=

sin2(θpm)

n2
e (390 nm)

+
cos2(θpm)

n2
o(390 nm)

Solving this equation for θpm yields:

θpm = 30◦
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Non-critical Phase Matching

Angle tuning a crystal to for phasematching purposes is
known as critical phase matching

Critical phase matching is sensitive to misalignment, and
suffers from problems such as walk off.

In special cases, the phasematching can be tuned by
varying the temperature and composition of the crystal

Periodically Poled Crystals

I2ω =
2ω2

0d
2
eff

ε0c3n3
I 2
ωsinc

2

(
∆kL

2

)
(39)

Efficiency is not as good as angle phase matching, but this
process is more versatile

ADD PICTURE OF PPLN crystal and its response
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Frequency Mixing

When ω1 6= ω2

The propagation of

dA1

dz
=
−ıω1deff

n1c
A3A

∗
2e

−ı∆kz (40)

dA2

dz
=
−ıω2deff

n2c
A3A

∗
1e

−ı∆kz (41)

dA2

dz
=
−ıω3deff

n3c
A1A2e

ı∆kz (42)

where ∆k = k3 − k1 − k2

In sum frequency generation (SFG), two lower frequency
photons combine to make a higher frequency photon

In difference frequency generation (DFG), a high frequency
photon is split into two lower frequency photons

SHG and DFG can be used to amplify weak signals or
convert a signal to from one center wavelength to another
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χ(3) Processes

The general form of the χ(3) tensor is:

P
(3)
i (ω) = ε0χ

(3)
ijkl (ω : ω1, ω2, ω3)Ej (ω1)Ek (ω2)El (ω3)

(43)

χ(2) effects are only observed in materials without
inversion symmetry.

Can be shown that all materials have nonzero χ(3)

coefficients
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Intensity Dependent Index of Refraction

The χ(3) coefficient gives rise to an intensity dependent
index of refraction

P = χ(1)E + χ(3)E 3

=
(
χ(1) + χ(3)|E |2

)
E (44)

This can also be written as:

n = n0 + n2I (45)
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Kerr Lensing

In Gaussian laser beams, the intensity is highest in the
center of the beam. Hence the index of refraction is
highest in the center.

The field turns the medium into a lens. The effect is
known as self-focusing

Because the only frequency present in these interactions is
ω, dispersion is irrelevant and this interaction is always
phase matched!
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Self Phase Modulation (SPM)

Temporal result of Kerr effect is known as self phase
modulation

A pulse can be written as:

Ein(t) = E (t)eı(ω0t+φ(t)) (46)

where E (t) is real.

If this pulse is passed through a non-dispersive Kerr
medium, the output is

Eout(t) = E (t)e
ı
(
ω0t+φ(t)+

ωn0L
c

+
ωn2I (t)L

c

)
(47)

where I (t) is the instantaneous intensity of the pulse

Last term in exponential spectrally broadens pulse

Because multiple frequencies are involved, dispersion and
phase matching are important
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Frequency Tripling

The χ(3)(3ω : ω, ω, ω) coefficient is typically very small.

Intensities required to excite a third-harmonic response
may be near or in excess of the damage threshold of the
material

Direct tripling is inefficient and rarely performed

To obtain the third harmonic of a laser, first frequency
double the beam and mix the output with the fundmental
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Four Wave Mixing (FWM)
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Common Nonlinear Crystals

Crystal Transparency

BBO Beta Barium Borate 198-2600 nm

BiBO Bismuth Triborate 286-2700 nm

KDP Potassium Dihydrogen Phosphate 176-1550 nm

KTP Potassium Titanyl Phosphate 352-4500 nm

LBO Lithium Triborate 160-2300 nm

LN Lithium Niobate 400-5500 nm
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Non-Parametric Processes

In non-parametric nonlinear processes, energy can be
transferred to the medium in which the light is propagating



ECE 455
Lecture 6

Linear Optics

Nonlinear
Optics

χ(2) Processes

χ(3) Processes

Non-
Parametric
Processes

Applications

Two Photon Absorption

E
o

E
2

E
2

E
o

E
1

Virtual

States

Two photons absorbed simultaneously to bring atom to
high-lying energy level
Absorption enhanced by enhanced by allowed transitions
near single photon resonance
Can limit the performance of high-powered lasers
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Stimulated Raman Scattering (SRS)

Interaction of light with an acoustic phonon in the material
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Stimuated Brillioun Scattering (SBS)

Interaction of light with an acoustic phonon in the material

The scattered wave is always backwards propagating
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Frequency Conversion
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Optical Parametric Oscillator (OPO)

NL Crystal

Ip

Iidler

Isig

Place nonlinear crystal inside cavity
When pumped with a high-intensity laser, crystal acts a
gain medium
Resulting device behaves very similar to a laser
OPOs can angle or temperature tuned
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Continuum Generation

Focus a femtosecond laser into a fiber or a sapphire plate

Exact spectrum structure is chaotic

Useful as a high intensity, broadband spectroscopic light
source
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Solitons

Linear dispersion and self phase modulation balance each
other

Pulse propagates without changing shape

Nonlinear propagation equation solutions have discrete
energies and stable pulse profiles
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Two Photon Photoresist

Two photon absorption permits high contrast 3D patterning
Courtesy Sidartha Gupta
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Conclusions

Nonlinear processes are those in which the output may
contain frequencies of light not present in the input.

Lasers are essential for observing nonlinear optical
properties.

Nonlinear optical interactions require a material medium
(solid, liquid, gas, plasma)

Photon energy must be conserved in parametric nonlinear
processes

Some photon energy is transferred to the medium in
non-parametric nonlinear processes

Momentum must be conserved in nonlinear processes
(phase-matching) in order for them to be observable on
a macroscopic scale
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