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In this section, the following subjects will be covered:
@ What is meant by 'nonlinear optics’
@ Second and third order optical nonlinear effects

@ Applications of nonlinear phenomenon
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To understand what is meant by nonlinear, it is first
necessary to understand what is meant by linear
The electric displacement field is most generally written as:

D,-(w) = EoE,'(w) + P,-(w) (1)

In linear optics, it is assumed that the dipole induced by
an electric field is linearly proportional the the strength of
that field:

Linear Optics

Pi(w) = coxyy (w : w1)Ej(wi) 2)
This results from assuming the effect of the optical electric
field on the medium is perturbative
@ The net effect of the induced polarization is to change the
effective speed of light in the material as:

n(w) = \/xO(w) +1 (3)



Linear Optics Il
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Linear optical phenomenon are characterized by
interactions of materials with a single photon

Linear Optics

@ All of the phenomenon discussed in this class so far are
linear optic effects

@ Pulses sent through linear materials may be amplified and
phase distorted, but the output frequency is equal to the
input frequency

@ Linear optical phenomenon are independent of the
intensity of the field

@ Lenses, mirrors, prisms, gratings, optical fibers, and
cavities can all be described by the theory of linear optics.



Nonlinear Optics
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Nonlinear @ Nonlinear optical phenomenon are characterized by
Optics . . . . .
: interactions of materials with multiple photons

@ Nonlinear optical phenomenon are in general a strong
function of the intensity

@ When any system is driven hard enough, it will exhibit
nonlinear behavior.

@ With ordinary light intensities, nonlinear optic effects are
too small to be noticed
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Nonlinear
Optics

Linear and Nonlinear Behavior

Linear material response

Nonlinear material response
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The polarization response can be written as a power series:

Nonlinear P = €0 [X(I)E + X(z)Ez + X(3) E3 =+ ... (4)

Optics

Suppose the input field is:
E,'n(t) = EoCOS((.Uot) (5)

We know the X(l)E term is the linear part of the polarization
and is responsible for the index of refraction. The polarization
from this linear term is:

P(g},%(t) = eox(l) Epcos(wot) (6)



Generation of New Frequencies |l

ECERED The polarization from the y(2) term is:
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PR (1) = eox®@E2cos?(wot)
Optics

_ 1
Nonlinear = EOX(z) Ega []_ + COS(2(.U0 t)] (7)

There are two new frequencies which weren't present in the
original signal: 2wg and 0. Now consider the cubic term

PO(t) = eox®E3cos®(wot)

= eox® Eg%cos(wo t) [1 + cos(2wpt)]
1
= €0X(3)E§§ [cos(wot) + cos(wot)cos(2wopt)]

3 1
= eox(3)E§’ Zcos(wot)—i— Zcos(3wot)
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Nonlinear
Optics

Example: New Frequencies

Problem: Two lasers with frequencies w; and wy pass through
a material with a x(® coefficient. Find all frequencies at which
there is a polarization response.

Solution: If we were to continue as we have been doing, we
would expand

PB) = cox® (Eocos(wit) + Egcos(wat))? (8)

out —
and simplify it with sine and cosine identities.
However, we can recognize that when sines and cosines are
multiplied, they generate frequencies with the sum and

difference of the arguments. The polarization response
frequencies will be:

w € {wi, 3w, w2, 3wa, [2w1 £ wa|, w1 & 2wol} (9)




General Rule for finding new frequencies
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Our insight from the last example can be formalized with the
aid of Fourier transform theory: Multiplication in the time
T domain is convolution in the frequency domain.

In general, if n frequencies are incident upon a medium with a
kth order nonlinearity, the frequencies at which the material will
respond are:

Wout = |wi £ wj... = wql (10)

where wj, wj, ...wg € {w1, w2, ...,wn}.

In practice, most of these frequencies will not be observed
because they will destructively interfere macroscopically.



Einstein Notation |
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general be represented with the vector equation

Nonlinear 13(1)(0)) = 6[))_((1)(0.})5({,{}) (11)

Optics

which is a compact way of writing

Py(w) X (W) Xy (@) Xoe(w) E(w)
Py(w) = €0 ny(w) ny(w) Xyz(w) Ey(w)
P2(w) Xax(W)  Xzy(w)  Xzz(w) E;(w)

(12)
The above matrix equation doesn't seem so bad; The tensor
has 9 terms (not all independent). However the tensor for the

second-order nonlinear response contains 27 terms!

We need a compact way of representing these equations.



Einstein Notation I
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recture © Repeated subscript indices imply summation over spatial
coordinates x, y and z. The following equation represents the
Einstein notation for the linear polarization.

Nonlinear
Optics
Pi(w) = cox{(w : wi) Ej(wi1) (13)

For example, when considering the y coordinate, this becomes

Pylw) = o[ xR (w: wn)Bulwr) + 3§ (w s wi) B (1)

XD (W wi)Ex(wr) (14)

Equations 11, 12, and 13 are all equivalent ways of expressing
the same idea.
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Nonlinear

Optics The expression

Xf.ﬁ()(w L wi,w2) (15)

should be interpreted in the following manner:

The coefficient of the material response at frequency w and
polarization i due to fields with frequencies w; and wy and
polarizations j and k respectively.



The Nonlinear Wave Equation
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- 9B
onlinear v X E - - 16
CN)ptilcs ?t ( )
- oD
H = — 17
v x o (17)
V-B =0 (18)
V-D =0 (19)

If we take the curl of Equation 16 and assume a non-magnetic
material (B = uoH), then we may substitute Equation 17 into
Equation 16

VXV xE=—pg——> (20)



The Nonlinear Wave Equation
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E is more complicated in nonlinear optics.
Nonlinear
Optics

B — oE+P
= eE + P 4 pt
= m<1+xm)5+ﬁm
_ fWE 4 M
substituting this back into Equation 20

- @M o’E 1 92PN

In linear optics, the next step would be to substitute D =¢E
and go on our merry way, but the relationship between D and

VXVXE+?7m2:_m8 Ot2

(25)
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Nonlinear
Optics

The Nonlinear Wave Equation

The next step in deriving the nonlinear wave equation is to
apply the vector identity V x V X E=V- (VE) — V2E.

However, unlike linear optics, the equation V - (VE) =0is
only approximate. However it is a good approximation as long
as the pulses are not too 'short.” The resulting wave equation is
g, EVPE 1 92PN

292 T o2 o2 (26)

What would the corresponding linear wave equation look like?
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In order to possess even-ordered nonlinear coefficients, the
material must lack inversion symmetry

@ All nonlinear processes must obey the conservation of
energy:

‘((2) Processes

w3 = w1 + w» (27)
@ They must also obey the conservation of momentum:

ks = ki + ko (28)
@ By convention

w3 > Wy > Wiy (29)

@ In the context of frequency mixing, w3, wp and w1 are
referred to as the pump, signal, and idler respectively
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o The simplest x(@ interaction is second harmonic
generation (SHG)

@ Two photons from the source are combined into a single
photon

o hwi + i — h(2w1)

‘((2) Processes
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‘((2) Processes

Second Harmonic Generation Math |

Let us examine the mathematics behind SHG. Let w; be the

fundamental optical frequency, and define k; = k(w1) = “L™

and kp = k(2w1) = 2“’%”2 The electric field in the medium will
consist of two parts: the fundamental frequency and its second
harmonic.

1
E(z,t) = [Al(z)ez(wlt_klz) + Ax(z)e'®rt=ke2) L ¢ | (30)
The nonlinear polarization will then be:

PNL(Z, 1.') = 260deffE2(Z, t)

_ €0C21eff [A%ez(Zwl t—2k; z) + 2A2A>{ ez(wl t—(ko—k1)z) +c

Note some terms of the nonlinear polarization (such as
AZel#wit=2k22)) have been discarded. We'll see why in a few

slides



Second Harmonic Generation Math I

= % Substituting the above into the nonlinear wave equation (26),
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we obtain:
1 d2A1 dA; w12
11 1k L k A ( ) Al - (wit—ki2)
> |: 2 1 oz + K1 A1 — c 1:| e +
‘((2) Processes 1 d2A2 dAl w2 n2 2 2 —k:
- 2k L kA—< )A  e!rt—kez)
> [ P + 12ko e + K5 A2 c 2| - € +

tecc. = de;f [2w%A%ez(2w1t72k1z) + W%A2Aiez(w1tf(k2*k1)2) 4 C.C.]
C

The above equation looks horrible, but fortunately, it can be
simplified:
o First note that since k; = “C%, the last two terms in the
brackets both cancel.
@ It will also be assumed that ‘ﬁz’é" ,‘3’2". This is
commonly known as the slowly varying envelope
approximation
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@ From phase matching considerations, the equation can be
broken into two equations: the parts that vary as e’ and
those which vary as e*21t

‘((2) Processes

dA]_ —1w1deff Ak

L TR g ppe AR 2
dz nic 2/ € (32)
dA2 —ZCU]_deff 2 WAk

e _TELTel A2 alkz

dz nac 1€ (33)

where Ak = ky — 2k

Equations 41 and 42 are coupled nonlinear differential
equations.
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In the limit of low conversion efficiency A; can be considered
constant. In this limit, Equation 42 can be integrated simply:

L
. —ww1d
\((‘) Processes A2(L) = 71 eff A% eZAkZ dz
nac 0

—22wW1 defr wit . [ AkL
= TA:A%G 2 SIin T (34)

The conversion efficiency is then

b, A3Ay  [(2wider\? . o . o (DKL
b AA - \meak ) Al (5 (35)
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‘((2) Processes

Relative Conversion Efficiency

0 20 40 60 80
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Small index differences severely lower conversion efficiency:
The An = 0 curve on the previous slide is far off the scale.

‘((2) Processes

An =0 is known at the phase matching condition

Processes which are not phase matched are not
macroscopically observed because their efficiency is low

@ With careful design, conversion efficiencies approaching
100% can be achieved

@ For extremely short crystals, An has no effect!



Visual Image of Phase Matching Condition
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‘((2) Processes
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@ Obeying the conservation of momentum is non-trivial
because in general n is a function of w

k(w) = (36)

‘((2) Processes

@ Therefore in general k(w; + w2) # k(w1) + k(w2)

@ In order to overcome this difficulty, the properties of
birefringent crystals are used

@ Uniaxial media have indices of refraction of the form:
no, 0 O

0 n, O (37)
0 0 ne

31
Il



Birefringent Media Il
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@ For a plane wave whose k vector
makes an angle 6 with the 2 axis,
there will be two indices of
refraction, depending on the
polarization of the wave:

o The ordinary index of
refraction is n,

o The extraordinary index of 0
refraction can be found with
the following equation:

» N>

n

‘((2) Processes

=

° v
=

1 sin’(f) N cos?(6) n
n(0) — n2 m
(38)
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o Type | Phasematching involves the following two types
x®) Processes of interactions

@0+ 0—e
ee+e—o

e Type Il Phasematching

eo+e—o0
e o0t+e—e
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Problem: BBO is a negative uniaxial crystal (ne < n,). The
indices of refraction for the ordinary and extraordinary axes are
given by:

‘((2) Processes 001878

n2(\) = 2.7359 + 00180 0.01354)\2
01224
n2(\) = 2.3753 + % —0.01516)2

where A is expressed in um. Find the phasematching angle to
create the second harmonic of 780 nm light.

Solution: Because BBO is negative uniaxial, the 780 nm must
be input as the ordinary wave. The frequency doubled output
will be an extraordinary wave.



Second Harmonic Generation Example Il

ECE 455 Evaluating the previous two equations, we find the indices of
refraction to be:

no(780 nm) = 2.7595

no(390 nm) = 2.8741
ne(390 nm) = 2.4634

‘((2) Processes

Setting the ordinary index at 780 nm to be equal to the
extraordinary index at 390 nm yields the following equation:

1 1 sin?(Opm)  €05%(0pm)

n2(780 nm)  n2(6pm)  n2(390 nm) | n2(390 nm)

Solving this equation for 0y, yields:

Opm = 30°
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‘((2) Processes

Non-critical Phase Matching

Angle tuning a crystal to for phasematching purposes is
known as critical phase matching

Critical phase matching is sensitive to misalignment, and
suffers from problems such as walk off.

In special cases, the phasematching can be tuned by
varying the temperature and composition of the crystal

Periodically Poled Crystals

2wid% 5 . 5 [ AkL
I2w = 60C73:’3/wslnc T (39)

Efficiency is not as good as angle phase matching, but this
process is more versatile

ADD PICTURE OF PPLN crystal and its response



Frequency Mixing
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@ The propagation of
dA; —1w1 deff —1Ak
= Az ASe RN 40
oz e 3A2€ (40)
\((2) Processes dA2 _Zw2deff —i Ak
_ A A* e Akz 41
dz noc 3he (41)
dA —wwsd
2 o TS0l p AperBhz (42)
dz nsc

where Ak = k3 — kl — k2

@ In sum frequency generation (SFG), two lower frequency
photons combine to make a higher frequency photon

e In difference frequency generation (DFG), a high frequency
photon is split into two lower frequency photons

@ SHG and DFG can be used to amplify weak signals or
convert a signal to from one center wavelength to another



@) Processes
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o The general form of the x(3 tensor is:

3 3
9 Processes PO (w) = 60ijk)l(w D wi, w2, w3) Ej(wr) Ex(w2) Er(ws)
(43)
o x(@ effects are only observed in materials without
inversion symmetry.

@ Can be shown that all materials have nonzero x)
coefficients



Intensity Dependent Index of Refraction
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o The x(® coefficient gives rise to an intensity dependent
index of refraction

\(3) Processes P — X(l)E + X(3) E3
(W +x|E)) E (44)
@ This can also be written as:

n=ng+ nyl (45)



Kerr Lensing
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@ In Gaussian laser beams, the intensity is highest in the
center of the beam. Hence the index of refraction is
highest in the center.

\(3) Processes

@ The field turns the medium into a lens. The effect is
known as self-focusing

@ Because the only frequency present in these interactions is
w, dispersion is irrelevant and this interaction is always
phase matched!



Self Phase Modulation (SPM)
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modulation
@ A pulse can be written as:

Ein(t) = E(t)e!wotte(t) (46)

x(®) Processes where E(t) is real.
@ If this pulse is passed through a non-dispersive Kerr
medium, the output is

wngl | wnol(t)L
c + c

Eoe(t) = E(t)e (“0tH000F (47)

where /(t) is the instantaneous intensity of the pulse
@ Last term in exponential spectrally broadens pulse

@ Because multiple frequencies are involved, dispersion and
phase matching are important



Frequency Tripling
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o The x®) (3w : w,w,w) coefficient is typically very small.
@ Intensities required to excite a third-harmonic response
X9 Processes may be near or in excess of the damage threshold of the
material

@ Direct tripling is inefficient and rarely performed

@ To obtain the third harmonic of a laser, first frequency
double the beam and mix the output with the fundmental



Four Wave Mixing (FWM)
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\(3) Processes




Common Nonlinear Crystals
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Crystal Transparency
BBO Beta Barium Borate 198-2600 nm
NG )w— BiBO Bismuth Triborate 286-2700 nm
KDP | Potassium Dihydrogen Phosphate | 176-1550 nm
KTP Potassium Titanyl Phosphate 352-4500 nm
LBO Lithium Triborate 160-2300 nm
LN Lithium Niobate 400-5500 nm




Non-Parametric Processes
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In non-parametric nonlinear processes, energy can be
M- transferred to the medium in which the light is propagating

Parametric
Processes



Two Photon Absorption
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Virtual
States
....... 2;‘/ \A E,
Non-
Parametric
Processes Eo Eo

@ Two photons absorbed simultaneously to bring atom to
high-lying energy level

@ Absorption enhanced by enhanced by allowed transitions
near single photon resonance

@ Can limit the performance of high-powered lasers



Stimulated Raman Scattering (SRS)
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@ Interaction of light with an acoustic phonon in the material

Non-
Parametric )
Processes



Stimuated Brillioun Scattering (SBS)
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@ Interaction of light with an acoustic phonon in the material

Non- @ The scattered wave is always backwards propagating
Parametric
Processes ')



Frequency Conversion
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Applications




Optical Parametric Oscillator (OPO)
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L]
L]

NL Crystal

ol

Applications

@ Place nonlinear crystal inside cavity

@ When pumped with a high-intensity laser, crystal acts a
gain medium

@ Resulting device behaves very similar to a laser

@ OPOs can angle or temperature tuned



Continuum Generation
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@ Focus a femtosecond laser into a fiber or a sapphire plate

@ Exact spectrum structure is chaotic

@ Useful as a high intensity, broadband spectroscopic light

Applications source



Solitons
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@ Linear dispersion and self phase modulation balance each
other

o Pulse propagates without changing shape

@ Nonlinear propagation equation solutions have discrete

Applicati 1 i
RRUCELC energies and stable pulse profiles



Two Photon Photoresist
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Applications

10.0kV 8.8mm x5.00k SE(M) 4/4/2011

Two photon absorption permits high contrast 3D patterning
Courtesy Sidartha Gupta
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Nonlinear processes are those in which the output may
contain frequencies of light not present in the input.

@ Lasers are essential for observing nonlinear optical
properties.

@ Nonlinear optical interactions require a material medium
(solid, liquid, gas, plasma)

@ Photon energy must be conserved in parametric nonlinear

Applications processes

@ Some photon energy is transferred to the medium in
non-parametric nonlinear processes

@ Momentum must be conserved in nonlinear processes
(phase-matching) in order for them to be observable on
a macroscopic scale
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