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Outline

• HMM: Probabilistic reasoning over time
• Viterbi algorithm



Review: Bayesian Classifier

• Class label 𝑌 = 𝑦, drawn from some set of labels
• Observation 𝑋 = 𝑥, drawn from some set of features
• Bayesian classifier: choose the class label, 𝑦, that minimizes your 

probability of making a mistake:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦|𝑋 = 𝑥)



Hidden Markov model: X and Y are sequences

• Class label sequence 𝑌 = 𝑌", … , 𝑌#
• Observation sequence 𝑋 = 𝑋", … , 𝑋#
• Bayesian classifier: choose the class label sequence, 𝑦", … , 𝑦# , that 

minimizes your probability of making a mistake:

𝑓(𝑥) = argmax
!!,…,!"

𝑃(𝑌 = 𝑦", … , 𝑦# |𝑋 = 𝑥", … , 𝑥# )



Example: Speech Recognition

• Here’s a spectrogram of the utterance “chapter one.”
• Each column is the Fourier transform of 0.02s of audio, spaced 0.01s apart.  

Let’s call the spectral vector 𝑋!, where 𝑡 is time in centiseconds
• The speech sounds follow a sequence: silence for a while, then /sh/ for a 

while, then /ae/ for a while, then…. Let’s denote the speech sound at time 
𝑡 as 𝑌!



Hidden Markov Model

“Hidden Markov” Model:
• Hidden:	You	don’t	know	the	label	𝑌& ,	instead,	you	only	know	the	
observation	𝑋& ,	and	the	probabilities	𝑃 𝑋&|𝑌&
• Markov: 𝑌& depends only on 𝑌&'", and you know 𝑃 𝑌&|𝑌&'"



Hidden Markov Model is a Bayes Network
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Hidden Markov Model
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The problem HMMs solve: 
Exponential complexity
• Suppose there are |𝒴| different speech sounds in English (|𝒴| ≈
50, 𝑑 ≈ 100)
• The length of the utterance is 𝑑 centiseconds (𝑑 ≈ 100)
• Without the HMM assumptions, to compute 𝑓 𝒙 =
argmax𝑃(𝑦", … , 𝑦)|𝒙", … , 𝒙)) requires a time complexity of  
𝒪{|𝒴|)} ≈ 50"**
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Hidden Markov Model
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=&
##

⋯&
#"

𝑃(𝑦%|𝑦$)𝑃(𝒙$|𝑦$)&
#!

𝑃(𝑦$|𝑦!)𝑃(𝒙!|𝑦!)𝑃 𝑦!

𝑌"

𝑋"

𝑌(

𝑋(

…

𝑃 𝒙!, … , 𝒙" =&
#!

&
#"

⋯&
##

𝑃 𝑦! 𝑃(𝒙!|𝑦!)𝑃(𝑦$|𝑦!)𝑃(𝒙$|𝑦$)𝑃(𝑦%|𝑦$)⋯

𝓞{|𝓨|𝟐}



Hidden Markov Model
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Key advantage of a hidden Markov model: 
Polynomial-time complexity

• A hidden Markov model makes the computation local, in the sense 
that each 𝑌& depends only on 𝑌&'"
• As a result, the computational complexity never gets larger than  
𝒪{|𝒴|(}



…and it works much better than naïve Bayes.

Claude Shannon (1948) gave these examples:
• Text generated by unigram naïve Bayes:
Representing and speedily is an good apt or come can different natural 
here he the a in came the to of to expert gray come to furnishes the 
line message had be these…
• Text generated by an HMM with bigram transitions:
The head and in frontal attack on an English writer that the character of 
this point is therefore another for the letters that the time of who ever 
told the problem for an unexpected…



Applications
…as listed at https://en.wikipedia.org/wiki/Hidden_Markov_model

• Computational finance

• Single-molecule kinetic 
analysis

• Neuroscience

• Cryptanalysis

• Speech recognition

• Speech synthesis

• Part-of-speech tagging

• Document scanning

• Machine translation

• Dialectric breakdown

• Gene prediction

• Handwriting recognition

CC-SA 4.0, 
https://commons.wikimedia.org/wiki/File:A_profile_HMM_mod

elling_a_multiple_sequence_alignment.png

• Alignment of bio-
sequences

• Time series analysis
• Activity recognition
• Protein folding
• Sequence classification
• Metamorphic virus 

detection
• DNA/protein motif 

discovery
• DNA hybridization kinetics
• Chromatin state discovery
• Transportation forecasting
• Solar irradiance variability

https://commons.wikimedia.org/wiki/File:A_profile_HMM_modelling_a_multiple_sequence_alignment.png
https://commons.wikimedia.org/wiki/File:A_profile_HMM_modelling_a_multiple_sequence_alignment.png


Outline

• HMM: Probabilistic reasoning over time
• Viterbi algorithm



Viterbi Algorithm

The Viterbi algorithm is a computationally efficient algorithm for 
computing the maximum a posteriori (MAP) state sequence,

𝑓 𝒙 = argmax!!,…,!#𝑃(𝑦", … , 𝑦)|𝒙", … , 𝒙))



Bayes Network view,
Finite State Machine view

Bayes Network = view across time
• Node = one of the variables 

(𝑌", 𝑋", 𝑌(, 𝑋(, …)
• Edge = dependence 

FSM = close-up of one particular time
• “State” = one of the values that 𝑌& can 

take
• “Edge” = a possible transition

𝑌! = 0 𝑌! = 1

𝑌! = 2

𝑌"

𝑋"

𝑌&'"

𝑋&'"

𝑌&

𝑋&

… …
HMM as a Bayes Network

HMM as an FSM



The parameters that define an HMM

• Initial State Probability: 
𝜋+ = 𝑃 𝑌" = 𝑖

• Transition Probabilities:
𝑎+,, = 𝑃 𝑌& = 𝑗 𝑌&'" = 𝑖)

• Observation Probabilities:
𝑏,(𝑥&) = 𝑃 𝑋& = 𝑥& 𝑌& = 𝑗)
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The Trellis = 
BN view ×
FSM view
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The Trellis
• A sequence of state 

variables is a path 
through the trellis.

For example:
𝑃 𝑌! = 1, 𝑌$ = 3, 𝑌% = 2, 𝑋! = 𝒙!, 𝑋$ = 𝒙$, 𝑋% = 𝒙% = 𝜋!𝑏!(𝒙!)𝑎!,%𝑏%(𝒙$)𝑎%,$𝑏$(𝒙%)
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Scores and backpointers
• Score = log probability of the best path until node j at time t

𝑣&(𝑗) = max
!!,…,!$%!

log 𝑃 𝑌" = 𝑦"… , 𝑌&'" = 𝑦&'", 𝑌& = 𝑗, 𝑋* = 𝑥*, … , 𝑋& = 𝑥&

• Backpointer = which node precedes node 𝑗 on the best path?

𝜓-(𝑗) = argmax
#$%!

max
#! ,…,#$%"

log 𝑃 𝑌! = 𝑦!… , 𝑌-/! = 𝑦-/!, 𝑌- = 𝑗, 𝑋+ = 𝑥+, … , 𝑋- = 𝑥-



Forward tracing and backtracing
• Forward tracing = Work from left to right through the trellis, finding 

the score of every node

𝑣&(𝑗) = max
!!,…,!$%!

log 𝑃 𝑌" = 𝑦"… , 𝑌&'" = 𝑦&'", 𝑌& = 𝑗, 𝑋* = 𝑥*, … , 𝑋& = 𝑥&

• Backtracing = Work from right to left (backward), finding the best 
path that ends up in a known desirable endpoint

𝜓-(𝑗) = argmax
#$%!

max
#! ,…,#$%"

log 𝑃 𝑌! = 𝑦!… , 𝑌-/! = 𝑦-/!, 𝑌- = 𝑗, 𝑋+ = 𝑥+, … , 𝑋- = 𝑥-



Viterbi Algorithm
• Initialization:  for all states 𝑖:

𝑣"(𝑖) = 𝜋+𝑏+ 𝒙"
• Forward-Tracing: 

SCORE: 𝑣& 𝑗 = max
+
𝑣&'" 𝑖 + log 𝑎+,, + log 𝑏, 𝒙&

BACKPOINTER: 𝜓& 𝑗 = argmax
+

𝑣&'" 𝑖 + log 𝑎+,, + log 𝑏, 𝒙&

• Termination:
𝑦) = argmax

+
𝑣)(𝑖)

• Back-Tracing:
𝑦& = 𝜓&-" 𝑦&-" , 	 𝑡 = 𝑑 − 1,… , 1



Initialization
𝑣" 𝑖 = log 𝜋+ + log 𝑏+ 𝒙"
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Forward-tracing
Each node now has a SCORE:

𝑣- 𝑗
= max

0
𝑣-/!(𝑖) + log 𝑎0,1

+ log 𝑏1 𝒙-

… and each node has a 
BACKPOINTER:

𝜓- 𝑗
= argmax

0
𝑣-/!(𝑖) + log 𝑎0,1

+ log 𝑏1 𝒙-
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Termination
The best path is the one 
that ends with the 
highest-value node:

𝑦) = argmax
+

𝑣)(𝑖)
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Back-Tracing
The most likely state 
sequence is the one that 
ends with the highest-
value node:

𝑦& = 𝜓&-"(𝑦&-")
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Viterbi Algorithm Computational Complexity
• Initialization:  for 𝑖 ∈ 𝒴:

𝑣"(𝑖) = 𝜋+𝑏+ 𝒙"
• Iteration: for 2 ≤ 𝑡 ≤ 𝑑, for 𝑗 ∈ 𝒴:

SCORE: 𝑣& 𝑗 = max
+
𝑣&'" 𝑖 + log 𝑎+,, + log 𝑏, 𝒙&

BACKPOINTER: 𝜓& 𝑗 = argmax
+

𝑣&'" 𝑖 + log 𝑎+,, + log 𝑏, 𝒙&

• Termination:
𝑦) = argmax

+∈𝒴
𝑣)(𝑖)

• Back-Trace:
𝑦& = 𝜓&-"(𝑦&-")

𝒪{𝑑|𝒴|(}

𝒪{|𝒴|}

𝒪{|𝒴|}

𝒪{𝑑}

Total: 𝒪{𝑑|𝒴|(}



Try the quiz!

• Go to prairielearn, try the quiz!



Outline

• Review: Bayesian classifer, Bayesian networks
𝑓(𝑥) = argmax

"
𝑃(𝑌 = 𝑦|𝑋 = 𝑥)	

• HMM: Probabilistic reasoning over time
𝜋# = 𝑃 𝑌$ = 𝑖

𝑎#,& = 𝑃 𝑌! = 𝑗 𝑌!'$ = 𝑖)
𝑏&(𝒙!) = 𝑃 𝑋! = 𝒙! 𝑌! = 𝑗)

• Viterbi algorithm
SCORE: 𝑣! 𝑗 = max

#
𝑣!'$ 𝑖 + log 𝑎#,& + log 𝑏& 𝒙!

BACKPOINTER: 𝜓! 𝑗 = argmax
#

𝑣!'$ 𝑖 + log 𝑎#,& + log 𝑏& 𝒙!


