
CS440/ECE448
Lecture 4: Naïve
Bayes
Mark Hasegawa-Johnson
Lecture slides: CC0
Some images may have other license terms.

© https://www.xkcd.com/1132/

Naïve Bayes

• naïve Bayes
• unigrams and bigrams
• parameter estimation

MPE classifier using Bayes’ rule
𝑓(𝑥) = argmax

!
𝑃(𝑌 = 𝑦|𝑋 = 𝑥)

= argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦
𝑃(𝑋 = 𝑥)

= argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦

The problem with likelihood: Too many words
What does it mean to say that the words, x, have a particular probability?
Suppose our training corpus contains two sample emails:
Email1: 𝑌 = spam, 𝑋 =“Hi there man – feel the vitality! Nice meeting you…”
Email2: 𝑌 = ham,𝑋 =“This needs to be in production by early afternoon…”

Our test corpus is just one email:
Email1: X=“Hi! You can receive within days an approved prescription for
increased vitality and stamina”

How can we estimate 𝑃(𝑋 = “Hi! You can receive within days an approved
prescripKon for increased vitality and stamina”|𝑌 = spam)?

Unigram Naïve Bayes: the “Bag-of-words” model
We can estimate the likelihood of an e-mail by pretending that the e-mail
is just a bag of words (order doesn’t matter).
With only a few thousand spam e-mails, we can get a pretty good estimate
of these things:

• 𝑃(𝑊 = “hi”|𝑌 = spam), 𝑃(𝑊 = “hi”|𝑌 = ham)
• 𝑃(𝑊 = “vitality”|𝑌 = spam), 𝑃(𝑊 = “vitality”|𝑌 = ham)
• 𝑃(𝑊 = “production”|𝑌 = spam), 𝑃(𝑊 = “production”|𝑌 = ham)

Then we can approximate 𝑃(𝑋|𝑌) by assuming that the words, 𝑊, are
conditionally independent of one another given the category label:

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈>
!"#

$

𝑃(𝑊 = 𝑤!|𝑌 = 𝑦) approved

prescription
foryou

vitality
hi

The unigram Naïve Bayes classifier

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)0
"#$

%

𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)

Floating-point underflow

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)6
"#$

%

𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)

• That equation has a computational issue. Suppose that the probability of
any given word is roughly 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦) ≈ 10&', and suppose that
there are 103 words in an email. Then ∏"#$

% 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦) = 10&'(),
which gets rounded off to zero. This phenomenon is called “floating-point
underflow.”
• To avoid floating-point underflow, we can take the logarithm of the equation

above:

𝑓(𝑥) = argmax
!

ln 𝑃(𝑌 = 𝑦) +@
"#$

%

ln 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)

Naïve Bayes

• naïve Bayes
• unigrams and bigrams
• parameter estimation

Reducing the naivety of naïve Bayes
Unigram naïve Bayes is unable to represent this fact:
True Statement:
𝑃 𝑋 = for	you 𝑌 = Spam > 𝑃 𝑊 = for 𝑌 = Spam 𝑃 𝑊 = you 𝑌 = Spam

We can modify naïve Bayes model to give it this power, using bigrams.

N-Grams
Claude Shannon, in his 1948 book A Mathematical Theory of Communication,
proposed that the probability of a sequence of words could be modeled using N-
grams: sequences of N consecutive words.

• Unigram: a unigram (1-gram) is an isolated word, e.g., “you”
• Bigram: a bigram (2-gram) is a pair of words, e.g., “for you”
• Trigram: a trigram (3-gram) is a triplet of words, e.g., “prescription for you”
• 4-gram: a 4-gram is a 4-tuple of words, e.g., “approved prescription for you”

Bigram naïve Bayes
A bigram naïve Bayes model approximates the bigrams as conditionally
independent, instead of the unigrams. For example,

𝑃 𝑋 = “approved	prescription	for	you” 𝑌 = Spam ≈

𝑃 𝐵 = “approved	prescription” 𝑌 = Spam ×
𝑃 𝐵 = “prescription	for” 𝑌 = Spam ×

𝑃 𝐵 = “for	you” 𝑌 = Spam

Advantages and disadvantages of bigram
models relative to unigram models
• Advantage:

• Slightly more accurate

• Disadvantage:
• Far more parameters to store
• Slightly more computational complexity
• Far more possibility that we learn useless quirks of the training data, instead

of true facts about spam and ham emails. This is called “overtraining the
model.”

Naïve Bayes

• naïve Bayes
• unigrams and bigrams
• parameter estimation

Parameter estimation
Model parameters: feature likelihoods P(Word | Class) and priors P(Class)

• How do we obtain the values of these parameters?

spam: 0.33

¬spam: 0.67

P(word | ham)P(word | spam)prior

Maximum likelihood parameter estimation

The likelihood, 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦), can be estimated by counting.
The “maximum likelihood estimate of the parameter” is the most
intuitively obvious estimate:

𝑃(𝑊 = 𝑤"|𝑌 = Spam) 	=
Count(𝑊 = 𝑤" , 𝑌 = Spam)

Count 𝑌 = Spam

where “Count(𝑊 = 𝑤" , 𝑌 = Spam)” means the number of times that
the word 𝑤" occurs in the Spam portion of the training corpus, and
“Count 𝑌 = Spam ” is the total number of words in the Spam portion.

What is the probability that the sun will fail to
rise tomorrow?
• # times we have observed the sun to rise = 1,825,000
• # times we have observed the sun not to rise = 0

• Estimated probability the sun will not rise = &
&'$,)*+,&&&

= 0

Oops….

Laplace Smoothing
• The basic idea: add 𝑘 “unobserved observations” to every possible

event
• # times the sun has risen or might have ever risen = 1,825,000+k
• # times the sun has failed to rise or might have ever failed to rise =

0+k

• Estimated probability the sun will rise tomorrow = $,)*+,&&&',
$,)*+,&&&'*,

• Estimated probability the sun will not rise = ,
$,)*+,&&&'*,

• Notice that, if you add these two probabilities together, you get 1.0.

Laplace smoothing with only in-vocabulary events

If the domain 𝒲 is known in advance, the Laplace smoothed estimates
are:

𝑃 𝑊 = 𝑤|𝑌 = 𝑦 =
𝑘 + Count(𝑤, 𝑦)	

∑-∈𝒲 𝑘 + Count(𝑣, 𝑦)

…which satisfies ∑0∈𝒲 P(𝑊 = 𝑤|𝑌 = 𝑦) = 1.

Laplace smoothing with out-of-vocabulary events

Suppose we don’t know all the possible words, 𝒲. Our “vocabulary”
includes some of the words that might be used, but not all.

• In that case, we need to allocate some probability to the “out of vocabulary
(OOV) words:” :

𝑃 𝑊 = 𝑤|𝑌 = 𝑦 =

𝑘 + Count(𝑤, 𝑦)	
𝑘 + ∑-∈𝒲 𝑘 + Count(𝑣, 𝑦)

in − vocabulary

𝑘	
𝑘 + ∑-∈𝒲 𝑘 + Count(𝑣, 𝑦)

OOV

…which satisfies ∑0∈{𝒲,223} P(𝑊 = 𝑤|𝑌 = 𝑦) = 1.

Types vs. Tokens

• A “type” is a word that is spelled differently from all other words.
• The number of “types,” M, is the number of words in the dictionary

• A “token” is one instance of a word that appears on the page.
• The number of “tokens,” N, is the number of words in the training dataset.

For example, this page has 67 tokens, but only 40 types.

Laplace smoothing with vs w/o OOVs

N = # tokens, M = # types.
Without OOVs:

𝑃 𝑊 = 𝑤|𝑌 = 𝑦 =
𝑘 + Count(𝑤, 𝑦)	

𝑁 + 𝑘𝑀
With OOVs:

𝑃 𝑊 = 𝑤|𝑌 = 𝑦 =

𝑘 + Count(𝑤, 𝑦)	
𝑁 + 𝑘(𝑀 + 1)

in − vocabulary

𝑘	
𝑁 + 𝑘(𝑀 + 1)

OOV

…which satisfies ∑@∈{𝒲,EEF}P(𝑊 = 𝑤|𝑌 = 𝑦) = 1.

Quiz!

• Go to the PrairieLearn, try the quiz!

Conclusions
• Naïve Bayes classifier:

𝑓(𝑥) = argmax log𝑃(𝑌 = 𝑦) + log𝑃(𝑋 = 𝑥|𝑌 = 𝑦)

log𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈4
!"#

$

log𝑃(𝑊 = 𝑤!|𝑌 = 𝑦)

• maximum likelihood parameter estimation:

𝑃(𝑊 = 𝑤!|𝑌 = 𝑦) 	=
Count(𝑤!, 𝑦)

𝑁
• Laplace Smoothing:

𝑃 𝑊 = 𝑤|𝑌 = 𝑦 =

𝑘 + Count(𝑤, 𝑦)	
𝑁 + 𝑘(𝑀 + 1) in − vocabulary

𝑘	
𝑁 + 𝑘(𝑀 + 1) OOV

