CS440/ECE448
Lecture 4: Nalve
Bayes

Mark Hasegawa-Johnson
Lecture slides: CCO DOMAIN

Some images may have other license terms.

DID THE SUN JUST EXPLODE?
(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

(THEN, ITROWS TWO DICE. |F THEY

BOTH COME UP SIX, IT UES TO US.
OTHERWISE, H'TEL(S‘IFETRUIH.
LETS TRY.

DETECTOR! HAS THE
MGWEMM%’ A

%%ﬂ

FREQUENTIST STRTISTICIAN: BAYESIAN STATISTIOAN:

THE PROGABLITY OF THS RESULT

HAPPENING BY CHANCE 15 3;=0027. BET YOU $50
SNCE p<0.05, T. CONCLUDE IT HASNT.
'IRRTT-E SUN' HAS EXPLODED.

Taal

© https://www.xkcd.com/1132/

Naive Bayes

* nalve Bayes
* unigrams and bigrams
* parameter estimation

MPE classifier using Bayes’ rule

f(x) =argmaxP(Y = y|X = x)
y

_ argmaXP(Y =y)PX = x|V =y)
y P(X =x)

= argmaxP(Y = y)P(X = x|Y = y)
y

The problem with likelihood: Too many words

What does it mean to say that the words, x, have a particular probability?
Suppose our training corpus contains two sample emails:

Emaill: Y = spam, X ="“Hi there man —feel the vitality! Nice meeting you...”
Email2: Y = ham, X =“This needs to be in production by early afternoon...”

Our test corpus is just one email:

Emaill: X=“Hi! You can receive within days an approved prescription for
increased vitality and stamina”

How can we estimate P(X = “Hi! You can receive within days an approved
prescription for increased vitality and stamina”|Y = spam)?

Unigram Naive Bayes: the “Bag-of-words” model

We can estimate the likelihood of an e-mail by pretending that the e-mail
is just a bag of words (order doesn’t matter).

With only a few thousand spam e-mails, we can get a pretty good estimate
of these things:

« P(W = “hi”"|Y = spam), P(W = “hi”|Y = ham)
« P(W = “vitality”|Y = spam), P(W = “vitality”|Y = ham)
« P(W = “production”|Y = spam), P(W = “production”|Y = ham)

hi
Then we can approximate P(X|Y) by assuming that the words, W, are vitality

conditionally independent of one another given the category label:

prescription

n ou for
P(X =x|Y =) zl_[P(W=Wi|Y=3') yapproved
i=1

The unigram Naive Bayes classifier

= P(Y = P(W = w;|Y =
f () = argmax P y)l:l[W = w,]Y =)

Dear Sir.
x First, | must solicit your confidence in this

transaction, this is by virture of its nature OK, lIknow this is blatantly OT but I'm

as being utterly confidencial and top beginning to go insane. Had an old Dell

secret. ... Dimension XPS sitting in the corner and

decided to put it to use, | know it was

TO BE REMOVED FROM FUTURE working pre being stuck in the corner, but

MAILINGS, SIMPLY REPLY TO THIS when | plugged it in, hit the power nothing
X MESSAGE AND PUT "REMOVE" IN THE happened.

SUBJECT.

99 MILLION EMAIL ADDRESSES

FOR ONLY $99

Floating-point underflow

= P(Y = P(W = iY=
f () = argmax P(y)L[(wilY =)

* That equation has a computational issue. Suppose that the probability of
any given word is roughly P(W = w;|Y = y) ~ 1073, and suppose that
there are 103 words in an email. Then [T, P(W = w;|Y = y) = 107399,
which gets rounded off to zero. This phenomenon is called “floating-point
underflow.”

* To avoid floating-point underflow, we can take the logarithm of the equation
above:

f(x) = argmax (ln P(Y=y)+ ZInP(W = w;|Y = y))
y -

=1

Naive Bayes

* unigrams and bigrams
* parameter estimation

Reducing the naivety of naive Bayes

Unigram naive Bayes is unable to represent this fact:

True Statement:
P(X = foryou|Y = Spam) > P(W = for|Y = Spam)P(W = you|Y = Spam)

We can modify naive Bayes model to give it this power, using bigrams.

N-Grams

Claude Shannon, in his 1948 book A Mathematical Theory of Communication,
proposed that the probability of a sequence of words could be modeled using N-
grams: sequences of N consecutive words.

e Unigram: a unigram (1-gram) is an isolated word, e.g., “you”
e Bigram: a bigram (2-gram) is a pair of words, e.g., “for you”
* Trigram: a trigram (3-gram) is a triplet of words, e.g., “prescription for you”

* 4-gram: a 4-gram is a 4-tuple of words, e.g., “approved prescription for you”

Bigram naive Bayes

A bigram naive Bayes model approximates the bigrams as conditionally
independent, instead of the unigrams. For example,

P(X = “approved prescription for you”|Y = Spam) =
P(B = “approved prescription”|Y = Spam) X

P(B = “prescription for”|Y = Spam) X
P(B = “for you”|Y = Spam)

Advantages and disadvantages of bigram
models relative to unigram models

* Advantage:
* Slightly more accurate

e Disadvantage:
* Far more parameters to store
* Slightly more computational complexity

* Far more possibility that we learn useless quirks of the training data, instead
of true facts about spam and ham emails. This is called “overtraining the
model.”

Naive Bayes

* parameter estimation

Parameter estimation

Model parameters: feature likelihoods P(Word | Class) and priors P(Class)
* How do we obtain the values of these parameters?

prior P(word | spam) P(word | ham)
spam: 0.33 the : 0.0156 the : 0.0210
—spam: 0.67 to 0.0153 to 0.0133
and 0.0115 of : 0.0119
of 0.0095 2002: 0.0110
you 0.0093 with: 0.0108
a : 0.0086 from: 0.0107
with: 0.0080 and 0.0105
from: 0.0075 a 0.0100

Maximum likelihood parameter estimation

The likelihood, P(W = w;|Y = y), can be estimated by counting.

The “maximum likelihood estimate of the parameter” is the most
intuitively obvious estimate:

Count(W = w;, Y = Spam)

P(W = w|Y = Spam) = Count(Y = Spam)

where “Count(lW = w;, Y = Spam)” means the number of times that
the word w; occurs in the Spam portion of the training corpus, and
“Count(Y = Spam)” is the total number of words in the Spam portion.

What is the probability that the sun will fail to
rise tomorrow?

* # times we have observed the sun to rise = 1,825,000

e ## times we have observed the sun not to rise =0

0

 Estimated probability the sun will not rise = =0
0+1,825,000

Laplace Smoothing

* The basic idea: add k “unobserved observations” to every possible
event

* # times the sun has risen or might have ever risen = 1,825,000+k

 # times the sun has failed to rise or might have ever failed to rise =
0+k

 Estimated probability the sun will rise tomorrow =

k
1,825,000+2k

* Notice that, if you add these two probabilities together, you get 1.0.

1,825,000+k
1,825,000+2k

 Estimated probability the sun will not rise =

Laplace smoothing with only in-vocabulary events

If the domain W is known in advance, the Laplace smoothed estimates
are:

k + Count(w, y)

P(W=wlY =y) = > ew(k + Count(v, y))

..which satisfies), , ey P(IW = w|Y = y) = 1.

Laplace smoothing with out-of-vocabulary events

Suppose we don’t know a

Il the possible words, W. Our “vocabulary”

includes some of the words that might be used, but not all.

* |In that case, we need to
(OOV) words:” :

P(IW =wl|Y =y) =4

allocate some probability to the “out of vocabulary

(k + Count(w, y)

k + 3 e (k + Count(v,y))
k

in — vocabulary

0]0)Y

|k + Lyew(k + Count(v,y))

..which satisfies 2., cew oovy PIW = w|Y = y) = 1.

Types vs. Tokens

* A “type” is a word that is spelled differently from all other words.
* The number of “types,” M, is the number of words in the dictionary

* A “token” is one instance of a word that appears on the page.
* The number of “tokens,” N, is the number of words in the training dataset.

For example, this page has 67 tokens, but only 40 types.

Laplace smoothing with vs w/o OOVs

N = # tokens, M = # types.

Without OOVs: ot ,7)
+ Count(w, y
PW =wlr =y) ==y im
With OOVs:
(k + Count(w,y)
N+ k(M +1) in — vocabulary
P(W =wlY =y) =)
0]0)%
| N+k(M+1)

..which satisfies Y., ccw 0oy PW = w|Y =y) = 1.

Quiz!

* Go to the PrairieLearn, try the quiz!

Conclusions

* Naive Bayes classifier:
f(x) = argmax(logP(Y =y) +logP(X = x|Y =y))

n
log P(X = x|Y = y) ~ ZIOgP(W —w,|Y =)
i=1

* maximum likelihood parameter estimation:
Count(w;, y)
N

PW =w|Y =y) =
* Laplace Smoothing:

(k + Count(w, y)

N + k(M + 1)
k

| N+ k(M + 1)

in — vocabulary
PW =wl|Y =y) =1
0]0)Y

