
The speed of
learning

CS440/ECE448
Lecture 34

Mark Hasegawa-Johnson, 4/2024
These slides are in the public domain

Image CC-BY 2.0 https://commons.wikimedia.org/wiki/File:France-001675_-
Maze(15291950978).jpg

https://commons.wikimedia.org/wiki/File:France-001675_-_Maze_(15291950978).jpg
https://commons.wikimedia.org/wiki/File:France-001675_-_Maze_(15291950978).jpg

Outline

• Supervised learning
– Imitation learning

• Unsupervised learning
– Self-supervised learning

• Reinforcement learning
– Experience replay buffer
– Proximal policy gradient

Supervised learning

“Supervised” means that the learner is
given a training database of paired
examples, 𝒟 = {(𝑥!, 𝑦!), … , (𝑥" , 𝑦")},
and is expected to learn the
relationship between 𝑋 and 𝑌
• Linear or nonlinear regression: learn
𝑓(𝑋) = 𝐸[𝑌|𝑋]

• Linear or nonlinear classifier, or naïve
Bayes: learn 𝑓(𝑋) = argmax

#
𝑃(𝑌|𝑋)

Public Domain,
https://commons.wikimedia.org/w/ind
ex.php?curid=19686492

https://commons.wikimedia.org/w/index.php?curid=19686492
https://commons.wikimedia.org/w/index.php?curid=19686492

Standard error

• Suppose 𝑌 has mean 𝜇, standard deviation 𝜎

• The linear regression estimate of 𝐸[𝑌] is 𝑀 = !
"
∑$%!
" 𝑌$

• 𝑀 is a random variable, with 𝐸 𝑀 = 𝜇, stdev(𝑀) = &
"

• &
"
 is called the “standard error” of this estimator. We can think

of !
"
 as the rate at which this algorithm learns 𝜇.

CC-SA 4.0,
https://commons.wikimedia.org/wiki/File:Compare_standard_error_for_runners_vs_first_marriage.svg

https://commons.wikimedia.org/wiki/File:Compare_standard_error_for_runners_vs_first_marriage.svg

Neural nets

• Andrew Barron showed that the error rate of a neural net is

𝐸 = 𝒪
1
𝑁
+
𝑁
𝑛

• 𝑁	is the number of hidden nodes
• 𝑛	is the number of training tokens
• By using 𝑁 = 𝑛 hidden nodes, we get

𝐸 = 𝒪
1
𝑛

…
…

Summary so far

• In many types of supervised learning, the error rate drops
at a rate of !

"
 for n training tokens

• That’s not too bad! Can we use that to teach a robot how
to walk?

Imitation learning

• In some applications, you cannot bootstrap
yourself from random policies
– High-dimensional state and action spaces where

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world,

especially in cases of failure
• Solution: learn to imitate sample trajectories or

demonstrations
– This is also helpful when there is no natural reward

formulation

Imitation learning

• 𝒔' = a representation of the state of the environment at
time t (can be a real-valued vector)

• 𝑎'= the action that a human actor performed in response
to this state (discrete)

• 𝑓(𝒔' = 𝑘') element in the softmax output of a neural
network, given 𝒔' as the input

• Training criterion: train the neural network to minimize
ℒ = − log 𝑓*! 𝒔'

Outline

• Supervised learning
– Imitation learning

• Unsupervised learning
– Self-supervised learning

• Reinforcement learning
– Experience replay buffer
– Proximal policy gradient

Unsupervised
learning
“Unsupervised” means that the learner
is given only the observations, 𝒟 =
{𝑥!, … , 𝑥"}, and no labels (no Y).
• Hidden Markov model: learn to

represent 𝑃(𝑋) using a hidden Y
• Skipgram and CBOW: learn a model

of 𝑃(𝑋'+,|𝑋') or 𝑃(𝑋'|𝑋'+,)

CC-BY 4.0,
https://commons.wikimedia.org/wiki/Fi
le:Kid_driving_car.png

https://commons.wikimedia.org/wiki/File:Kid_driving_car.png
https://commons.wikimedia.org/wiki/File:Kid_driving_car.png

Self-supervised learning
“Self-supervised” means that we treat one part of
𝑋 as the observation, and a different part as the
label, then use a supervised method to learn the
relationship. Examples:
• Skip-gram and CBOW: learn 𝑃(𝑋!"#|𝑋!) or
𝑃(𝑋!|𝑋!"#)

• Autoregressive language model: learn
𝑃(𝑋!|𝑋!$# , … , 𝑋!$%)

• Masked language model: learn to use context
to predict the masked words in a sentence or
the masked pixels in an image

CC-SA 4.0
https://commons.wikimedia.org/wiki/File:Masked_language
_modelling.jpg

https://commons.wikimedia.org/wiki/File:Masked_language_modelling.jpg
https://commons.wikimedia.org/wiki/File:Masked_language_modelling.jpg

Does unsupervised learning converge?

• Yes! Error drops as !
"
, and 𝑛 can be huge, because unlabeled data are very

cheap! (The whole internet!)
• But: It only converges to a representation that works well for the

unsupervised task (e.g., CBOW).
• Pre-training+Fine-tuning:

1. Pre-training: Use unsupervised learning (lots of data) to train the first
layers of a neural net

2. Fine-tuning: Add one more layer, and use supervised learning (small
dataset) to learn the output-layer weights, and adjust weights of the rest
of the network

Example: Coarse-to-Fine Imitation Learning

Edward Johns, Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration, 2021.

https://www.youtube.com/watch?v=4JxQ81NqOIM

Outline

• Supervised learning
– Imitation learning

• Unsupervised learning
– Self-supervised learning

• Reinforcement learning
– Experience replay buffer
– Proximal policy gradient

Does reinforcement learning converge?
• You are in room 1, with three

choices…
– You are in room 8, with three

choices…
• You are in room 9, with three

choices…
• Any room 𝑑 steps from room 1 is

explored once every 𝑏# times you
play the game

• …so the error is %
&/(!

!

CC-SA 4.0
https://commons.wikimedia.org/wiki/Fil
e:Hunt_the_Wumpus_map.svg

https://commons.wikimedia.org/wiki/File:Hunt_the_Wumpus_map.svg
https://commons.wikimedia.org/wiki/File:Hunt_the_Wumpus_map.svg

Try the quiz!

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/asse
ssment/2418125

https://us.prairielearn.com/pl/course_instance/147925/assessment/2418125
https://us.prairielearn.com/pl/course_instance/147925/assessment/2418125

One solution: Experience replay buffer
• Rollout:

– Take action 𝑎# according to current policy
– Store experience (𝑠# , 𝑎# , 𝑟# , 𝑠#$!, 𝑎#$!) in experience replay buffer

(𝑠", 𝑎", 𝑟𝟏, 𝑠$, 𝑎$)
(𝑠$, 𝑎$, 𝑟$, 𝑠%, 𝑎%)

…(𝑠! , 𝑎! , 𝑟! , 𝑠!"%, 𝑎!"%)

• Learning:
– Sample a minibatch, 𝒟, so that all

combinations of (𝑠!, 𝑎!) are in the minibatch
– Train 𝜋(𝑠) to maximize utility

𝒟 =sampled so that all
combinations of (𝑠# , 𝑎#) are in the

minibatch

Another solution: Proximal policy
optimization (PPO)

1. Use unsupervised and/or supervised learning
(autoregressive language model, imitation learning,
etc) to learn an initial policy 𝜋%(𝑠)

2. Use rollout to generate lots of trajectories, 𝜏
3. Let humans reward the good trajectories, punish the

bad ones, resulting in a utility estimate
𝜕𝑢
𝜕𝜋

= 𝐸 𝑣 𝜏
𝜕 ln 𝑃 𝜏
𝜕𝜋

1. Find 𝜋 that
1. Maximizes the utility, while also attempting to…
2. …keep 𝜋 from getting too far away from 𝜋%.

CC-SA 3.0
https://commons.wikimedia.org/wiki/File
:Inequality_constraint_diagram.svg

https://commons.wikimedia.org/wiki/File:Inequality_constraint_diagram.svg
https://commons.wikimedia.org/wiki/File:Inequality_constraint_diagram.svg

Advantages of PPO

• Assumes that human rewards are good at
predicting the value of small changes to the
policy

• Assumes that big changes to the policy are
undesirable, because the unsupervised &
supervised training has learned a good starting
policy

CC-SA 3.0
https://commons.wikimedia.org/wiki/File
:Inequality_constraint_diagram.svg

https://commons.wikimedia.org/wiki/File:Inequality_constraint_diagram.svg
https://commons.wikimedia.org/wiki/File:Inequality_constraint_diagram.svg

Outline
• Supervised learning learns 𝑃(𝑌|𝑋)

– Standard error: 𝑀 = !
"
∑&'!" 𝑌&, stdev(𝑀) =

(
"

• Unsupervised learning learns 𝑃(𝑋)
– Self-supervised learning: skipgram, CBOW, autoregressive or masked

• Reinforcement learning: Any room 𝑑 steps from the start is explored once
every 𝑏) times you play the game. Solutions include:
– Experience replay buffer
– Proximal policy gradient

