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Outline

• Supervised learning
– Imitation learning

• Unsupervised learning
– Self-supervised learning

• Reinforcement learning
– Experience replay buffer
– Proximal policy gradient



Supervised learning

“Supervised” means that the learner is 
given a training database of paired 
examples, 𝒟 = {(𝑥!, 𝑦!), … , (𝑥" , 𝑦")}, 
and is expected to learn the 
relationship between 𝑋 and 𝑌
• Linear or nonlinear regression: learn 
𝑓(𝑋) = 𝐸[𝑌|𝑋]

• Linear or nonlinear classifier, or naïve 
Bayes: learn 𝑓(𝑋) = argmax

#
𝑃(𝑌|𝑋)
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Standard error

• Suppose 𝑌 has mean 𝜇, standard deviation 𝜎

• The linear regression estimate of 𝐸[𝑌] is 𝑀 = !
"
∑$%!
" 𝑌$

• 𝑀 is a random variable, with 𝐸 𝑀 = 𝜇, stdev(𝑀) = &
"

• &
"
 is called the “standard error” of this estimator.  We can think 

of !
"
 as the rate at which this algorithm learns 𝜇.
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Neural nets

• Andrew Barron showed that the error rate of a neural net is

𝐸 = 𝒪
1
𝑁
+
𝑁
𝑛

• 𝑁	is the number of hidden nodes
• 𝑛	is the number of training tokens
• By using 𝑁 = 𝑛 hidden nodes, we get

𝐸 = 𝒪
1
𝑛

…
…



Summary so far

• In many types of supervised learning, the error rate drops 
at a rate of !

"
 for n training tokens

• That’s not too bad!  Can we use that to teach a robot how 
to walk?



Imitation learning

• In some applications, you cannot bootstrap 
yourself from random policies
– High-dimensional state and action spaces where 

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world, 

especially in cases of failure
• Solution: learn to imitate sample trajectories or 

demonstrations
– This is also helpful when there is no natural reward 

formulation



Imitation learning

• 𝒔' = a representation of the state of the environment at 
time t (can be a real-valued vector)

• 𝑎'= the action that a human actor performed in response 
to this state (discrete)

• 𝑓( 𝒔'  = 𝑘') element in the softmax output of a neural 
network, given 𝒔' as the input

• Training criterion: train the neural network to minimize
ℒ = − log 𝑓*! 𝒔'
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Unsupervised 
learning
“Unsupervised” means that the learner 
is given only the observations, 𝒟 =
{𝑥!, … , 𝑥"}, and no labels (no Y).
• Hidden Markov model: learn to 

represent 𝑃(𝑋) using a hidden Y
• Skipgram and CBOW: learn a model 

of 𝑃(𝑋'+,|𝑋') or 𝑃(𝑋'|𝑋'+,) 
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Self-supervised learning
“Self-supervised” means that we treat one part of 
𝑋 as the observation, and a different part as the 
label, then use a supervised method to learn the 
relationship.  Examples:
• Skip-gram and CBOW: learn 𝑃(𝑋!"#|𝑋!) or 
𝑃(𝑋!|𝑋!"#)

• Autoregressive language model: learn 
𝑃(𝑋!|𝑋!$# , … , 𝑋!$%)

• Masked language model: learn to use context 
to predict the masked words in a sentence or 
the masked pixels in an image
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Does unsupervised learning converge?

• Yes!  Error drops as !
"
, and 𝑛 can be huge, because unlabeled data are very 

cheap!  (The whole internet!)
• But: It only converges to a representation that works well for the 

unsupervised task (e.g., CBOW).  
• Pre-training+Fine-tuning:

1. Pre-training: Use unsupervised learning (lots of data) to train the first 
layers of a neural net

2. Fine-tuning: Add one more layer, and use supervised learning (small 
dataset) to learn the output-layer weights, and adjust weights of the rest 
of the network



Example: Coarse-to-Fine Imitation Learning

Edward Johns, Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration, 2021.

https://www.youtube.com/watch?v=4JxQ81NqOIM
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Does reinforcement learning converge?
• You are in room 1, with three 

choices…
– You are in room 8, with three 

choices…
• You are in room 9, with three 

choices…
• Any room 𝑑 steps from room 1 is 

explored once every 𝑏# times you 
play the game

• …so the error is %
&/(!

!
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Try the quiz!

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/asse
ssment/2418125
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One solution: Experience replay buffer
• Rollout:

– Take action 𝑎# according to current policy
– Store experience (𝑠# , 𝑎# , 𝑟# , 𝑠#$!, 𝑎#$!) in experience replay buffer 

(𝑠", 𝑎", 𝑟𝟏, 𝑠$, 𝑎$)
(𝑠$, 𝑎$, 𝑟$, 𝑠%, 𝑎%)

…(𝑠! , 𝑎! , 𝑟! , 𝑠!"%, 𝑎!"%)

• Learning:
– Sample a minibatch, 𝒟, so that all 

combinations of (𝑠!, 𝑎!) are in the minibatch
– Train 𝜋(𝑠) to maximize utility

𝒟 =sampled so that all 
combinations of (𝑠# , 𝑎#) are in the 

minibatch



Another solution: Proximal policy 
optimization (PPO)

1. Use unsupervised and/or supervised learning 
(autoregressive language model, imitation learning, 
etc) to learn an initial policy 𝜋%(𝑠)

2. Use rollout to generate lots of trajectories, 𝜏
3. Let humans reward the good trajectories, punish the 

bad ones, resulting in a utility estimate 
𝜕𝑢
𝜕𝜋

= 𝐸 𝑣 𝜏
𝜕 ln 𝑃 𝜏
𝜕𝜋

1. Find 𝜋 that
1. Maximizes the utility, while also attempting to…
2. …keep 𝜋 from getting too far away from 𝜋%.

CC-SA 3.0
https://commons.wikimedia.org/wiki/File
:Inequality_constraint_diagram.svg

https://commons.wikimedia.org/wiki/File:Inequality_constraint_diagram.svg
https://commons.wikimedia.org/wiki/File:Inequality_constraint_diagram.svg


Advantages of PPO

• Assumes that human rewards are good at 
predicting the value of small changes to the 
policy

• Assumes that big changes to the policy are 
undesirable, because the unsupervised & 
supervised training has learned a good starting 
policy
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Outline
• Supervised learning learns 𝑃(𝑌|𝑋)

– Standard error: 𝑀 = !
"
∑&'!" 𝑌&, stdev(𝑀) =

(
"
 

• Unsupervised learning learns 𝑃(𝑋)
– Self-supervised learning: skipgram, CBOW, autoregressive or masked

• Reinforcement learning: Any room 𝑑 steps from the start is explored once 
every 𝑏) times you play the game.  Solutions include:
– Experience replay buffer
– Proximal policy gradient


