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Outline

• Proving “there exists” vs. “for all” theorems
• Variable normalization
• Unification
• Forward-chaining
• Backward-chaining



Three types of theorems

• Instantiated, e.g., “Colonel West is a criminal”
𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑤𝑒𝑠𝑡)

• Existence theorem, e.g., “There is a spy in the army”
∃𝑥: 𝑆𝑝𝑦(𝑥) ∧ 𝐴𝑟𝑚𝑦(𝑥)

• Universality theorem, e.g., “All spies are sneaky”
∀𝑥: 𝑆𝑝𝑦(𝑥) ⇒ 𝑆𝑛𝑒𝑎𝑘𝑦(𝑥)



“Instantiated theorems” are just a special 
case of “existence theorems”

• Notice that an instantiated theorem is just a special type of existence 
theorem: “Colonel West is a criminal” is the same statement as 
“There is a person who is Colonel West, and who is a Criminal”

𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑤𝑒𝑠𝑡)
∃𝑥: 𝑥 = 𝑤𝑒𝑠𝑡 ∧ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)

• Notice that these two types of theorem are proven in the same way:
• 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑤𝑒𝑠𝑡): Find an x such that x=west, and Criminal(x)
• ∃𝑥: 𝑆𝑝𝑦 𝑥 ∧ 𝐴𝑟𝑚𝑦 𝑥 : Find an x such that Spy(x) and Army(x)



Proving and disproving theorems

An existence theorem:
• … can be proven by finding any x 

that satisfies the conditions.
• In order to disprove the statement 
∃𝑥: 𝐹(𝑥), you must prove that 
∀𝑥:¬𝐹(𝑥)
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x

Find x:

There it is!



Proving and disproving theorems

A universality theorem:
• To disprove the statement 
∀𝑥: 𝐹(𝑥), you just need to find a 
counterexample, i.e., you just 
need to prove that ∃𝑥:¬𝐹(𝑥).
• To prove a universality theorem, 

you need to show that the 
existence of an x that violates the 
theorem contradicts known true 
propositions.

Proof that, for any right triangle with hypotenuse c and 
sides a and b, 𝑎! + 𝑏! = 𝑐!.  The existence of any right 
triangle violating this theorem would violate the 
proposition that the area of a rectangle with sides 𝑎 and 𝑏 
is 𝑎𝑏.  Public domain image, 
https://commons.wikimedia.org/wiki/File:Pythagorean_pr
oof.png
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Two types of proofs

• In order to prove an existence theorem, or disprove a universality 
theorem, you just need to find an x that satisfies the statement.
• This is done using forward-chaining or backward-chaining with unification.
• I will spend the rest of today’s lecture talking about this.

• In order to disprove an existence theorem, or prove a universality 
theorem, you need to prove that the existence of any such x would 
contradict known true propositions.
• This is done using a proof method called resolution.
• We will not cover it in this course, and you don’t need to know it for the 

exam.  It is interesting, but even more difficult than unification, so we will not 
learn it this semester.
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Variable Normalization

• When we are given a database of facts, and a 
theorem to prove, often we will see the same 
variable name used for different purposes
• For example, consider the statements

𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)
∀𝑥: 𝑆𝑤𝑒𝑒𝑡(𝑥) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥)

∃𝑥, 𝑦: 𝐿𝑖𝑘𝑒𝑠 𝑥, 𝑦
• The first two statements prove the third statement.
• In order to prove it, however, we need to normalize 

variables.
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Variable Normalization

• Variable normalization replaces the old variable 
names with new variable names such that:

1. If the same variable name occurs in different rules, 
change it so that each rule uses a different set of 
variable names

2. If the same variable occurs multiple times in one rule, 
its multiple instances still have the same name

• For example, the example on the previous page 
could be normalized to:

𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)
𝑆𝑤𝑒𝑒𝑡(𝑥&) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)

∃𝑥', 𝑦&: 𝐿𝑖𝑘𝑒𝑠 𝑥', 𝑦&
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Unification

Given a proposition P written in terms of the 
variables 𝒱(  and constants 𝐶, and a proposition Q 
written in terms of the variables 𝒱)  and constants 
𝐶, unification finds a substitution S that unifies 
the propositions P and Q, in the sense that:
• Find a substitution 𝑆: 𝒱( , 𝒱) → {𝒱) , 𝐶} such 

that
• S 𝑃 = 𝑆 𝑄 = 𝑈

… or prove that no such substitution exists.
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Unification Example

• Consider the two propositions
𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝒱( = {𝑗𝑎𝑐𝑘, 𝑥&}
𝑄 = 𝐿𝑖𝑘𝑒𝑠 𝑥', 𝑦&
𝒱) = {𝑥', 𝑦&}

• The unification of these two propositions 
is the substitution

𝑆 = {𝑥': 𝑗𝑎𝑐𝑘, 𝑥&: 𝑦&}
𝑈 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑦&)

• Every constant that appears in either P or 
Q should also appear in 𝑈
• Variables appear in U only if they came 

from Q, not P
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Bidirectional Unification

• Notice that unification can draw constants 
from both P and Q
• Consider the two propositions

𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝑄 = 𝐿𝑖𝑘𝑒𝑠 𝑥', 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒

• The unification of these two propositions 
is the substitution

𝑆 = {𝑥': 𝑗𝑎𝑐𝑘, 𝑥&: 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒}
𝑈 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)

• Every constant that appears in either P or 
Q should also appear in 𝑈
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When does unification fail?

• Unification fails if we can’t make a unified 
proposition that implies both P and Q
• For example, unification fails if P and Q 

have different predicates:
𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝑄 = 𝐸𝑎𝑡𝑠 𝑥', 𝑦&

• Unification also fails if a particular 
argument is a constant, but P and Q have 
different constants, e.g., 

𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝑄 = 𝐿𝑖𝑘𝑒𝑠 𝑗𝑖𝑙𝑙, 𝑥*
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Unification in more general terms

The word “unification” is more generally 
defined as:
• …mapping of two source expressions
• … onto a single target expression, with 

some standardized format, such that
• … the target expression implies both of 

the source expressions.
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Forward-chaining

Forward-chaining is a method of proving a theorem, 𝑇:
• Starting state: a database of known true propositions, 𝒟 =
{𝑃!, 𝑃", … }
• Actions: the set of possible actions is defined by a set of rules, where 

each rule has the form 𝑃 ⟹ 𝑄.
• Neighboring states: if 𝑃! unifies to 𝑃 creating S P = S(𝑃!), then 

create the new database 𝒟′ = {𝑃!, 𝑃", … , 𝑆(𝑄)}
• Termination: search terminates when we find a database containing 𝑇



Example of forward-
chaining
Database:	𝒟 = 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒  
Rule: 𝑆𝑤𝑒𝑒𝑡(𝑥!) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!)
Theorem: ∃𝑥", 𝑦!: 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦!
Proof: 
1. Unify 𝑆𝑤𝑒𝑒𝑡(𝑥!) to 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 .  Apply the 

substitution to 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!).  Result: 
𝒟′ = 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 , 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)

2. Unify 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦!  to 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒).  Result: 

𝒟′′ = 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 , 𝐿𝑖𝑘𝑒𝑠 𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 ,
∃𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒: 𝐿𝑖𝑘𝑒𝑠 𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒
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Forward-chaining
•What’s Special About Theorem Proving: 
• A state, at level n, can be generated by the combination of 

several states at level n-1.
•  Definition: Forward Chaining is a search algorithm in which 

each action 
• generates a new proposition, 
• …and adds it to the database of known propositions.
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Backward-chaining
Backward-chaining is a method of proving a result, 𝑅:
• Starting state: a set of “goals” containing only one goal, the result to 

be proven, 𝒢 = {𝑅}
• Actions: the set of possible actions is defined by 

1. A set of rules of the form 𝑃! ∧ 𝑃" ∧ ⋯∧ 𝑃# ⟹ 𝑄, and 
2. A set of known true propositions. 

• Neighboring states: if 𝑄	unifies with some 𝑄′ ∈ 𝒢 then
• Remove 𝑄′ from 𝒢
• Replace it with 𝑃! ∧ 𝑃" ∧ ⋯∧ 𝑃#

• Termination: search terminates if all propositions in the goalset are 
known to be true.



Example of backward-
chaining
Theorem:               𝒢 = {∃𝑥", 𝑦!: 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦! }
Rules:	

𝕋 ⇒ 𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)
𝑆𝑤𝑒𝑒𝑡(𝑥!) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!)

Proof step 1: 
Unify 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!) to 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦! .  Apply the 
substitution to 𝑆𝑤𝑒𝑒𝑡(𝑥!).  Result:

𝒢′ = 𝑆𝑤𝑒𝑒𝑡(𝑥!)
Proof step 2:
Unify 𝑆𝑤𝑒𝑒𝑡(𝑥!) to 𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒).  Apply the 
substitution to 𝕋 (no effect).  Result: 

𝒢′′ = 𝕋
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Another example 
(from Wikipedia)

• My friend wants to give me Fritz
• Fritz croaks and eats flies
• I want to know what color Fritz is
• I have two possibilities to consider: 

either 𝒢 = {𝐺𝑟𝑒𝑒𝑛(𝑓𝑟𝑖𝑡𝑧)}, or 𝒢 =
{𝑌𝑒𝑙𝑙𝑜𝑤(𝑓𝑟𝑖𝑡𝑧)}
• Backward-chaining follows the steps 

shown here to prove that Fritz is 
green. 

By Voidness9 - Own work, CC BY-SA 3.0, 
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Backward-chaining
•What Else is Special About Theorem Proving: 
• The “goal set” is a set of propositions that need to be 

proven.
• Definition: Backward Chaining is a search algorithm in which
• State = {goal set}
• Action = apply a known rule, backward: replace the goal’s 
consequent (its RHS) with its antecedents (its LHS)
• Termination = the goalset contains nothing but truth



Quiz

• Try the quiz! 
https://us.prairielearn.com/pl
/course_instance/147925/ass
essment/2411228
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Comparison of forward-chaining and 
backward-chaining
Forward-chaining:
• Time complexity: 𝒪{𝑏#}, where 
𝑏 is the number of rules that can 
be applied at any step, and 𝑑 is 
the number of steps necessary 
to prove the theorem
• Space complexity: in order to 

make it easy to retrieve the 
database for each state, each 
state should save a complete 
copy of the database!

Backward-chaining:
• Time complexity: 𝒪{𝑏#}, where 
𝑏 is the number of rules that can 
be applied at any step, and 𝑑 is 
the number of steps necessary 
to prove the theorem
• Space complexity: each state 

only needs to save a copy of the 
goalset, which is usually much 
smaller than the database.



Summary

• Proving “there exists” theorems: find an x that satisfies the statement
• Variable normalization: each rule uses a different set of variable 

names
• Unification: Find a substitution 𝑆: 𝒱$, 𝒱% → {𝒱%, 𝐶} such that 
S 𝑃 = 𝑆 𝑄 = 𝑈, or prove that no such substitution exists
• Forward-chaining: Search problem in which each action is a 

unification, and the state is the set of all known true propositions
• Backward-chaining: Search problem in which each action is a 

unification, and the state is the goal (the proposition whose truth 
needs to be proven)


