
Lecture 27:
Automatic

Theorem-Proving
Mark Hasegawa-Johnson

Slides are CC0: Public Domain
4/2024

CC-SA 2.0,
https://commons.wikimedia.org/wiki/File:Artificial_Intelligence
_%26_AI_%26_Machine_Learning_-_30212411048.jpg

https://commons.wikimedia.org/wiki/File:Artificial_Intelligence_%26_AI_%26_Machine_Learning_-_30212411048.jpg
https://commons.wikimedia.org/wiki/File:Artificial_Intelligence_%26_AI_%26_Machine_Learning_-_30212411048.jpg

Outline

• Proving “there exists” vs. “for all” theorems
• Variable normalization
• Unification
• Forward-chaining
• Backward-chaining

Three types of theorems

• Instantiated, e.g., “Colonel West is a criminal”
𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑤𝑒𝑠𝑡)

• Existence theorem, e.g., “There is a spy in the army”
∃𝑥: 𝑆𝑝𝑦(𝑥) ∧ 𝐴𝑟𝑚𝑦(𝑥)

• Universality theorem, e.g., “All spies are sneaky”
∀𝑥: 𝑆𝑝𝑦(𝑥) ⇒ 𝑆𝑛𝑒𝑎𝑘𝑦(𝑥)

“Instantiated theorems” are just a special
case of “existence theorems”

• Notice that an instantiated theorem is just a special type of existence
theorem: “Colonel West is a criminal” is the same statement as
“There is a person who is Colonel West, and who is a Criminal”

𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑤𝑒𝑠𝑡)
∃𝑥: 𝑥 = 𝑤𝑒𝑠𝑡 ∧ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)

• Notice that these two types of theorem are proven in the same way:
• 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑤𝑒𝑠𝑡): Find an x such that x=west, and Criminal(x)
• ∃𝑥: 𝑆𝑝𝑦 𝑥 ∧ 𝐴𝑟𝑚𝑦 𝑥 : Find an x such that Spy(x) and Army(x)

Proving and disproving theorems

An existence theorem:
• … can be proven by finding any x

that satisfies the conditions.
• In order to disprove the statement
∃𝑥: 𝐹(𝑥), you must prove that
∀𝑥:¬𝐹(𝑥)

5

12

x

Find x:

There it is!

Proving and disproving theorems

A universality theorem:
• To disprove the statement
∀𝑥: 𝐹(𝑥), you just need to find a
counterexample, i.e., you just
need to prove that ∃𝑥:¬𝐹(𝑥).
• To prove a universality theorem,

you need to show that the
existence of an x that violates the
theorem contradicts known true
propositions.

Proof that, for any right triangle with hypotenuse c and
sides a and b, 𝑎! + 𝑏! = 𝑐!. The existence of any right
triangle violating this theorem would violate the
proposition that the area of a rectangle with sides 𝑎 and 𝑏
is 𝑎𝑏. Public domain image,
https://commons.wikimedia.org/wiki/File:Pythagorean_pr
oof.png

https://commons.wikimedia.org/wiki/File:Pythagorean_proof.png
https://commons.wikimedia.org/wiki/File:Pythagorean_proof.png

Two types of proofs

• In order to prove an existence theorem, or disprove a universality
theorem, you just need to find an x that satisfies the statement.
• This is done using forward-chaining or backward-chaining with unification.
• I will spend the rest of today’s lecture talking about this.

• In order to disprove an existence theorem, or prove a universality
theorem, you need to prove that the existence of any such x would
contradict known true propositions.
• This is done using a proof method called resolution.
• We will not cover it in this course, and you don’t need to know it for the

exam. It is interesting, but even more difficult than unification, so we will not
learn it this semester.

Outline

• Proving “there exists” vs. “for all” theorems
• Variable normalization
• Unification
• Forward-chaining
• Backward-chaining

Variable Normalization

• When we are given a database of facts, and a
theorem to prove, often we will see the same
variable name used for different purposes
• For example, consider the statements

𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)
∀𝑥: 𝑆𝑤𝑒𝑒𝑡(𝑥) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥)

∃𝑥, 𝑦: 𝐿𝑖𝑘𝑒𝑠 𝑥, 𝑦
• The first two statements prove the third statement.
• In order to prove it, however, we need to normalize

variables.

Public domain image,
https://commons.wikimedia.org
/wiki/File:Tomando_chocolate_
1892_Gumersindo_Pardo_Regu
era.jpg

https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg

Variable Normalization

• Variable normalization replaces the old variable
names with new variable names such that:

1. If the same variable name occurs in different rules,
change it so that each rule uses a different set of
variable names

2. If the same variable occurs multiple times in one rule,
its multiple instances still have the same name

• For example, the example on the previous page
could be normalized to:

𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)
𝑆𝑤𝑒𝑒𝑡(𝑥&) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)

∃𝑥', 𝑦&: 𝐿𝑖𝑘𝑒𝑠 𝑥', 𝑦&

Public domain image,
https://commons.wikimedia.org
/wiki/File:Tomando_chocolate_
1892_Gumersindo_Pardo_Regu
era.jpg

https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg

Outline

• Proving “there exists” vs. “for all” theorems
• Variable normalization
• Unification
• Forward-chaining
• Backward-chaining

Unification

Given a proposition P written in terms of the
variables 𝒱(and constants 𝐶, and a proposition Q
written in terms of the variables 𝒱) and constants
𝐶, unification finds a substitution S that unifies
the propositions P and Q, in the sense that:
• Find a substitution 𝑆: 𝒱(, 𝒱) → {𝒱) , 𝐶} such

that
• S 𝑃 = 𝑆 𝑄 = 𝑈

… or prove that no such substitution exists.

By CSContributor - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29964874

https://commons.wikimedia.org/wiki/File:Semantic_Marching_Diagram_1.jpg

Unification Example

• Consider the two propositions
𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝒱(= {𝑗𝑎𝑐𝑘, 𝑥&}
𝑄 = 𝐿𝑖𝑘𝑒𝑠 𝑥', 𝑦&
𝒱) = {𝑥', 𝑦&}

• The unification of these two propositions
is the substitution

𝑆 = {𝑥': 𝑗𝑎𝑐𝑘, 𝑥&: 𝑦&}
𝑈 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑦&)

• Every constant that appears in either P or
Q should also appear in 𝑈
• Variables appear in U only if they came

from Q, not P

By CSContributor - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29964874

https://commons.wikimedia.org/wiki/File:Semantic_Marching_Diagram_1.jpg

Bidirectional Unification

• Notice that unification can draw constants
from both P and Q
• Consider the two propositions

𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝑄 = 𝐿𝑖𝑘𝑒𝑠 𝑥', 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒

• The unification of these two propositions
is the substitution

𝑆 = {𝑥': 𝑗𝑎𝑐𝑘, 𝑥&: 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒}
𝑈 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)

• Every constant that appears in either P or
Q should also appear in 𝑈

By CSContributor - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29964874

https://commons.wikimedia.org/wiki/File:Semantic_Marching_Diagram_1.jpg

When does unification fail?

• Unification fails if we can’t make a unified
proposition that implies both P and Q
• For example, unification fails if P and Q

have different predicates:
𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝑄 = 𝐸𝑎𝑡𝑠 𝑥', 𝑦&

• Unification also fails if a particular
argument is a constant, but P and Q have
different constants, e.g.,

𝑃 = 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥&)
𝑄 = 𝐿𝑖𝑘𝑒𝑠 𝑗𝑖𝑙𝑙, 𝑥*

By CSContributor - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29964874

https://commons.wikimedia.org/wiki/File:Semantic_Marching_Diagram_1.jpg

Unification in more general terms

The word “unification” is more generally
defined as:
• …mapping of two source expressions
• … onto a single target expression, with

some standardized format, such that
• … the target expression implies both of

the source expressions.
By CSContributor - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29964874

https://commons.wikimedia.org/wiki/File:Semantic_Marching_Diagram_1.jpg

Outline

• Proving “there exists” vs. “for all” theorems
• Variable normalization
• Unification
• Forward-chaining
• Backward-chaining

Forward-chaining

Forward-chaining is a method of proving a theorem, 𝑇:
• Starting state: a database of known true propositions, 𝒟 =
{𝑃!, 𝑃", … }
• Actions: the set of possible actions is defined by a set of rules, where

each rule has the form 𝑃 ⟹ 𝑄.
• Neighboring states: if 𝑃! unifies to 𝑃 creating S P = S(𝑃!), then

create the new database 𝒟′ = {𝑃!, 𝑃", … , 𝑆(𝑄)}
• Termination: search terminates when we find a database containing 𝑇

Example of forward-
chaining
Database:	𝒟 = 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒
Rule: 𝑆𝑤𝑒𝑒𝑡(𝑥!) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!)
Theorem: ∃𝑥", 𝑦!: 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦!
Proof:
1. Unify 𝑆𝑤𝑒𝑒𝑡(𝑥!) to 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 . Apply the

substitution to 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!). Result:
𝒟′ = 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 , 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)

2. Unify 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦! to 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒). Result:

𝒟′′ = 𝑆𝑤𝑒𝑒𝑡 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 , 𝐿𝑖𝑘𝑒𝑠 𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 ,
∃𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒: 𝐿𝑖𝑘𝑒𝑠 𝑗𝑎𝑐𝑘, 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒

Public domain image,
https://commons.wikimedia.org
/wiki/File:Tomando_chocolate_
1892_Gumersindo_Pardo_Regu
era.jpg

https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg

Forward-chaining
•What’s Special About Theorem Proving:
• A state, at level n, can be generated by the combination of

several states at level n-1.
• Definition: Forward Chaining is a search algorithm in which

each action
• generates a new proposition,
• …and adds it to the database of known propositions.

Outline

• Proving “there exists” vs. “for all” theorems
• Variable normalization
• Unification
• Forward-chaining
• Backward-chaining

Backward-chaining
Backward-chaining is a method of proving a result, 𝑅:
• Starting state: a set of “goals” containing only one goal, the result to

be proven, 𝒢 = {𝑅}
• Actions: the set of possible actions is defined by

1. A set of rules of the form 𝑃! ∧ 𝑃" ∧ ⋯∧ 𝑃# ⟹ 𝑄, and
2. A set of known true propositions.

• Neighboring states: if 𝑄	unifies with some 𝑄′ ∈ 𝒢 then
• Remove 𝑄′ from 𝒢
• Replace it with 𝑃! ∧ 𝑃" ∧ ⋯∧ 𝑃#

• Termination: search terminates if all propositions in the goalset are
known to be true.

Example of backward-
chaining
Theorem: 𝒢 = {∃𝑥", 𝑦!: 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦! }
Rules:	

𝕋 ⇒ 𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒)
𝑆𝑤𝑒𝑒𝑡(𝑥!) ⇒ 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!)

Proof step 1:
Unify 𝐿𝑖𝑘𝑒𝑠(𝑗𝑎𝑐𝑘, 𝑥!) to 𝐿𝑖𝑘𝑒𝑠 𝑥", 𝑦! . Apply the
substitution to 𝑆𝑤𝑒𝑒𝑡(𝑥!). Result:

𝒢′ = 𝑆𝑤𝑒𝑒𝑡(𝑥!)
Proof step 2:
Unify 𝑆𝑤𝑒𝑒𝑡(𝑥!) to 𝑆𝑤𝑒𝑒𝑡(𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒). Apply the
substitution to 𝕋 (no effect). Result:

𝒢′′ = 𝕋

Public domain image,
https://commons.wikimedia.org
/wiki/File:Tomando_chocolate_
1892_Gumersindo_Pardo_Regu
era.jpg

https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg
https://commons.wikimedia.org/wiki/File:Tomando_chocolate_1892_Gumersindo_Pardo_Reguera.jpg

Another example
(from Wikipedia)

• My friend wants to give me Fritz
• Fritz croaks and eats flies
• I want to know what color Fritz is
• I have two possibilities to consider:

either 𝒢 = {𝐺𝑟𝑒𝑒𝑛(𝑓𝑟𝑖𝑡𝑧)}, or 𝒢 =
{𝑌𝑒𝑙𝑙𝑜𝑤(𝑓𝑟𝑖𝑡𝑧)}
• Backward-chaining follows the steps

shown here to prove that Fritz is
green.

By Voidness9 - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=14674384

https://commons.wikimedia.org/w/index.php?curid=14674384

Backward-chaining
•What Else is Special About Theorem Proving:
• The “goal set” is a set of propositions that need to be

proven.
• Definition: Backward Chaining is a search algorithm in which
• State = {goal set}
• Action = apply a known rule, backward: replace the goal’s
consequent (its RHS) with its antecedents (its LHS)
• Termination = the goalset contains nothing but truth

Quiz

• Try the quiz!
https://us.prairielearn.com/pl
/course_instance/147925/ass
essment/2411228

CC-SA 2.0,
https://commons.wikimedia.org/wiki/File:Artificial_Intelligence
_%26_AI_%26_Machine_Learning_-_30212411048.jpg

https://us.prairielearn.com/pl/course_instance/147925/assessment/2411228
https://us.prairielearn.com/pl/course_instance/147925/assessment/2411228
https://us.prairielearn.com/pl/course_instance/147925/assessment/2411228
https://commons.wikimedia.org/wiki/File:Artificial_Intelligence_%26_AI_%26_Machine_Learning_-_30212411048.jpg
https://commons.wikimedia.org/wiki/File:Artificial_Intelligence_%26_AI_%26_Machine_Learning_-_30212411048.jpg

Comparison of forward-chaining and
backward-chaining
Forward-chaining:
• Time complexity: 𝒪{𝑏#}, where
𝑏 is the number of rules that can
be applied at any step, and 𝑑 is
the number of steps necessary
to prove the theorem
• Space complexity: in order to

make it easy to retrieve the
database for each state, each
state should save a complete
copy of the database!

Backward-chaining:
• Time complexity: 𝒪{𝑏#}, where
𝑏 is the number of rules that can
be applied at any step, and 𝑑 is
the number of steps necessary
to prove the theorem
• Space complexity: each state

only needs to save a copy of the
goalset, which is usually much
smaller than the database.

Summary

• Proving “there exists” theorems: find an x that satisfies the statement
• Variable normalization: each rule uses a different set of variable

names
• Unification: Find a substitution 𝑆: 𝒱$, 𝒱% → {𝒱%, 𝐶} such that
S 𝑃 = 𝑆 𝑄 = 𝑈, or prove that no such substitution exists
• Forward-chaining: Search problem in which each action is a

unification, and the state is the set of all known true propositions
• Backward-chaining: Search problem in which each action is a

unification, and the state is the goal (the proposition whose truth
needs to be proven)

