
CS440/ECE448 Lecture 13:
Pytorch and Autodiff

Mark Hasegawa-Johnson
2/2024

Some of the material in these slides is © Pytorch

Outline

• Review: linear regression
• Training a linear regression model using numpy
• The same example with pytorch
• torch.nn module: using predefined neural net components

Linear regression
Linear regression is used to
estimate a real-valued target
variable, 𝑦, using a linear
combination of real-valued input
variables:

𝑓 𝒙 = 𝒘!𝒙 + 𝑏 =(
"#$

%

𝑤"𝑥" + 𝑏

… so that …
𝑓 𝒙 ≈ 𝑦

Linear regression. Public
domain image, Seewaqu, 2010

𝑦

𝑓(𝑥)

𝑥$

𝑏

𝑤$

Polynomial regression = multivariate linear
regression

Polyreg_scheffe.svg. CC-BY 3.0,
Skbkekas, 2009

We can use linear regression to solve
nonlinear regression problems by
simply augmenting the features. For
example, suppose we start with a
scalar variable, 𝑥, but suppose we
expand it to four variables like this:

𝒙 =
1
𝑥
𝑥!
𝑥"

Then
𝑓 𝒙 = 𝒘#𝒙
= 𝑤$ +𝑤!𝑥 +𝑤"𝑥! +𝑤%𝑥"

Minimizing the MSE

Our goal is to find the coefficients 𝒘 = 𝑤$, … , 𝑤& ! that minimize the
MSE loss function:

ℒ =
1
2𝑛

(
'#(

%)$

𝒘!𝒙' − 𝑦! *

The gradient descent algorithm
• Start from a random initial value of 𝒘.
• Calculate the derivative of MSE with

respect to 𝒘:

𝜕ℒ
𝜕𝒘

=

𝜕ℒ
𝜕𝑤$
⋮
𝜕ℒ
𝜕𝑤&

• Take a step “downhill” (in the direction of
the negative gradient

𝑤 ← 𝑤 − 𝜂
𝜕ℒ
𝜕𝒘

𝑤

ℒ = 𝑎𝑤# + 𝑏𝑤 + 𝑐

Gradient descent

ℒ =
1
2𝑛

,
&'$

(

𝜖&! =
1
2𝑛

,
&'$

(

𝒘#𝒙& − 𝑦! !

If we differentiate that, we discover that:
𝜕ℒ
𝜕𝒘

=
1
𝑛
,
&'$

(

𝜖&𝒙&

…so the gradient descent algorithm is:

𝒘 ← 𝒘 −
𝜂
𝑛
,
&')

(*$

𝜖&𝒙&
𝑤

ℒ = 𝑎𝑤# + 𝑏𝑤 + 𝑐

Outline

• Review: linear regression
• Training a linear regression model using numpy
• The same example with pytorch
• torch.nn module: using predefined neural net components

Running example: neural net regression

• For example, suppose 𝑦 = sin(𝑥)
• Suppose that the network can only model functions of the form

𝑓 𝑥 = 𝑎 + 𝑏𝑥 + 𝑐𝑥* + 𝑑𝑥+ = 𝒘!𝒙
…where we’re defining…

𝒘 =

𝑎
𝑏
𝑐
𝑑
, 𝒙 =

1
𝑥
𝑥*
𝑥+

• We want to learn a, b, c, d so that 𝑓(𝒙) ≈ 𝑦

Running example: neural net regression

Mean-squared error

First, let’s define the loss function.

𝑓 𝒙' = 𝑎 + 𝑏𝑥' + 𝑐𝑥'* + 𝑑𝑥'+,

𝜖' = 𝑓 𝒙' − 𝑦' ,

ℒ =
1
2𝑛

(
'#(

%)$

𝜖'*

Gradient update

Now, update the weights by subtracting the gradient.

𝑎 = 𝑎 − 𝜂
𝑑ℒ
𝑑𝑎 = 𝑎 −

𝜂
𝑛3
!"#

$

𝜖! ,

𝑏 = 𝑏 − 𝜂
𝑑ℒ
𝑑𝑏

= 𝑏 −
𝜂
𝑛
3
!"#

$

𝜖!𝑥! ,

𝑐 = 𝑐 − 𝜂
𝑑ℒ
𝑑𝑐 = 𝑐 −

𝜂
𝑛3
!"#

$

𝜖!𝑥!% ,

𝑑 = 𝑑 − 𝜂
𝑑ℒ
𝑑𝑑

== 𝑑 −
𝜂
𝑛
3
!"#

$

𝜖!𝑥!&

How a neural
network is
trained

Here’s Justin Johnson’s
code for doing those
things:
(https://pytorch.org/tuto
rials/beginner/pytorch_w
ith_examples.html)

© 2021 Pytorch,
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

Outline

• Review: linear regression
• Training a linear regression model using numpy
• The same example with pytorch
• torch.nn module: using predefined neural net components

Autodiff: Main idea

• A neural network is a complicated function 𝑓(𝑥), made up of many
simple components

• If we try to take all the derivatives, 𝑑ℒ/𝑑𝑤",9
(;), all at once, in a big

mass of spaghetti code, then the code will be really ugly.
• HOWEVER: Each of the components is simple to compute.

Furthermore, the derivative of its output w.r.t. its input is simple.

Autodiff: Tensor objects
The basic idea of autodiff is to create a new kind of object that takes
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤",9
(;)

Autodiff: Tensor objects
• In pytorch, variables that take responsibility for their own gradients

are called “tensors” (https://pytorch.org/docs/stable/tensors.html)
• Here’s how Justin Johnson defines tensors for the polynomial

regression problem:

© 2017 Pytorch, https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

Autodiff: Overloaded operators
The basic idea of autodiff is to create a new kind of object that takes
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤",9
(;)

• These new objects have overloaded operators, so that any time we
use them to compute some output, the input is cached. For example,
it might be used to compute

𝑓" = 𝑏"
(*) +(

9

𝑤",9
(*)ℎ9

f[j] = b[2,j]+np.sum(w[2,j,:]*h)

Autodiff:
Overloaded
operators

Here’s why it works: if
“b” is an object that has
a method named
__mul__, then the
python expression

f=b*x

…actually calls:

f=b.__mul__(x)

Autodiff: Overloaded operators
The operator overload code looks something like this:

class Tensor(torch.autograd.Function):
def __init__(self, weight):

self.weight = weight
self.saved_tensors = ()

def __mul__(self, other):
self.saved_tensors = (self.saved_tensors[:], other)
returnvalue = self.weight * other
return Tensor(returnvalue)

Cache x in self.saved_tensors, so
we can use it later…

Then calculate the
output of the multiply
operation,

… and cast the return
value as a Tensor.

Autodiff: Overloaded operators
Here’s how it gets used:

Stores x**2 in c.saved_tensorsStores x in b.saved_tensors

Python overloaded operators: the expression “b*x” actually calls
b.__mul__(x).

Autodiff: the Loss tensor
The basic idea of autodiff is to create a new kind of object, a tensor,
that takes responsibility for its own gradient. Any time we use tensors
to compute some output, the input is cached. For example, these
operations:

𝑓 𝒙' = 𝑎 + 𝑏𝑥' + 𝑐𝑥'* + 𝑑𝑥'+

ℒ =
1
2𝑛

(
'#$

%

𝑓 𝑥' − 𝑦' *

f = a + b*x + c*x**2 + d*x**3
loss = (f-y).pow(2)

...will calculate the loss, but will also store some extra information in
loss.saved_tensors, f.saved_tensors, a.saved_tensors, b.saved_tensors,
c.saved_tensors, d.saved_tensors, and x.saved_tensors.

Autodiff: the Loss tensor

Notice the flow diagram that was
implied by those lines of code.
Each tensor’s overloaded __mul__
operator keeps track of the
variables used to compute it:
• loss.saved_tensors has pointers

to f and y
• f.saved_tensors has pointers to

x, a, b, c, and d
x

yf

a b c d

loss

Autodiff
loss depends on
y_pred, which
depends on a, b,
c, d.

Autodiff: the backward function

Every tensor object has a method
called backward().
If backward() is called with no
arguments, it calculates the
derivative with respect to the
inputs:
• loss.backward() calculates

tmp= &ℒ
&=

, then calls the method
f.backward(tmp).

x

yf

a b c d

loss

Autodiff: the backward function

If f.backward(tmp) is called with the
argument tmp= +ℒ

+-
, it does three

things:
• Store f.grad= +ℒ

+-
• Calculate derivative w.r.t. each

input, for example, tmpc=
𝑑ℒ
𝑑𝑐 =

𝑑ℒ
𝑑𝑓 ×

𝑑𝑓
𝑑𝑐

• Pass the input derivatives back to
the inputs, e.g., call
c.backward(tmpc)

x

yf

a b c d

loss

Autodiff

Calculates the
derivative of the
loss w.r.t. each of
its input tensors.

Uses the resulting
derivatives to
update the
weights.

loss depends on
y_pred, which
depends on a, b,
c, d.

Try the quiz!

Go to
https://us.prairielearn.com/pl/course_instance/147925/assessment/23
98028 and try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/2398028
https://us.prairielearn.com/pl/course_instance/147925/assessment/2398028

Details: How to turn off autodiff

• As you know, every time you add, subtract, multiply or divide a tensor
by anything, the tensor stores data in self.saved_tensors, so it can use
that information later to compute the gradient
• How do you turn this behavior off?

Dynamically
turning off
Autodiff

These weight
updates are not
part of the neural
network forward
pass.

How to zero out the gradients

• When you call backward() over a tensor, it doesn’t zero out any
previous gradients
• Instead, it adds the current gradient to the previous gradients
• A very very very common mistake: running 2000 iterations, with the

gradient accumulating from each iteration to the next, instead of
zeroing it out in between iterations

Manually
zeroing out
the
gradients

Here’s the part I
didn’t show you
before.

Outline

• Review: linear regression
• Training a linear regression model using numpy
• The same example with pytorch
• torch.nn module: using predefined neural net components

Pytorch nn module

• The autodiff feature of pytorch allows you to define only the forward
propagation of your neural net. As long as all of the component
operations are in pytorch’s library, the back-propagation will be
computed for you.
• Tensors just do multiplication and addition. What about other types

of operations?
• General operations are contained in the nn module, using the

formalism of a “layer.”

Some types of layers

• torch.nn.Linear: a layer that computes 𝒛 = 𝑾𝒙 + 𝒃

• torch.nn.Softmax: a layer that computes 𝑧" =
>?@(A!)

∑" >?@(A")

• torch.nn.Sigmoid: a layer that computes 𝑧" =
$

$)>?@()C!)

• torch.nn.ReLU: a layer that computes 𝑧" = max(0, 𝑥")
• torch.nn.Sequential: a model that takes a sequence of layers as its

arguments, and applies them, one after the other, in order

m=torch.nn.Linear(n_1,n_2)

• This creates a callable object, m, such that Z=m(X) treats each row of
X as a transposed vector, and generates a corresponding row of Z
using the operation:

𝒛 = 𝑾𝒙 + 𝒃
X can be a tensor of any size, as long as its last dimension (the
dimension of each row) is n_1
• Z is then a tensor of the same shape as i, except that its last

dimension (the row length) is now n_2
• m.weight (W) is a matrix of size (n_2,n_1)
• m.bias (b) is a vector of length n_2

Example: Linear, Sigmoid, Softmax

𝑥$

𝜉$

• Here’s an example flowgraph. We could create the
layers as:

linearlayer1 = torch.nn.Linear(2,3)
sigmoidlayer1 = torch.nn.Sigmoid()
linearlayer2 = torch.nn.Linear(3,2)
loss_function = torch.nn.MSEloss()

• Having created them, we could then run forward
pass as:

xi = linearlayer1(x)
h = sigmoidlayer1(xi)
f = linearlayer2(h)
loss = loss_function(f,y)

• Then we could calculate all of the gradients by
running

loss.backward() 𝑥*

𝑓$ 𝑓*

𝜉* 𝜉+

ℎ$ ℎ* ℎ+

torch.nn.Sequential
• torch.nn.Sequential is a special module that

creates a sequence of layers, where each layer’s
output is the next layer’s input. For example:

model = torch.nn.Sequential(
torch.nn.Linear(2,3),
torch.nn.Sigmoid(),
torch.nn.Linear(3,2))

loss_function = torch.nn.MSEloss()
• Then you can run forward pass by just typing:

f = model(x)
loss = loss_function(f,y)

• You can still calculate all of the gradients by
running

loss.backward()
𝑥$

𝜉$

𝑥*

𝑓$ 𝑓*

𝜉* 𝜉+

ℎ$ ℎ* ℎ+

torch.nn.Sequential: where are the parameters?
• The layers each have their own parameters, for example, a model created

using the commands on the previous slide would have
model[0].weight
model[0].bias
model[2].weight
model[2].bias

• Accessing them that way requires you to know which layers have weights
and biases, and which don’t. An easier way is to use the function
model.parameters(), which iterates through all trainable parameters,
regardless of where they are actually stored:

for param in model.parameters():
param -= learning_rate * param.grad

Outline

• Review: linear regression
• Training a linear regression model using numpy

• https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#warm-
up-numpy

• The same example with pytorch
• https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#pytorch

-tensors

• torch.nn module: using predefined neural net components
• https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#nn-

module

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

