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Outline

• Review: linear regression
• Training a linear regression model using numpy
• The same example with pytorch
• torch.nn module: using predefined neural net components



Linear regression
Linear regression is used to 
estimate a real-valued target 
variable, 𝑦, using a linear 
combination of real-valued input 
variables:

𝑓 𝒙 = 𝒘!𝒙 + 𝑏 =(
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𝑤"𝑥" + 𝑏

… so that …
𝑓 𝒙 ≈ 𝑦

Linear regression.  Public 
domain image, Seewaqu, 2010
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Polynomial regression = multivariate linear 
regression

Polyreg_scheffe.svg.  CC-BY 3.0, 
Skbkekas, 2009

We can use linear regression to solve 
nonlinear regression problems by 
simply augmenting the features.  For 
example, suppose we start with a 
scalar variable, 𝑥, but suppose we 
expand it to four variables like this:

𝒙 =
1
𝑥
𝑥!
𝑥"

Then
𝑓 𝒙 = 𝒘#𝒙
= 𝑤$ +𝑤!𝑥 +𝑤"𝑥! +𝑤%𝑥"



Minimizing the MSE

Our goal is to find the coefficients 𝒘 = 𝑤$, … , 𝑤& ! that minimize the 
MSE loss function:
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The gradient descent algorithm
• Start from a random initial value of 𝒘.
• Calculate the derivative of MSE with 

respect to 𝒘:

𝜕ℒ
𝜕𝒘

=

𝜕ℒ
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⋮
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• Take a step “downhill” (in the direction of 
the negative gradient

𝑤 ← 𝑤 − 𝜂
𝜕ℒ
𝜕𝒘

𝑤
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Gradient descent
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If we differentiate that, we discover that:
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…so the gradient descent algorithm is:
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Running example: neural net regression

• For example, suppose 𝑦 = sin(𝑥)
• Suppose that the network can only model functions of the form

𝑓 𝑥 = 𝑎 + 𝑏𝑥 + 𝑐𝑥* + 𝑑𝑥+ = 𝒘!𝒙
…where we’re defining…

𝒘 =

𝑎
𝑏
𝑐
𝑑
, 𝒙 =

1
𝑥
𝑥*
𝑥+

• We want to learn a, b, c, d so that 𝑓(𝒙) ≈ 𝑦



Running example: neural net regression



Mean-squared error

First, let’s define the loss function.

𝑓 𝒙' = 𝑎 + 𝑏𝑥' + 𝑐𝑥'* + 𝑑𝑥'+,

𝜖' = 𝑓 𝒙' − 𝑦' ,
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Gradient update

Now, update the weights by subtracting the gradient.

𝑎 = 𝑎 − 𝜂
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How a neural 
network is 
trained

Here’s Justin Johnson’s 
code for doing those 
things:
(https://pytorch.org/tuto
rials/beginner/pytorch_w
ith_examples.html)

© 2021 Pytorch, 
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
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Autodiff: Main idea

• A neural network is a complicated function 𝑓(𝑥), made up of many 
simple components

• If we try to take all the derivatives, 𝑑ℒ/𝑑𝑤",9
(;), all at once, in a big 

mass of spaghetti code, then the code will be really ugly.
• HOWEVER: Each of the components is simple to compute.  

Furthermore, the derivative of its output w.r.t. its input is simple.



Autodiff: Tensor objects
The basic idea of autodiff is to create a new kind of object that takes 
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤",9
(;)



Autodiff: Tensor objects
• In pytorch, variables that take responsibility for their own gradients 

are called “tensors” (https://pytorch.org/docs/stable/tensors.html)
• Here’s how Justin Johnson defines tensors for the polynomial 

regression problem:

© 2017 Pytorch, https://pytorch.org/tutorials/beginner/pytorch_with_examples.html



Autodiff: Overloaded operators
The basic idea of autodiff is to create a new kind of object that takes 
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤",9
(;)

• These new objects have overloaded operators, so that any time we 
use them to compute some output, the input is cached.  For example, 
it might be used to compute

𝑓" = 𝑏"
(*) +(

9

𝑤",9
(*)ℎ9

f[j] = b[2,j]+np.sum(w[2,j,:]*h)



Autodiff: 
Overloaded 
operators

Here’s why it works: if 
“b” is an object that has 
a method named 
__mul__, then the 
python expression 

f=b*x 

…actually calls: 

f=b.__mul__(x)



Autodiff: Overloaded operators
The operator overload code looks something like this:

class Tensor(torch.autograd.Function):
def __init__(self, weight):

self.weight = weight
self.saved_tensors = ()

def __mul__(self, other):
self.saved_tensors = (self.saved_tensors[:], other)
returnvalue = self.weight * other
return Tensor(returnvalue)

Cache x in self.saved_tensors, so 
we can use it later…

Then calculate the 
output of the multiply 
operation,

… and cast the return 
value as a Tensor.



Autodiff: Overloaded operators
Here’s how it gets used:

Stores x**2 in c.saved_tensorsStores x in b.saved_tensors

Python overloaded operators: the expression “b*x” actually calls 
b.__mul__(x).



Autodiff: the Loss tensor
The basic idea of autodiff is to create a new kind of object, a tensor, 
that takes responsibility for its own gradient. Any time we use tensors 
to compute some output, the input is cached. For example, these 
operations:

𝑓 𝒙' = 𝑎 + 𝑏𝑥' + 𝑐𝑥'* + 𝑑𝑥'+

ℒ =
1
2𝑛

(
'#$

%

𝑓 𝑥' − 𝑦' *

f = a + b*x + c*x**2 + d*x**3
loss = (f-y).pow(2)

...will calculate the loss, but will also store some extra information in 
loss.saved_tensors, f.saved_tensors, a.saved_tensors, b.saved_tensors, 
c.saved_tensors, d.saved_tensors, and x.saved_tensors.  



Autodiff: the Loss tensor

Notice the flow diagram that was 
implied by those lines of code.
Each tensor’s overloaded __mul__ 
operator keeps track of the 
variables used to compute it:
• loss.saved_tensors has pointers 

to f and y
• f.saved_tensors has pointers to 

x, a, b, c, and d
x

yf

a b c d

loss



Autodiff
loss depends on 
y_pred, which 
depends on a, b, 
c, d.



Autodiff: the backward function

Every tensor object has a method 
called backward(). 
If backward() is called with no 
arguments, it calculates the 
derivative with respect to the 
inputs:
• loss.backward() calculates

tmp= &ℒ
&=

, then calls the method 
f.backward(tmp).

x

yf

a b c d

loss



Autodiff: the backward function

If f.backward(tmp) is called with the 
argument tmp= +ℒ

+-
,  it does three 

things:
• Store f.grad= +ℒ

+-
• Calculate derivative w.r.t. each 

input, for example, tmpc=
𝑑ℒ
𝑑𝑐 =

𝑑ℒ
𝑑𝑓 ×

𝑑𝑓
𝑑𝑐

• Pass the input derivatives back to 
the inputs, e.g., call 
c.backward(tmpc)

x

yf

a b c d

loss



Autodiff

Calculates the 
derivative of the 
loss w.r.t. each of 
its input tensors.

Uses the resulting 
derivatives to 
update the 
weights.

loss depends on 
y_pred, which 
depends on a, b, 
c, d.



Try the quiz!

Go to 
https://us.prairielearn.com/pl/course_instance/147925/assessment/23
98028 and try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/2398028
https://us.prairielearn.com/pl/course_instance/147925/assessment/2398028


Details: How to turn off autodiff

• As you know, every time you add, subtract, multiply or divide a tensor 
by anything, the tensor stores data in self.saved_tensors, so it can use 
that information later to compute the gradient
• How do you turn this behavior off?



Dynamically
turning off 
Autodiff

These weight 
updates are not 
part of the neural 
network forward 
pass.



How to zero out the gradients

• When you call backward() over a tensor, it doesn’t zero out any 
previous gradients
• Instead, it adds the current gradient to the previous gradients
• A very very very common mistake: running 2000 iterations, with the 

gradient accumulating from each iteration to the next, instead of 
zeroing it out in between iterations



Manually 
zeroing out 
the 
gradients

Here’s the part I 
didn’t show you 
before.
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Pytorch nn module

• The autodiff feature of pytorch allows you to define only the forward 
propagation of your neural net.  As long as all of the component 
operations are in pytorch’s library, the back-propagation will be 
computed for you.
• Tensors just do multiplication and addition.  What about other types 

of operations?
• General operations are contained in the nn module, using the 

formalism of a “layer.” 



Some types of layers

• torch.nn.Linear: a layer that computes  𝒛 = 𝑾𝒙 + 𝒃

• torch.nn.Softmax: a layer that computes 𝑧" =
>?@(A!)

∑" >?@(A")

• torch.nn.Sigmoid: a layer that computes 𝑧" =
$

$)>?@()C!)

• torch.nn.ReLU: a layer that computes 𝑧" = max(0, 𝑥")
• torch.nn.Sequential: a model that takes a sequence of layers as its 

arguments, and applies them, one after the other, in order



m=torch.nn.Linear(n_1,n_2)

• This creates a callable object, m, such that Z=m(X) treats each row of 
X as a transposed vector, and generates a corresponding row of Z
using the operation:

𝒛 = 𝑾𝒙 + 𝒃
X can be a tensor of any size, as long as its last dimension (the 
dimension of each row) is n_1
• Z is then a tensor of the same shape as i, except that its last 

dimension (the row length) is now n_2
• m.weight (W) is a matrix of size (n_2,n_1)
• m.bias (b) is a vector of length n_2



Example: Linear, Sigmoid, Softmax

𝑥$

𝜉$

• Here’s an example flowgraph.  We could create the 
layers as:

linearlayer1 = torch.nn.Linear(2,3)
sigmoidlayer1 = torch.nn.Sigmoid()
linearlayer2 = torch.nn.Linear(3,2)
loss_function = torch.nn.MSEloss()

• Having created them, we could then run forward 
pass as:

xi = linearlayer1(x)
h = sigmoidlayer1(xi)
f = linearlayer2(h)
loss = loss_function(f,y)  

• Then we could calculate all of the gradients by 
running

loss.backward() 𝑥*

𝑓$ 𝑓*

𝜉* 𝜉+

ℎ$ ℎ* ℎ+



torch.nn.Sequential
• torch.nn.Sequential is a special module that 

creates a sequence of layers, where each layer’s 
output is the next layer’s input. For example:

model = torch.nn.Sequential(
torch.nn.Linear(2,3),
torch.nn.Sigmoid(),
torch.nn.Linear(3,2))

loss_function = torch.nn.MSEloss()  
• Then you can run forward pass by just typing:

f = model(x)
loss = loss_function(f,y) 

• You can still calculate all of the gradients by 
running

loss.backward()
𝑥$

𝜉$

𝑥*

𝑓$ 𝑓*

𝜉* 𝜉+

ℎ$ ℎ* ℎ+



torch.nn.Sequential: where are the parameters?
• The layers each have their own parameters, for example, a model created 

using the commands on the previous slide would have
model[0].weight
model[0].bias
model[2].weight
model[2].bias

• Accessing them that way requires you to know which layers have weights 
and biases, and which don’t.  An easier way is to use the function 
model.parameters(), which iterates through all trainable parameters, 
regardless of where they are actually stored:

for param in model.parameters():
param -= learning_rate * param.grad



Outline

• Review: linear regression
• Training a linear regression model using numpy

• https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#warm-
up-numpy

• The same example with pytorch
• https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#pytorch

-tensors

• torch.nn module: using predefined neural net components
• https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#nn-

module

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

