_ecture 12: Multi-

ayer Neural Nets (Q (0~ (o

Wi) \ v
Mark Hasegawa-Johnson @ @ @
2/2024 | 1
These slides are in the public domain (1) \\ X /

Outline

* From linear to nonlinear classifiers
* Training a two-layer network: Back-propagation

Linear classifier

Review: a linear classifier
computes

f(x) = argmax Wx
The resulting classifier divides the
X-space into Voronoi regions:
convex regions with piece-wise
linear boundaries

Nonlinear classifier

* Not all classification problems
have convex decision regions
with PWL boundaries!

* Here’s an example problem in
which class 0 (blue) includes
values of x near [0.8,0]7, but it

also includes some values of x
near [0.4,0.9]7

* You can’t compute this function
using
f(x) = argmax Wx

The solution: Piece-wise °
inear functions

* Nonlinear classifiers, like this one, /' "

can be learned using piece-wise s
linear classification boundaries

* Nonlinear regression problems, t
like this one, can be learned using i
piece-wise linear regression \

* In the limit, as the number of _
pieces goes to infinity, the

approximation approaches the
desired solution

»
Ld

zy, =0 x; Ty T3 Ty 5 =1

Public domain image, Krishnavedala, 2011

Multi-layer network

A piece-wise linear function f(x) can be
represented by a two-layer neural network.
First, the hidden nodes compute:

_ (1), T (1)
hj(x) = max (0, W, x+ bj)

Then for PWL regression, the output is a

weighted sum of the hidden nodes:
f(x) =wPTx +p@

...while for PWL classification, the output is the
softmax or argmax of such a sum:

f(x) = softmax(0, WPx + b?)

f1

(2)
Wi1

AV,

[

f2

fv

K
X

(1)

Wiq

AV,
/[

[N

<
AN

by

1

For a PWL neural net, the hidden nodes are RelLU

ReLU: g(b)=max(0,b)

If the goal is PWL classification boundaries, 3

we can achieve that by using hidden nodes 2
|

that are the simplest possible PWL

—
[

function: a Rectified Linear Unit, or ReLU: il

ReLU(z) = max(0,z)

At

-2

% 2 8 2
Unit Step: g(b)=u(b)
1.5 : :

This is differentiable everywhere except 1

z=0; its derivative is the unit step function: 9

dReLU(z) (2) = 1 z>0 08
0z —HWE 0 2 <0 g

g(b)

-1.5

A RelLU hidden node

Example: Computing a non-
linear classification boundary

1.0 1

> /

0.0 L T T T T T T
0.0 1.0

0.2 0.4 0.6 0.8
Another ReLU hidden node

using ReLU hidden units

0.0

—-0.5 4

~-1.0 1

1.5 A
0'2 0‘4 0I6 0'8 1.‘0

h{(x) = ReLU(x)

Yet another ReLU hidden node

0.0
1.0 A
0.5

0.2 0.4 0.6 0.8
RelLUl + RelLU2 + RelLU3 - 0.1

W2,3h2(X) — 3R€LU(X — 04‘5)

Wz’zhl(X) — _ZRQLU(X — 02)/00

f(x) = u(hy — 2hy + 3hs — 0.1) s ..

Outline

* Training a two-layer network: Back-propagation

Training a neural net: Gradient /1 /2 fo
descent

* Suppose we have some scalar loss ‘ ‘ ‘

function, £, that we want to minimize
\’ b(z)
v

* Define the gradient of £ w.r.t. the layer-I Wl(zl) NP

weight matrix, W, as:) \

e oy () ()))
0 O ~

oL Owyy 0wy, ey W, }0/ o

ow® ~ | %L oL SR NN

) Q)
ow 21 ow Wa.2

Training a neural net: Gradient v J2 Jo
descent

Gradient descent updates W as: ‘\ \/

Wii
oL XD
e S
1

Back-propagation = Chain rule it /2 fr

* Now here’s the big question: how do ‘ ‘ ‘
: oL
D

* Answer: use the chain rule. For Wiq) S v
example, \
| G)
oL z (aﬁ) Ofi\ [Ol W1(11) X p (D
ow®H L \ofi /\ah <aw.<1>> ’) ~X \ "

L,j k=1

Excitations and Activations i f2 fo

The chain rule is often easier if separate each

node’s excitation and activation. For example, @
we could have ‘

fr = softlgnax z(2) ’

: (hy) (hy

RN o) ()
=

h; = ReLU (z) (1) \\és,

d

(1) _ (1) (1)

z; = bj +ZWj’i X;
i=1

Example i f fo
If the loss is cross-entropy, then
aafz) = fie = Ly=k) \29;\ /‘@ pH
Z" i | XS

So the weight gradient is:

oL z”:(az)(azf))(ahj) @ ,
SEIEE)
awl.,j =1 \0z, dh; an.,j

f _

v
w o
= Z(fk — ﬂyzk)ng’zj)]lhj>0xi 11) " \ n
k=1

Try the quiz!

Try the quiz:
https://us.prairielearn.com/pl/course instance/147925/assessment/23
97863

https://us.prairielearn.com/pl/course_instance/147925/assessment/2397863
https://us.prairielearn.com/pl/course_instance/147925/assessment/2397863

Approximating an arbitrary nonlinear
boundary using a two-layer network

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

How to train a neural network

* From a very large training dataset, randomly choose a training token
(%, yi)

* Calculate the neural net prediction, f(x;)

* Calculate the loss, e.g., L = —log f,,. (x;)

. _ L
* Back-propagate to find the gradients, W@ and WD
* Do a gradient update step, WO «wh — N afVL(D

* Repeat until the loss is small enough.

