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Outline

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation



Linear classifier

Review: a linear classifier 
computes

𝑓(𝒙) = argmax𝑾𝒙
The resulting classifier divides the 
x-space into Voronoi regions: 
convex regions with piece-wise 
linear boundaries



Nonlinear classifier

• Not all classification problems 
have convex decision regions 
with PWL boundaries!
• Here’s an example problem in 

which class 0 (blue) includes 
values of x near [0.8,0]! , but it 
also includes some values of x
near [0.4,0.9]!

• You can’t compute this function 
using

𝑓(𝒙) = argmax𝑾𝒙



The solution: Piece-wise 
linear functions
• Nonlinear classifiers, like this one, 

can be learned using piece-wise 
linear classification boundaries
• Nonlinear regression problems, 

like this one, can be learned using 
piece-wise linear regression
• In the limit, as the number of 

pieces goes to infinity, the 
approximation approaches the 
desired solution

Public domain image, Krishnavedala, 2011



Multi-layer network
A piece-wise linear function 𝑓(𝒙) can be 
represented by a two-layer neural network. 
First, the hidden nodes compute:

ℎ! 𝒙 = max 0,𝒘!
" ,$𝒙 + 𝑏!

(")

Then for PWL regression, the output is a 
weighted sum of the hidden nodes:

𝑓 𝒙 = 𝒘 ' ,$𝒙 + 𝑏 '

…while for PWL classification, the output is the 
softmax or argmax of such a sum:

𝒇 𝒙 = softmax 0,𝑾 ' 𝒙 + 𝒃 '
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For a PWL neural net, the hidden nodes are ReLU
If the goal is PWL classification boundaries, 
we can achieve that by using hidden nodes 
that are the simplest possible PWL 
function: a Rectified Linear Unit, or ReLU:

ReLU(𝑧) = max(0, 𝑧)

This is differentiable everywhere except
z=0; its derivative is the unit step function:

𝜕ReLU(𝑧)
𝜕𝑧

= 𝑢 𝑧 = ;1 𝑧 > 0
0 𝑧 < 0



Example: Computing a non-
linear classification boundary 
using ReLU hidden units

ℎ6 𝑥 = 𝑅𝑒𝐿𝑈 𝑥

𝑤7,7ℎ6 𝑥 = −2𝑅𝑒𝐿𝑈 𝑥 − 0.2

𝑤7,8ℎ7(𝑥) = 3𝑅𝑒𝐿𝑈 𝑥 − 0.45

𝑓(𝑥) = 𝑢 ℎ6 − 2ℎ7 + 3ℎ8 − 0.1



Outline

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation



Training a neural net: Gradient 
descent

• Suppose we have some scalar loss 
function, ℒ, that we want to minimize
• Define the gradient of ℒ w.r.t. the layer-l 

weight matrix, 𝑾(#), as:

𝜕ℒ
𝜕𝑾(#) =

𝜕ℒ

𝜕𝑤%,%
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Training a neural net: Gradient 
descent

Gradient descent updates 𝑾()) as:

𝑾()) ← 𝑾()) − 𝜂
𝜕ℒ

𝜕𝑾())
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Back-propagation = Chain rule
• Now here’s the big question: how do 

we find (ℒ
(𝑾(")?

• Answer: use the chain rule.  For 
example,

𝜕ℒ

𝜕𝑤+,,
(%) = D
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Excitations and Activations
The chain rule is often easier if separate each 
node’s excitation and activation.  For example, 
we could have

𝑓( = softmax
(

𝒛(')

𝑧(
(') = 𝑏(

(') +;
!)"

*

𝑤(,!
(')ℎ!

ℎ! = ReLU 𝑧!
"

𝑧!
(") = 𝑏!

(") +;
+)"
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Example
If the loss is cross-entropy, then

𝜕ℒ

𝜕𝑧(
(') = 𝑓( − 𝟙-)(

So the weight gradient is:
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Try the quiz!

Try the quiz: 
https://us.prairielearn.com/pl/course_instance/147925/assessment/23
97863

https://us.prairielearn.com/pl/course_instance/147925/assessment/2397863
https://us.prairielearn.com/pl/course_instance/147925/assessment/2397863


Approximating an arbitrary nonlinear 
boundary using a two-layer network

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


How to train a neural network

• From a very large training dataset, randomly choose a training token 
(𝒙+ , 𝑦+)
• Calculate the neural net prediction, 𝒇(𝒙+)
• Calculate the loss, e.g., ℒ = − log 𝑓1$ 𝒙+
• Back-propagate to find the gradients, (ℒ

(𝑾(%) and (ℒ
(𝑾(&)

• Do a gradient update step, 𝑾(#) ← 𝑾(#) − 𝜂 (ℒ
(𝑾(")

• Repeat until the loss is small enough.


