
Lecture 9: Two-Layer
Neural Nets

Mark Hasegawa-Johnson
2/2022

Lecture slides CC0:

𝑓!

𝑥! 𝑥" 𝑥#$" 1…

𝑓" 𝑓%$"

1
ℎ! ℎ" ℎ&$"

𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!

Outline

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation
• Other nonlinearities

Linear classifier

Review: a linear classifier
computes
𝑓(𝑥) = argmax

!
𝑤!@𝑥 + 𝑏!

The resulting classifier divides the
x-space into Voronoi regions:
convex regions with piece-wise
linear boundaries

Nonlinear classifier

• Not all classification problems
have convex decision regions
with PWL boundaries!
• Here’s an example problem in

which class 0 (blue) includes
values of x near 𝑥 = [0.8,0], but
it also includes some values of x
near 𝑥 = [0.4,0.9]
• You can’t compute this function

using
𝑓(𝑥) = argmax

!
𝑤!@𝑥 + 𝑏!

Piece-wise linear classifier

• SOLUTION: Merge the decision regions!

• First, perform a 20-class classification
using a formula like

ℎ(𝑥) = argmax
!

𝑤!@𝑥 + 𝑏!

• Then just threshold h(x) to get f(x):

𝑓(𝑥) = 81 ℎ 𝑥 > 9.5
0 ℎ 𝑥 < 9.5

From piece-wise-linear to nonlinear

• We can approximate any
nonlinear classifier using a PWL
classifier
• In the limit, as the number of

hidden nodes goes to infinity,
the approximation becomes
provably perfect

Public domain image, Krishnavedala, 2011

Piece-wise linear classifier by adding argmax
nodes
• The hidden layer could use argmax to divide the input space into

Voronoi regions
ℎ(𝑥) = argmax

!
𝑤!@𝑥 + 𝑏!

• … then we could add and threshold, to merge those regions
𝑓(𝑥) = 𝑢 ℎ 𝑥 − 9.5

… where u(x) is called the “unit step function,” and is defined as

𝑢(𝑥) = 81 𝑥 > 0
0 𝑥 < 0

How to add argmax nodes: a 1d example

Here’s an example with a 1-
dimensional 𝑥 input.

ℎ(𝑥) = argmax
!

𝑤!𝑥 + 𝑏!
𝑓(𝑥) = 𝑢 ℎ 𝑥 − 1.5

The problem with this method is
that neither argmax nor unit step
are differentiable, so we can’t
train this classifier!

A differentiable and simple alternative: ReLU

If the goal is PWL classification
boundaries, we can achieve that by
using hidden nodes that are the
simplest possible PWL function: a
rectified linear unit, or ReLU:

𝑅𝑒𝐿𝑈(𝑏) = max(0, 𝑏)

ReLU hidden nodes

𝑤",!ℎ! 𝑥 = 𝑅𝑒𝐿𝑈 𝑤!,!𝑥 + 𝑏!,!

𝑤","ℎ" 𝑥 = −2𝑅𝑒𝐿𝑈 𝑤!,"𝑥 + 𝑏!,"

𝑤",(ℎ((𝑥) = 3𝑅𝑒𝐿𝑈 𝑤!,(𝑥 + 𝑏!,(

𝑓(𝑥)
= 𝑢 𝑤",!ℎ! +𝑤","ℎ" +𝑤",(ℎ(− 0.1

Multi-layer neural net: Basic notation

𝑓!

𝑥! 𝑥" 𝑥#$"
1

…

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…

• Output vector:
𝑓 = 𝑓", … , 𝑓#$%

• Hidden nodes vector:
ℎ = ℎ", … , ℎ&$%

• Input vector:
𝑥 = 𝑥", … , 𝑥'$%

• Layer 𝑙 bias vector:
𝑏(= 𝑏(,", 𝑏(,%, …

• Layer 𝑙 weight matrix:

𝑤(=
𝑤(,"," 𝑤(,",% ⋯
𝑤(,%," 𝑤(,%,% ⋯
⋮ ⋮ ⋱

Multi-layer neural network: Each layer is a matrix
multiplication followed by a nonlinearity

𝑓!

𝑥! 𝑥" 𝑥#$"
1

…

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…
𝑓 = softmax(𝑤!@ℎ + 𝑏!)

ℎ = 𝑅𝑒𝐿𝑈 𝑤"@𝑥 + 𝑏"

Approximating an arbitrary nonlinear
boundary using a two-layer network

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation
• Other nonlinearities

Training a neural net: Gradient descent
• Suppose we have some scalar loss

function, ℒ, that we want to
minimize
• Define the gradient of ℒ w.r.t. any

vector of weights, 𝑤),*, as:

∇+!,#ℒ =
𝜕ℒ

𝜕𝑤),*,!
,
𝜕ℒ

𝜕𝑤),*,"
, …

𝑓!

𝑥! 𝑥" 𝑥#$"
1

…

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…

Training a neural net: Gradient descent
Gradient descent updates 𝑤) as:

𝑤),* ← 𝑤),* − 𝜂∇+!,#ℒ
𝑓!

𝑥! 𝑥" 𝑥#$"
1

…

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…

Back-propagation = Chain rule of calculus
• Now here’s the big question: how do we

find ∇*!ℒ?

• Answer: use the chain rule of calculus.

𝜕ℒ
𝜕ℎ+

= K
,-"

#$%
𝜕ℒ
𝜕𝑓,

×
𝜕𝑓,
𝜕ℎ+

𝜕ℒ
𝜕𝑤",+,.

=
𝜕ℒ
𝜕ℎ+

×
𝜕ℎ+

𝜕𝑤",+,.

𝑓!

𝑥! 𝑥" 𝑥#$"
1

…

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…

Quiz

The quiz today asks you to compute $ℒ
$&"

if you know $ℒ
$'#

, and if the output layer
is linear, so that

𝑓(= %
)*+

,-.

𝑤.,(,)ℎ)

Remember that the relevant chain rule is:
𝜕ℒ
𝜕ℎ)

= %
(*+

/-.
𝜕ℒ
𝜕𝑓(

×
𝜕𝑓(
𝜕ℎ)

Give it a try:
https://us.prairielearn.com/pl/course_instance/129874/assessment/2331127

https://us.prairielearn.com/pl/course_instance/129874/assessment/2331127

quiz

f0=8*h0+3*h1
f1=4*h0+6*h1
dL/dh0 = (dL/df0)*(df0/dh0)+(dL/df1)*(df1/dh0)
= 8*0+4*(-0.2)

How to train a neural network

• From a very large training dataset, randomly choose a training token
(𝑥/ , 𝑦/)
• Calculate the neural net prediction, 𝑓(𝑥/)
• Calculate the cross-entropy loss, ℒ = − log 𝑓0$ 𝑥/
• Back-propagate to find the gradients, 1ℒ

1*%,#,"
and 13"

1*',",(

• Do a gradient update step, 𝑤(,+ ← 𝑤(,+ − 𝜂∇*!,"ℒ
• Repeat until the loss is small enough.

Outline

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation
• Other nonlinearities

Activation functions
The “activation function,” 𝑔 S , can be any scalar
nonlinearity. Common ones that you should know
include:
Logistic Sigmoid:

𝜎 𝛽 =
1

1 + 𝑒$4
Hyperbolic Tangent (tanh):

tanh 𝛽 =
𝑒4 − 𝑒$4

𝑒4 + 𝑒$4

Rectified Linear Unit (ReLU):
ReLU 𝛽 = max 0, 𝛽

Derivatives of common activation functions
The derivatives of common activation functions are
usually things that you can write in terms of the function
itself, like this:
Derivative of Sigmoid:

𝑑𝜎 𝛽
𝑑𝛽

= −
𝑒$4

1 + 𝑒$4 5 = 𝜎 𝛽 1 − 𝜎 𝛽

Derivative of Tanh:
𝑑tanh 𝛽

𝑑𝛽
= 1 − tanh5 𝛽

Derivative of ReLU:
𝑑ReLU 𝛽

𝑑𝛽
= 𝑢 𝛽

Why are they used?

• Logistic sigmoid is used if, for some reason, your hidden nodes need
to be bounded and non-negative
• Example: “gate” nodes in a gated recurrent unit. 0 = off, 1 = on.

• Tanh is used if your hidden nodes need to be bounded, but not
necessarily non-negative
• ReLU is used for most hidden nodes

Summary

• From linear to nonlinear classifiers
• Training a two-layer network: Back-propagation
• Other nonlinearities

