Lecture 9: Two-Layer

Neural Nets

Mark Hasegawa-Johnson
2/2022
Lecture slides CCO:

fo

W1.0,0

Y

f

1

N

fv-1

(o
7

Outline

* From linear to nonlinear classifiers
* Training a two-layer network: Back-propagation
e Other nonlinearities

Linear classifier

Review: a linear classifier
computes
f(x) = argmax w; @x + b,
k

The resulting classifier divides the
X-space into Voronoi regions:
convex regions with piece-wise
linear boundaries

Nonlinear classifier

* Not all classification problems
have convex decision regions
with PWL boundaries!

* Here’s an example problem in
which class 0 (blue) includes
values of x near x = [0.8,0], but
it also includes some values of x
near x = [0.4,0.9]

* You can’t compute this function
using
f(x) = argmaxw; @x + by
k

Piece-wise linear classifier

* SOLUTION: Merge the decision regions!

* First, perform a 20-class classification

using a formula like

h(x) = argmax w;, @x + by,
k

* Then just threshold h(x) to get f(x):

) = {1 R(X) > 9.5 ey

0 h(x)<9.5

From piece-wise-linear to nonlinear

e We can approximate any
nonlinear classifier using a PWL
classifier

* In the limit, as the number of
hidden nodes goes to infinity,
the approximation becomes
provably perfect

Public domain image, Krishnavedala, 2011

Piece-wise linear classifier by adding argmax
nodes

* The hidden layer could use argmax to divide the input space into
Voronoi regions

h(x) = argmax w; @x + by
k
e ... then we could add and threshold, to merge those regions
f(x) =u(h(x) —9.5)
... where u(x) is called the “unit step function,” and is defined as

u(x) = {

1 x>0
0 x<0

How to add argmax nodes: a 1d example

categorical hidden units: h=argmax(w@x + b)

Here’s an example with a 1-

dimensional x input. _ /
h(x) = argmax wyx + bk—"'—' J—L\

0-

0.6 0.8 1.0

0.50 A

that neither argmax nor unit step el

0.00 A

are differentiable, so we can’t
train this classifier!

0.6 0.8 1.0

k
f(X) = u(h(x) — 1.5)\ output: binary classifier
The problem with this method is - ’ \ /
0.0 0.2 0.4 <

A differentiable and simple alternative: RelLU

RelLU: g(b)=max(0,b)

If the goal is PWL classification 3
boundaries, we can achieve that by 2!
using hidden nodes that are the A
simplest possible PWL function: a)
rectified linear unit, or RelLU: o
ReLU(b) = max(0,b) =
% 2 0 2

A RelLU hidden node

RelLU hidden nodes /

Wl OhO (x) — ReLU(WO Ox + bO O) / Another RelU hidden node

1.0 \
. 0.2 0.4 0.6 0.8 1.0

W1’1h1 (X) — _ZReLU(WO’]_x + bo’lwl's 00

Yet another ReLU hidden node

wq th (x) — BReLU(WO 2 X + bo 2)/

0.2 0.4 0.6 0.8
RelLUl + RelLU2 + RelLU3 - 0.1

f(x)
— U(Wl’oho + Wl,lhl + Wl,ZhZ — 0.1

Multi-layer neural net: Basic notation

* Output vector:
f= 1o fr-1l
* Hidden nodes vector:
h = |hg, .., hy_1]
* [nput vector:
x = [xg, ., Xp_1]
* Layer [bias vector:
b, = |b1o, bi1, - |

 Layer [weight matrix:

Wioo Wio1 -
w; = W10 Wi11

Multi-layer neural network: Each layer is a matrix
multiplication followed by a nonlinearity

f = softmax(w;@h + b,)

h = RQLU(W()@X -+ bO)

Approximating an arbitrary nonlinear
boundary using a two-layer network

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

* Training a two-layer network: Back-propagation
e Other nonlinearities

Training a neural net: Gradient descent

* Suppose we have some scalar loss
function, L, that we want to
minimize

* Define the gradient of £ w.r.t. any
vector of weights, w; ,,, as:

0L 0L
Vw L =

,) v
an,n,O an,n,l

Training a neural net: Gradient descent

Gradient descent updates w; as:

Win < Win — Ule,nﬁ

Back-propagation = Chain rule of calculus

* Now here’s the big question: how do we
find V,,, L?

 Answer: use the chain rule of calculus.
V-1
0L B 0L o df.
oh, 1 0f;~ Ohy
c=

0L _ 9L oh,
aWO,n,d ahn aWO,n,d

QuIz

The quiz today asks you to compute:—hL if you knowaa—}a, and if the output layer
n C

N-1
fc= § Wl,c,nhn
n=0

Remember that the relevant chain ru‘I/e_ils:
ﬁ B 0L o df,.
Oh, L 0f. Ohy
c=

is linear, so that

Give it a try:
https://us.prairielearn.com/pl/course instance/129874/assessment/2331127

https://us.prairielearn.com/pl/course_instance/129874/assessment/2331127

quiz

f0=8*h0+3*h1
f1=4*h0+6*h1
dL/dh0 = (dL/df0)*(df0/dh0)+(dL/df1)*(df1/dhO0)
= 8*0+4*(-0.2)

How to train a neural network

* From a very large training dataset, randomly choose a training token
(X1, Vi)
* Calculate the neural net prediction, f(x;)

» Calculate the cross-entropy loss, £ = —log f,,. (x;)
. . oL dh
* Back-propagate to find the gradients, and &
an,c,n aWo,n,d

* Do a gradient update step, w;, < w;, — 1V, L

* Repeat until the loss is small enough.

Outline

e Other nonlinearities

Activation functions

Logistic: g(b)=1/(1+e™®)
1.5 :

The “activation function,” g(-), can be any scalar

1

" | nonlinearity. Common ones that you should know
2 o "/] H .
= - include:

) - Logistic Sigmoid:

: Z Tanh: g(b)=(eb-e'b)/(eb‘+e'b) (ﬁ)

| o _

: /‘ | 1+eF
g Hyperbolic Tangent (tanh):

o _/ | eB — e_B

tanh =
ReLU: g(b)=max(0.b) (ﬁ) eﬁ + e_.B

g(b)

/ ' Rectified Linear Unit (ReLU):

ReLU(B) = max(0,)

1
5
0
5
1
15
3
2
1
0
1

2 2 0 2 4
b

Derivatives of common activation functions

Logistic Derivative: g'(b)=g(b)(1-g(b))

1.5

1

0.5

0

g'(b)

-0.5

-1

-1.5

1.5

1

05

0

g'(b)

-0.5

-1

Tanh Derivativ

e: g'(b)=(1-g(b))

AN

1.5

Unit Step:

g(b)=u(b)

1

0.5

0

9(b)

-0.5

-1

The derivatives of common activation functions are
usually things that you can write in terms of the function
itself, like this:

Derivative of Sigmoid:

d -B
IR
Derivative of Tac?h: h()
tan
T = 1 — tanh?(B)

Derivative of RelLU:
dReLU(B)

ap

= u(p)

Why are they used?

* Logistic sigmoid is used if, for some reason, your hidden nodes need
to be bounded and non-negative
* Example: “gate” nodes in a gated recurrent unit. 0 = off, 1 = on.

* Tanh is used if your hidden nodes need to be bounded, but not
necessarily non-negative

* ReLU is used for most hidden nodes

Summary

* From linear to nonlinear classifiers
* Training a two-layer network: Back-propagation
e Other nonlinearities

