CS440/ECE448
Lecture 7: Linear Regression

Mark Hasegawa-Johnson, 1/2023
Lecture slides CC0.

Public domain image, Oleg Alexandrov, 2008
Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent
Python: a variable can be a container

• In python, a variable can hold any value
• The i^{th} element of x is $x[i]$
• The j^{th} element of $x[i]$ is $x[i][j]$
• The k^{th} element of $x[i][j]$ is $x[i][j][k]$
Lecture slides: subscripts = brackets

• On lecture slides (like this one), it’s often convenient to use subscripts instead of brackets
• I will use subscripts as a **synonym** for brackets
• The \(i^{th} \) element of \(x \) can be written \(x_{:,i} \) or \(x[,i] \)
• The \(j^{th} \) element of \(x_i \) can be written \(x_{i,j} \) or \(x_{i}[j] \) or \(x[i][j] \)
• The \(k^{th} \) element of \(x_{i,j} \) can be written \(x_{i,j,k} \) or \(x_{i,j}[k] \) or \(x_{i}[j,k] \)
Matrix multiplication

The following equations all mean the same thing:

\[u = v @ w \]

\[
\begin{bmatrix}
 u_{0,0} & \cdots & u_{0,N-1} \\
 \vdots & \ddots & \vdots \\
 u_{L-1,0} & \cdots & u_{L-1,N-1}
\end{bmatrix}
= \begin{bmatrix}
 v_{0,0} & \cdots & v_{0,M-1} \\
 \vdots & \ddots & \vdots \\
 v_{L-1,0} & \cdots & v_{L-1,M-1}
\end{bmatrix}
\times
\begin{bmatrix}
 w_{0,0} & \cdots & w_{0,N-1} \\
 \vdots & \ddots & \vdots \\
 w_{M-1,0} & \cdots & w_{M-1,N-1}
\end{bmatrix}
\]

\[u_{l,n} = \sum_{m=0}^{M-1} v_{l,m} w_{m,n} \]
Vectors

A vector can be either a row vector OR a column vector, on demand, whichever best fits the context, so if \(x = [x_0, \ldots, x_{N-1}] \), then

\[
x \otimes w = [x_0, \ldots, x_{N-1}] @ \begin{bmatrix} w_{0,0} & \cdots & w_{0,N-1} \\ \vdots & \ddots & \vdots \\ w_{N-1,0} & \cdots & w_{N-1,N-1} \end{bmatrix}
\]

...but...

\[
w \otimes x = \begin{bmatrix} w_{0,0} & \cdots & w_{0,N-1} \\ \vdots & \ddots & \vdots \\ w_{N-1,0} & \cdots & w_{N-1,N-1} \end{bmatrix} @ \begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix}
\]
Dot-product

If $x = [x_0, \ldots, x_{N-1}]$ and $y = [y_0, \ldots, y_{N-1}]$, then

$$x \odot y = y \odot x = [y_0, \ldots, y_{N-1}] \odot \begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix} = \sum_{i=0}^{N-1} x_i y_i$$
Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent
Linear regression

Linear regression is used to estimate a real-valued target variable, y, using a linear combination of real-valued input variables:

$$ f(x) = b + w @ x = b + \sum_{j=0}^{D-1} w_j x_j $$

... so that ...

$$ f(x) \approx y $$
Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent
What does it mean that \(f(x) \approx y \)?

- Generally, we want to choose the weights and bias, \(w \) and \(b \), in order to minimize the errors.

- The errors are the vertical green bars in the figure at right, \(\epsilon = f(x) - y \)

- Some of them are positive, some are negative. What does it mean to “minimize” them?
First: count the training tokens

Let’s introduce one more index variable. Let i=the index of the training token.

$$ x_i = \begin{bmatrix} x_{i,0} \\ \vdots \\ x_{i,D-1} \end{bmatrix} $$

$$ f(x_i) = w@x_i + b = b + \sum_{j=0}^{D-1} x_{i,j}w_j $$

Public domain image, Oleg Alexandrov, 2008
Training token errors

Using that notation, we can define a signed error term for every training token:

$$\epsilon_i = f(x_i) - y_i$$

The error term is positive for some tokens, negative for other tokens. What does it mean to minimize it?
Mean-squared error

One useful criterion (not the only useful criterion, but perhaps the most common) of “minimizing the error” is to minimize the mean squared error:

\[\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2 \]

\[= \frac{1}{n} \sum_{i=1}^{n} (w@x_i + b - y_i)^2 \]

Literally,
• ... the mean ...
• ... of the square ...
• ... of the error terms.
Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent
MSE = Parabola

Notice that MSE is a parabola in terms of b and w.
Since it’s a parabola, it has a unique minimum that you can compute in closed form!
We won’t do that today.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (w@x_i + b - y_i)^2$$
The iterative solution to linear regression

Instead of minimizing MSE in closed form, we’re going to use an iterative algorithm called gradient descent. It works like this:

• Start from random initial values of w and b (at $t = 0$).
• Adjust w and b in order to reduce MSE ($t = 1$).
• Repeat until you reach the optimum ($t = \infty$).

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (w@x_i + b - y_i)^2$$
The iterative solution to linear regression

- Start from random initial values of w and b (at $t = 0$).
- Adjust w and b according to:

 \[
 w \leftarrow w - \frac{\eta}{2} \nabla_w \text{MSE} \\
 b \leftarrow b - \frac{\eta}{2} \frac{\partial \text{MSE}}{\partial b}
 \]

...where η is a hyperparameter called the “learning rate,” that determines how big of a step you take. Usually, you need to adjust η in order to get optimum performance on a dev set.
Finding the gradient

\[MSE = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2 \]

To find the gradient, we use the chain rule of calculus. Remember that \(\epsilon_i = wx_i + b - y_i \), and therefore

\[\nabla_w MSE = \frac{1}{n} \sum_{i=1}^{n} 2\epsilon_i \nabla_w \epsilon_i = \frac{2}{n} \sum_{i=1}^{n} \epsilon_i x_i \]
The iterative solution to linear regression

- Start from random initial values of w and b (at $t = 0$).
- Adjust w and b according to:

 \[
 w \leftarrow w - \eta \frac{1}{n} \sum_{i=1}^{n} \epsilon_i x_i \\
 b \leftarrow b - \eta \frac{1}{n} \sum_{i=1}^{n} \epsilon_i
 \]

\[
MSE = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2
\]
Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent
Stochastic gradient descent

• If \(n \) is large, computing or differentiating MSE can be expensive.
• The stochastic gradient descent algorithm picks one training token \((x_i, y_i)\) at random ("stochastically"), and adjusts \(w \) in order to reduce the error a little bit for that one token:

\[
w \leftarrow w - \eta \nabla_w \epsilon_i^2
\]

...where

\[
\epsilon_i^2 = (w @ x_i + b - y_i)^2
\]
Stochastic gradient descent

\[\epsilon_i^2 = (w@x_i + b - y_i)^2 \]

If we differentiate that, we discover that:

\[\nabla_w \epsilon_i^2 = 2 \epsilon_i x_i \]
\[\frac{\partial \epsilon_i^2}{\partial b} = 2 \epsilon_i \]

So the stochastic gradient descent algorithm is:

\[w \leftarrow w - \eta \epsilon_i x_i \]
\[b \leftarrow b - \eta \epsilon_i \]
The Stochastic Gradient Descent Algorithm

1. Choose a sample \((x_i, y_i)\) at random from the training data
2. Compute the error of this sample, \(\epsilon_i = w@x_i + b - y_i\)
3. Adjust \(w\) in the direction opposite the error:
 \[
 w \leftarrow w - \eta \epsilon_i x_i \\
 b \leftarrow b - \eta \epsilon_i
 \]
4. If the error is still too large, go to step 1. If the error is small enough, stop.
Today’s Quiz

• Go to https://us.prairielearn.com/pl/course_instance/129874/assessment/2329685, and try the quiz!
Video of SGD

https://upload.wikimedia.org/wikipedia/commons/5/57/Stochastic_Gradient_Descent.webm

In this video, the different colored dots are different, randomly chosen starting points.

Each step of SGD uses a randomly chosen training token, so the direction is a little random.

But after a while, it reaches the bottom of the parabola!
Summary

• Definition of linear regression
 \[f(x) = b + w@x \]

• Mean-squared error
 \[MSE = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2 \]

• Learning the solution: gradient descent
 \[w \leftarrow w - \frac{\eta}{n} \sum_{i=1}^{n} \epsilon_i x_i \]

• Learning the solution: stochastic gradient descent
 \[w \leftarrow w - \eta \epsilon_i x_i \]