

Valve Herotion

$$
\begin{aligned}
& U_{0}(s)=0 \\
& U_{i}(s)=R(s) \times \gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)()_{j-1}\left(s^{\prime}\right) \\
& 11,01-1
\end{aligned}
$$

$U_{1}(\delta)=K(s)$

$$
U_{2}((2,1))=-1
$$

$$
J_{2}(2,2)=+1
$$

$$
U_{2}(3,2)=-0.04+\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U_{1}\left(s^{\prime}\right)
$$

$$
=-\infty 4+\operatorname{mox}(\underbrace{-0,1,4}_{v_{1}(3,2)})
$$

$$
\underbrace{(0.8) \cdot 1 \times(0.2)(-0.04)}_{0.8 U_{1}(2,2) \times 0.2 U_{1}(3,2)}
$$

$U_{2}(3,1)=0$ IF MOVK TCSUARD WDLC
OR STAI HERE
DRF, DCLOUSD ACTIONS

$$
\begin{aligned}
& U_{2}(1,1)=-0.04+\max _{a}\left(\sum_{1}^{\prime} s^{\prime} p\left(s^{\prime}(s, a) U_{1}\left(s^{\prime}\right)\right)\right. \\
&=-0.04+(0.8)(-10.04)+(0.2)(-0.04) \\
& U_{2}(1,1)=-0.08) \\
& U_{2}(1,2)=-0.04+\max _{a} \times\left(\sum_{s^{\prime}} P\left(s^{\prime}(s, a) U_{1}\left(s^{\prime}\right)\right)\right. \\
& U_{2}(1,2) \\
&=-0.04+(0.8) \cdot 1+(0.2)(-0.04)
\end{aligned}
$$

(6) $2 n$ iteration $U_{2}(3,2)$ becomes positive

$$
\begin{aligned}
& \underbrace{(0.8) \cdot 0+(0.2)(-0.0(1))}_{0.8 U_{1}(3,1)+0.2()_{1}(3,2)} \\
& =-0.04+0.8+-0.0008=U_{2}(3,2) \\
& U_{2}(3,1)=0+\max _{\alpha}\left(\sum_{s^{\prime}} p\left(s^{\prime} \mid s, s^{a}\right) U_{1}\left(s^{\prime}\right)\right) \\
& =0+\sum_{s^{\prime}} P\left(s^{\prime} \mid s, s^{\prime}+\alpha^{\prime}\right) U_{1}\left(s^{\prime}\right)
\end{aligned}
$$

3 ${ }^{\text {d }}$ iter-tion:

$$
U_{z}(3,1)=R(3,1)+\max _{\sim}\left(\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U_{2}\left(s^{\prime}\right)\right)
$$

wHL cMoose $a=$ RMGHT
Z WILL OBTAIN POSITLE

$$
U_{3}(3,1)
$$

ALTERNATE Exilasnatlon
Ui(S) can In cluóe TOTAL revards for ifata of

$$
\text { i- } 1 \text { stires }
$$

Zshtortest PATH' from $(3,1)$
Tr PDS. inatalicio is 2 sTaps
$\Rightarrow U_{3}(s)$ CrN BE rasitue
Reonew ExAm (al8
\downharpoonleft

$$
a x+b y+c z=d, \quad y=g
$$

$a x+b_{y}+c z=e, y=g ए$
Pinitoce canera

$$
\begin{aligned}
& \frac{x^{\prime}}{f}=-\frac{x}{2}, \quad: \frac{y^{\prime}}{f}=-\frac{y}{2} \\
& y_{f}^{\prime}=-\frac{g}{2} \quad \lim _{z \rightarrow \infty} \frac{y^{\prime}}{f}=\lim _{z \rightarrow \infty}-\frac{9}{2}=0
\end{aligned}
$$

Vanisaing point $y^{\prime}=0$

$$
\begin{aligned}
\frac{x^{\prime}}{f} & =-\frac{x}{z}=-\left(\frac{d-b y-c z}{z}\right) / a \\
& =-(d-b g-c z) / a
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{z \rightarrow \infty} \frac{x^{\prime}}{f}=\lim _{z \rightarrow \infty}^{z}-\left(\frac{d-b g-c z}{z a}\right) \\
& =\frac{c}{a} \\
& x^{\prime}=\frac{c f}{a} \\
& \text { VANISHING PT }\left(x^{\prime}, j\right)=\left(\frac{c f}{a}, 0\right) \\
& \text { 1Cacanajuter pizobuzm। }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=\text { Velocitr } x \quad 1 \text { SECOND }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\mu_{x}=x \\
\sigma_{\lambda}^{2}=e^{2}
\end{array}\right\} \operatorname{soser} \text { jations } \\
& \left.\begin{array}{l}
\mu_{t \mid t}=y \\
\sigma_{t \mid t}^{2}=s^{2}
\end{array}\right\} \begin{array}{c}
\text { si ATE ESTAnATE } \\
\text { 12t } t
\end{array} \\
& \mu_{t+1(t}=\mu_{t(t} \perp \mu_{1,1}=y+v \\
& \sigma_{t+1 \mid t}^{2}=\sigma_{\left.t\right|_{t}}^{2}+\sigma_{\Delta}^{2}=s^{2}+p^{2} \\
& \sigma_{t+11}=\sqrt{s^{2}+p^{2}}
\end{aligned}
$$

REVEW ExAM ? B Q14

Q

Q.,$(2,10)=5$

$$
\begin{aligned}
& Q_{2}(s, a)=Q_{1}(s, 4)+10.05\left(\alpha 10.1-Q_{1}\right) \\
& Q_{2}(1, \omega)=0.05 \times 2 \\
& Q_{2}(2, p)=0.05 \times 5
\end{aligned}
$$

Jb

$$
\begin{aligned}
& P\left(s^{\prime} \mid s=2, a^{=}=\text {purr }\right) 1 \\
& -\int \frac{\text { thines }+k}{\text { Hrik }+k(\text { teoss })} \quad s^{\prime}=1
\end{aligned}
$$

$$
= \begin{cases}\frac{1+i m e s+k}{ \pm+r i d s+k(\text { toor })} & s^{\prime}=2 \\ \frac{0+1}{1+2} & s^{\prime}=1 \\ \frac{1+1}{1+2} & s^{\prime}=2\end{cases}
$$

14

$$
U^{\pi}(1)=p(1)+\gamma \sum_{s} p\left(s^{\prime}(1, p) U^{\pi}(1)\right.
$$

$$
=R(2)+\gamma \sum_{5} p_{1}\left(s^{\prime}(2, \omega) U^{T}(2)\right.
$$

$$
\begin{aligned}
& U^{\pi}(1)=2+\left(\frac{3}{4}\right)\left(\frac{2}{3} U^{\pi}(1)+\frac{1}{3} U^{\pi}(2)\right) \\
& U^{\pi}(2)=5+\left(\frac{3}{4}\right)\left(\frac{2}{3} U^{\pi}(1)+\frac{1}{3} U^{\pi}(2)\right)
\end{aligned}
$$

(d)

CRITK NEJWOKK: S., a

$$
\begin{aligned}
& S: 2^{p}, \angle: 2^{0}, \quad \text { INPOT }=49 \\
& \text { OUTPOT }=19 \\
& \text { ACTOR }=\text { PROBABLITY OMF CHOUSING } \\
& \text { ACTION }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { OUTPUT: } 2 D & \text { ('ACTINS) } \\
\text { INPUT: } 2 D & \text { ('STATE) }
\end{array}
$$

