\[p(\mathbf{x} = \text{comp}_m w_n) = b \]
\[= p(\mathbf{x} = \text{comp}_m R = 1) + p(\mathbf{x} = \text{comp}_m R = 0) \]
\[b = \alpha p + (1-\alpha) \frac{1}{m} \]
\[p = \frac{b - (1-\alpha)/m}{\alpha} \]

Optimization

\[W = [w_1, \ldots, w_m] \quad w_i \in \{0, \ldots, n-1\} \]

a) Exhaustive search

- \(m \) coefficients, each has \(n \) values
 \[\Rightarrow n^m \text{ possible } W \text{ vectors} \]
 \[\Rightarrow O(n^m) \]

b) Coordinate search \(W \) random restarts

For each restart:

 generate a random starting \(W \)

for each iteration:

 for each coordinate \(0 \leq i \leq m - 1 \):
 - find best possible value \(\hat{w}_i \) of \(w_i \)
 under condition that \(w_j \) fixed,
 Record \(\hat{L}_i = L((w_0,\ldots,w_{i-1},\hat{w}_i,\ldots,w_m)) \)

 Find \(\hat{w}_i = \text{argmin} \hat{L}_i \):

 \[W \leftarrow [w_0, \ldots, w_i, \hat{w}_i, \ldots, w_m] \]

Restarts: \(p \)

Iterations: \(q \)

Coordinates: \(m \)

Values: \(n \)

Total complexity: \(p q m n \quad O(p q m n) \)

Question: How large does \(p \) have to take to make

\[O(p q m n) = O(n^m) \]

\[p = \frac{n^m}{q m n} = \frac{n^{m-1}}{q m} \]