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Speech
(Slide: Scharenborg, 2017)

• Specific to humans

• Allows us to convey information very fast

• Central role in many other language-related processes

• One of the most complex skills humans perform:
• https://www.youtube.com/watch?v=DcNMCB-Gsn8

https://www.youtube.com/watch?v=DcNMCB-Gsn8


Evolution of the vocal tract
(Slide: Scharenborg, 2017)

• Lowering of the tongue into the pharynx à lowering of the larynx
• Lengthening of the neck
• At the cost of an increase in the risk of choking on food

• Neanderthals were not capable of human speech
• Modern human vocal tract: since 50,000 years



The anatomy and physiology of speech
(Slide: Scharenborg, 2017)

Vocal tract
• Area between vocal cords and lips
• Pharynx + nasal cavity 

+ oral cavity 

and lungs



3 steps to produce sounds
(Slide: Scharenborg, 2017)

step 3: articulation = 

distortion of air

à time-varying formant-frequency 

pattern

= speech

step 2: phonation

step 1: initiation

Source

Filter



The Source-Filter Model of Speech Production
(Chiba & Kajiyama, 1940)

• Sources: there are only three, all of them have wideband spectrum
• Voicing: vibration of the vocal folds, same type of aerodynamic mechanism as 

a flag flapping in the wind. 
• Frication or Aspiration: turbulence created when air passes through a narrow 

aperture
• Burst: the “pop” that occurs when high air pressure is suddenly released

• Filter: 
• Vocal tract = the air cavity between glottis and lips
• Just like a flute or a shower stall, it has resonances
• The excitation has energy at all frequencies; excitation at the resonant 

frequencies is enhanced



The Source-Filter Model of Speech Production
A picture from Martin Rothenberg’s website



The Source-Filter Model
• The speech signal, 𝑥 𝑡 , is created by convolving (∗) an excitation 

signal 𝑒 𝑡 through a vocal tract transfer function ℎ 𝑡
𝑥 𝑡 = ℎ 𝑡 ∗ 𝑒 𝑡

• The Fourier transform of speech is therefore the product of excitation 
times transfer function:

𝑋 𝑓 = 𝐻(𝑓)𝐸 𝑓
...engineers usually compute Fourier transform using Ω = 2𝜋𝑓 rather 
than 𝑓.  You can get one from the other if you remember that dΩ =
2𝜋 𝑑𝑓.
• Excitation includes all of the information about voicing, frication, or 

burst.  Transfer function includes all of the information about the 
vocal tract resonances, which are called “formants.”



Source-Filter Model: Voice Source
• The most important thing about voiced excitation is that it is periodic, with 

a period called the “pitch period,” 𝑇!
• It’s reasonable to model voiced excitation as a simple sequence of 

impulses, one impulse every 𝑇! seconds:

𝑒(𝑡) = &
!"#$

$

𝛿(𝑡 −𝑚𝑇%)

• The Fourier transform of an impulse train is an impulse train (to prove this: 
use Fourier series):

𝐸 𝑓 =
1
𝑇!

&
"#$%

%

𝛿(𝑓 − 𝑘𝐹!)

...where 𝐹! =
&
'&

is the pitch frequency.  It’s the number of times per second 
that the vocal folds slap together.



Source-Filter Model: Filter
• The vocal tract is just a tube.  At most frequencies, it just passes the 

excitation signal with no modification at all (𝐻 𝑓 = 1).
• The important exception: the vocal tract has resonances, like a 

clarinet or a shower stall. These resonances are called “formant 
frequencies,” numbered in order: 𝐹! < 𝐹" < 𝐹# < ⋯.  Typically
0 < 𝐹! < 1000 < 𝐹"< 2000 < 𝐹# < 3000Hz and so on, but there 
are some exceptions.
• At the resonant frequencies, the resonance enhances the energy of 

the excitation, so the transfer function 𝐻 𝑓 is large at those 
frequencies, and small at other frequencies.



Speech signal: Time domain

𝑻𝟎 =
𝟏
𝑭𝟎

=8ms 

𝑻𝟏 =
𝟏
𝑭𝟏

=2ms 

/k/ burst

/k/ aspiration

voicing



Speech signal: Magnitude Fourier Transform

𝑭𝟎 =spacing between 
adjacent pitch harmonics =
125Hz

𝑭𝟏 =freq of first peak =
500Hz Aliasing artifacts:

Spectra at 𝐹# − 𝑓 should really
be plotted at −𝑓 (negative
frequency components).  DFT
puts it at 𝐹# − 𝑓 instead.

𝑭𝟐 =freq of second peak = 1500Hz 

𝑭𝟑



Speech signal: Log Magnitude Transform

𝑭𝟎 =spacing between 
harmonics =125Hz

𝑭𝟏 =freq of first peak =
500Hz Aliasing artifacts:

Spectra at 𝐹# − 𝑓 should really
be plotted at −𝑓 (negative
frequency components).  DFT
puts it at 𝐹# − 𝑓 instead.

𝑭𝟐 =freq of second peak = 1500Hz 

𝑭𝟑



The Source-Filter Model
Transfer Function  log|H(f)|

Voice Source Spectrum log|E(f)|

Speech Spectrum log|S(f)|=log|H(f)|+log|E(f)|



Spectrogram: ln(energy(frequency,time))

bu t        o   nM o           n              d a       y      

Scharenborg, 2017

Spectrum lets you measure formants, so it gives some information about vowels.
Timing is important to know about consonants.
Spectrogram = time on the horizontal axis, frequency on vertical axis.
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What spectrum do people 
hear?  Basilar membrane



Inner ear



Basilar membrane 
of the cochlea = a 
bank of mechanical 
bandpass filters



Frequency scales for hearing: 
mel scale, ERB scale



How is a spectrogram created?
Short-Time Fourier Transform (STFT)
1. Chop up the speech signal, 𝑥[𝑛], into frames, 𝑥)[𝑛]

• For example, 25ms duration, starting once every 10ms
• 𝑡 =frame index, 𝑛 =sample index

2. Compute the Fourier transform of every frame
• Calculate the energy in each frequency band, like human ear
• 𝑋$ 𝑘 = ∑%&'()* 𝑥$[𝑛]𝑒)+,-.%/(

3. Optional: combine into mel-scale filterbank coefficients
4. Calculate the log magnitude in each frequency band

• 𝑆$ 𝑘 = log 𝑋$ 𝑘
• Simulate the ear’s relative insensitivity to phase
• Allows the neural net to have real-valued inputs, instead of complex



Critical bands
• When two tones play at exactly the same

frequency, users can’t tell the difference 
between x(t) versus x(t)+y(t) if y(t) is about 
14dB below x(t)  (in other words, the summed 
power is 1.03 times the power of x(t) alone)
• When x(t) and y(t) are at different frequencies, 

the masking power of x(t) is reduced
• Model: assume that the reduced masking 

power of x(t) is caused because x(t) is coming 
in through the tails of the bandpass filter 
centered at y(t).



Mel-scale

• The experiment:
• Play tones A, B, C
• Let the user adjust tone D until pitch(D)-pitch(C) sounds the same as pitch(B)-

pitch(A)

• Analysis: create a frequency scale m(f) such that m(D)-m(C) = m(B)-
m(A)

• Result: 𝑚 𝑓 = !
"*+*

log!, 1 + -
.,,



ERB scale
• The experiment: find out the widths, B(f), 

of the critical-band filters centered at every 
frequency f.
• Analysis: create a scale 𝑒(𝑓) such that 
𝑒(𝑓 + 0.5𝐵(𝑓)) – 𝑒(𝑓 − 0.5𝐵(𝑓)) = 1, 
for all frequencies
• Result: e 𝑓 = 21.4 log!, 1 + 0.00437𝑓



Mel filterbank coefficients: convert the spectrum 
from Hertz-frequency to mel-frequency
• Goal: instead of computing

𝐶(," = ln 𝑋( 𝑘
We want

𝐶(,* = ln 𝑆 𝑓*
Where the frequencies 𝑓* are uniformly spaced on a mel-scale, i.e., 
m 𝑓"+& −m(𝑓") is a constant across all k.
The problem with that idea: we don’t want to just sample the spectrum.  We 
want to summarize everything that’s happening within a frequency band.



Mel filterbank coefficients: convert the spectrum 
from Hertz-frequency to mel-frequency
The solution:

𝐶),0 = ln∑12,
0
13!𝑊0(𝑘) 𝑋) 𝑘

…where the 𝑊0(𝑘) are filters approximately one ERB wide.  They could 
be shaped to exactly match the shapes of human auditory filters, but 
usually we approximate that shape using triangular filters.



Mel filterbank coefficients: convert the spectrum 
from Hertz-frequency to mel-frequency
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Linguistic units

• Speech signal

Linguistic units are:

• Phone(me)s

• Words

Scharenborg, 2017



Linguistic units
• Speech = sound

• Sound = differences in air pressure

• Air pressure waves perceived as different phone(me)s, phone(me) 
sequences, and (partial or multi) words

• Via eardrum, cochlea, and auditory nerve to brain

speech signal

Scharenborg, 2017



Some terminology
• Phoneme: the smallest contrastive linguistic unit that distinguishes meaning, e.g.,    

tip vs. dip

• Allophone: a variation of a phoneme, eg.,           phot vs. spot

• Phone: a distinct speech sound

• Word: the smallest distinct unit that can be uttered in isolation which has meaning

Scharenborg, 2017



Speech sounds
• Vowels: unblocked air stream

• Consonants: constricted or blocked air stream

Scharenborg, 2017



Different sounds: Vowels
• Tongue height:
– Low: e.g., /a/
– Mid: e.g., /e/
– High: e.g., /i/

• Tongue advancement:
– Front : e.g., /i/
– Central : e.g., /ə/
– Back : e.g., /u/

• Lip rounding:
– Unrounded: e.g., /ɪ, ɛ, e, ǝ/
– Rounded: e.g.,  /u, o, ɔ/

• Tense/lax:
– Tense: e.g., /i, e, u, o, ɔ, ɑ/
– Lax: e.g., /ɪ, ɛ, æ, ə/

Scharenborg, 2017

heed

hid

hayed
head

had

hod

hawed

hoed

hood
who’d



Different sounds: Vowels
• Tongue height:
– Low: e.g., /a/
– Mid: e.g., /e/
– High: e.g., /i/

• Tongue advancement:
– Front : e.g., /i/
– Central : e.g., /ə/
– Back : e.g., /u/

• Lip rounding:
– Unrounded: e.g., /ɪ, ɛ, e, ǝ/
– Rounded: e.g.,  /u, o, ɔ/

• Tense/lax:
– Tense: e.g., /i, e, u, o, ɔ, ɑ/
– Lax: e.g., /ɪ, ɛ, æ, ə/

Scharenborg, 2017

heed

hid

hayed
head

had

hod

hawed

hoed

hood
who’d
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Different sounds: Consonants
• Place of articulation
– Where is the constriction/blocking of the air stream?

• Manner of articulation
– Stops: /p, t, k, b, d, g/
– Fricatives: /f, s, S, v, z, Z/
– Affricates: /tS, dZ/
– Approximants/Liquids: /l, r, w, j/
– Nasals: /m, n, ng/

• Voicing

Scharenborg, 2017



• https://www.youtube.com/watch?v=DcNMCB-Gsn8

Recorded in 1962, Ken Stevens
Source: YouTube

Speech sound production
Scharenborg, 2017



Quiz 1: How many words are there?
Each picture shows a waveform of a short stretch of speech:

C

D

A: Electromagnetically (1)
B: Emma loves her mum’s yellow marmelade (6)
C: See you in the evening (5)
D: Attachment (1)

Scharenborg, 2017



Electromagnetically
Why is it so hard to determine the number of words?

/i l ɛ  kt romæ g nɛ t ɪ k ǝ l i/
silence ≠ word boundary

Scharenborg, 2017



• Below are three waveforms each containing a single word:

Every time you produce a word it sounds differently

Quiz 2: Can you spot the odd one out? 

A3 (brother, brother, mother)

Scharenborg, 2017



Enormous variability
• Speaker differences, e.g., gender, vocal tract length, age

• Speaker idiosyncracies , e.g., lisp, creaky voice

• Accent: dialects, non-nativeness

• Coarticulation: production of a speech sound becomes 
more like that of a preceding/following speech sound

• Speaking style à reductions

Scharenborg, 2017
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Speech Technologies
• speech → text or data

• Automatic speech recognition (ASR: speech → text)
• Speaker verification or identification
• Emotion recognition
• Speaker attribute recognition (drunk, sleepy, …)
• Intent recognition (speech → meaning)

• text or data → speech
• Text-to-speech (TTS) synthesis 
• Speech enhancement, source separation
• Voice conversion
• Image-to-speech (automatic spoken captioning of images)



ASR using spectrograms

STFT

LSTM, 
Transformer, 
or Conformer 

Neural Net

---cc--aaa-----t---

During training: NN loss 
calculated using an HMM 
(connectionist temporal 

classification)



How is the neural net trained?
Connectionist Temporal Classification (CTC)

• Problem: the LSTM softmax layer outputs a vector of 
probabilities, once per 10ms:
𝑦4 𝑡 = 𝑃 character = 𝑐|𝑥) 𝑛 and its LSTM context
• This is a problem because text has far fewer characters
• Solution: use an HMM to convert the LSTM output 

probabilities into the total probability of the correct 
transcript ℓ, then train the LSTM to maximize that 
probability

ℒ = − ln𝑃 ℓ|𝑥[𝑛] = − ln b
ℓ2677(9)

c
)2!

;

𝑦92 𝑡

HMM trellis used to discover that the 
neural network output: 

𝜋 = ---cc--aaa-----t---
…is a valid spelling of the word:

ℓ = cat

Graves et al., ICML 2006, “Connectionist 
Temporal Classification…”



ASR using 1-D Convolutional Neural Net

1D CNN with 
trainable filters 
instead of the 

STFT

LSTM, 
Transformer, 
or Conformer 

Neural Net

---cc--aaa-----t---

During training: NN loss 
calculated using an HMM 
(connectionist temporal 

classification)
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TTS using spectrograms

Griffin-Lim 
Algorithm

LSTM or 
Transformer 
Neural Net

Training:
MSE loss

cat 1-hot 
embeddings

0
0
1
0
,
0
1
0
0
,
0
0
0
1

Training data: correct 
spectrogram for this word



Griffin-Lim Algorithm
• Problem: synthesized spectrogram might not have a valid inverse STFT
• Solution: Among all complex 𝑋) 𝑘 that have the desired 𝐴) 𝑘 = 𝑋) 𝑘 , 

choose the one that is closest to a valid STFT

• Resulting algorithm: choose an initial 𝑋)
[,] = 𝐴) 𝑘 𝑒>?2,4 with random 

phases 𝜑),1, then iterate the following two steps:
1. Modify it so it has a valid inverse STFT:   3𝑋$

[6][𝑘] = 𝐺𝐺8𝑋$
6 [𝑘], where 𝐺 is a matrix 

that computes the vectorized STFT of a waveform, and 𝐺8 is its pseudo-inverse

2. Modify it so it has the right amplitudes: 𝑋$
[69*] 𝑘 = 𝐴$ 𝑘

:;!
[#][.]
:;!
[#][.]



TTS using 1-D Convolutions

Inverse 1D 
CNN with 
trainable 
weights

LSTM or 
Transformer 
Neural Net

Training:
Measure 

difference in 
some way 
(usually 

uses STFT + 
other 

things)

cat 1-hot 
embeddings

0
0
1
0
,
0
1
0
0
,
0
0
0
1

Training data: correct waveform for this word

1D CNN filterbank
representation



Outline
• Speech Production: Source-Filter Model

𝑋(𝑓) = 𝐻(𝑓)𝐸(𝑓)
• Speech Perception: STFT

𝑋$ 𝑘 = :
%&'

()*

𝑥$[𝑛]𝑒)+,-.%/(

• Phonemes: Vowels and Consonants
• Automatic Speech Recognition: CTC

ℒ = − ln 𝑃 ℓ|𝑥[𝑛] = − ln :
ℓ&=>>(-)

@
$&*

A

𝑦-! 𝑡

• Text-to-Speech Synthesis: Griffin-Lim

3𝑋$
[6] 𝑘 = 𝐺𝐺8𝑋$

6 𝑘 , 𝑋$
[69*] 𝑘 = 𝐴$ 𝑘

3𝑋$
[6][𝑘]
3𝑋$
[6][𝑘]


