
Lecture 36:
Actor-critic deep
reinforcement

learning
The Critic, by Lajos Tihanyi.

Oil on canvas, 1916.
Public Domain,

https://commons.wikimedia.or
g/w/index.php?curid=178374

38

Actors from the Comédie Française, by Antoine
Watteau, 1720. Public Domain,

https://commons.wikimedia.org/w/index.php?curi
d=15418670

CC-BY 4.0: copy at will, but cite
the source

Mark Hasegawa-Johnson
April 2022

Outline

• Two approaches to solving an MDP
• Two approaches to deep reinforcement learning
• Combining the two, in order to solve the problems with

either

Solving an MDP
Remember that, if you know 𝑃(𝑠’|𝑠, 𝑎), you can solve for the
optimum policy 𝜋(𝑠). This is done by solving Bellman’s equation:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
!
2
"!
𝑃 𝑠# 𝑠, 𝑎 𝑈 𝑠′ ∀𝑠, 𝑠′

• Bellman’s equation is N nonlinear equations in N unknowns (N is
the number of states). In general, the only way to solve it is by
exhaustively testing every possible policy (𝑂 𝑑$ computations
where d is the number of possible actions).

Two approaches to solving an MDP

We’ve learned two practical algorithms for solving an MDP:
1. Value Iteration: focuses on finding 𝑈(𝑠)
2. Policy Iteration: focus on finding 𝜋(𝑠)

Two approaches to solving an MDP

Value Iteration: focuses on finding 𝑈(𝑠)
– Initialize with the value of a length-0 path: 𝑈% 𝑠 = 0
– Iterate by finding the best value of a length-t path:

𝑈& 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈((")

2
"#

𝑃(𝑠#|𝑠, 𝑎)𝑈&+,(𝑠)

Value Iteration 𝑈" 𝑠 = 𝑅 𝑠 + 𝛾max
#

*
$%

𝑃 𝑠% 𝑠, 𝑎 𝑈& 𝑠′

−0.04−0.04−0.04

−0.04 −0.04

−0.04−0.04−0.04−0.04

𝑈!(𝑠)

−0.04−0.04+0.06

−0.04 −0.14

−0.04−0.04−0.04−0.81

!
!"

𝑃 𝑠" 𝑠, up 𝑈# 𝑠′

−0.04−0.04+0.79

−0.04 −0.81

−0.04−0.04−0.04−0.14

!
!"

𝑃 𝑠" 𝑠, right 𝑈# 𝑠′

−0.04−0.04+0.06

−0.04 −0.14

−0.04−0.04−0.04−0.04

-
!"

𝑃 𝑠" 𝑠, down 𝑈# 𝑠′

−0.04−0.04−0.04

−0.04 −0.04

−0.04−0.04−0.04−0.14

-
!"

𝑃 𝑠" 𝑠, left 𝑈# 𝑠′

−0.08−0.08+0.75

−0.08 −0.08

−0.08−0.08−0.08−0.08

𝑈! 𝑠 (𝛾 = 1)

Value iteration
Optimal utilities with discount factor 1
(Result of value iteration)

Final policy

Two approaches to solving an MDP

Policy Iteration: focus on finding 𝜋(𝑠)
– Initialize with a completely arbitrary initial policy, e.g.:

𝜋% 𝑠 = Left
– Iterate:

• Policy evaluation: find out the value of each state under current policy:

𝑈' 𝑠 = 𝑅 𝑠 + 𝛾*
$$
𝑃 𝑠% 𝑠, 𝜋 𝑠 𝑈' 𝑠′

• Policy improvement: change the action, in each state, to improve
value:

𝜋 𝑠 = argmax
#∈)($)

*
$$
𝑃 𝑠% 𝑠, 𝑎 𝑈' 𝑠

1. Policy Evaluation: → → →

→ →

→ → → →

𝜋! 𝑠 :

𝑈,!(𝑠) = 𝑅 𝑠 + 𝛾*
-.

𝑃 𝑠. 𝑠, 𝜋/(𝑠) 𝑈,! 𝑠′

+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑈"; # 𝑠 :

𝑈$!(1)
⋮

𝑈$!(𝑁)
=

𝑅 (1)
⋮

𝑅 (𝑁)
+ 𝛾

𝑃(1|1, 𝜋 1) ⋯ 𝑃(𝑁|1, 𝜋 𝑁)
⋮ ⋱ ⋮

𝑃(1|𝑁, 𝜋 1) ⋯ 𝑃(𝑁|𝑁, 𝜋 𝑁)

𝑈$!(1)
⋮

𝑈$!(𝑁)

…write it in matrix form:

…and solve it:

2. Policy Improvement: → → →

→ →

→ → → →

𝜋! 𝑠 :

𝑈,!(𝑠) = 𝑅 𝑠 + 𝛾*
-.

𝑃 𝑠. 𝑠, 𝜋/(𝑠) 𝑈,! 𝑠′

+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑈"; # 𝑠 :

𝜋0(𝑠) = argmax
1

*
-.

𝑃 𝑠. 𝑠, 𝜋/(𝑠) 𝑈,! 𝑠′

→ → →

↑ ↑

↑ → ↑ ↑

𝜋!(𝑠)

Outline

• Two approaches to solving an MDP
• Two approaches to deep reinforcement learning
• Combining the two, in order to solve the problems with

either

Two approaches to deep reinforcement
learning

• Deep Q learning: train a network to estimate Q(s,a)
– Like value iteration: we focus on Q(s,a), which is closely related

to U(s)
– Big problem: Q(s,a) is very noisy, needs lots of smoothing

• Imitation learning: train a network to imitate a human
being
– Like policy iteration: focus directly on estimating 𝜋(𝑠)
– Big problem: the only way to train this is by imitating a human!

Deep Q learning
Train the neural network weights in order to
minimize the mean-squared error:

ℒ =
1
2
𝐸 𝑓 𝑠, �⃗� − 𝑄,-.#, (𝑠, �⃗�) "

𝑄,-.#, (𝑠, �⃗�) is the estimated value of the
current action:

𝑄,-.#,(𝑠/ , �⃗�/) = 𝑅/(𝑠/) + 𝛾 max
#%

𝑓 𝑠/0&, �⃗�′

𝑎0 … 𝑎2 1

𝑓 𝑠, �⃗�

1

1

𝑠0 … 𝑠3

1

1

Imitation Learning

If we have |𝐴| possible, actions, 1 ≤ 𝑎 ≤ |𝐴|, we could train
the network to learn a hidden layer ℎ(𝑠) so that:

𝜋D 𝑠 =
exp 𝑤DEℎ(𝑠)

∑FGH
|J| exp 𝑤FEℎ(𝑠)

= 𝑃 𝐴 = 𝑎|𝑆 = 𝑠

Meaning “the probability that the best action is a.”

Two approaches to deep reinforcement
learning

• Deep Q learning: train a network to estimate Q(s,a)
– Like value iteration: we focus on Q(s,a), which is closely related

to U(s)
– Big problem: Q(s,a) is very noisy, needs lots of smoothing

• Imitation learning: train a network to imitate a human
being
– Like policy iteration: focus directly on estimating 𝜋(𝑠)
– Big problem: the only way to train this is by imitating a human!

Outline

• Two approaches to solving an MDP
• Two approaches to deep reinforcement learning
• Combining the two, in order to solve the problems with

either

The Actor-Critic Algorithm

• Deep Q-learning gives us a network Q(s,a) which is very
noisy, so we don’t really want to trust it

• A policy network can directly estimate 𝜋(𝑠). The only
problem is that we have no way to train it, unless we
imitate human behavior.

Actor-critic
algorithm

So let’s train two neural nets!
• 𝑄4 𝑠, 𝑎 is the critic, and is

trained according to the
deep Q-learning algorithm
(MMSE).

• 𝜋! 𝑠 is the actor, and is
trained to satisfy the critic

The Critic, by Lajos Tihanyi.
Oil on canvas, 1916.

Public Domain,
https://commons.wikimedia.or
g/w/index.php?curid=178374

38

Actors from the Comédie Française, by Antoine
Watteau, 1720. Public Domain,

https://commons.wikimedia.org/w/index.php?curi
d=15418670

The Actor-Critic Algorithm

Main idea:
• The actor is a policy network that decides what action to

perform:
𝜋D 𝑠 = Probability that 𝑎 is the best action in state 𝑠

• The critic is a deep Q-learning network that estimates the
quality of that action (𝑄(𝑠, 𝑎)).

𝑄 𝑠, 𝑎 = Expected sum of future rewards if (𝑠, 𝑎)
• The critic is noisy, so they don’t get to decide the action.

Instead, we only use the critic to help us to train the actor.

The Actor-Critic Algorithm

𝜋D 𝑠 = Probability that 𝑎 is the best action in state 𝑠
𝑄 𝑠, 𝑎 = Expected sum of future rewards if (𝑠, 𝑎)

• The critic is noisy, so they don’t get to decide the action.
Instead, we only use the critic to help us to train the actor.

ℒ = −:
D

𝜋D(𝑠)𝑄(𝑠, 𝑎)

• The training loss = negative expected sum of future
rewards given action 𝑎, averaged over the probability with
which the actor chooses action 𝑎.

The Actor-Critic Algorithm: Forward-Prop

Actor 𝜋! 𝑠 = 𝑃(𝑎|𝑠)𝑠

Critic 𝑄"(𝑠, 𝑎)𝑠

The Actor-Critic Algorithm: Back-Prop

Actor 𝜋! 𝑠𝑠

Critic 𝑄&(𝑠, 𝑎)
𝑠

ℒ!G&HI = −2
!

𝜋!(𝑠)𝑄&(𝑠, 𝑎)

ℒGIJ&JG =
1
2 𝑄& 𝑠, �⃗� − 𝑄KHG!K (𝑠, �⃗�) L

Asynchronous advantage
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

TORCS car racing simulation video

https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Overview: All of the Model-Free Reinforcement
Learning Algorithms You’ve Learned

• Policy learning: learn 𝜋 𝑠 directly
– Imitation learning

• Q-learning: learn 𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾∑KL𝑃 𝑠L 𝑠, 𝑎 𝑈(𝑠L)
– Table-based: TD, SARSA
– Deep Q-learning

• Actor-Critic: learn both

