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Outline

« Two approaches to solving an MDP
« Two approaches to deep reinforcement learning

« Combining the two, in order to solve the problems with
either



Solving an MDP

Remember that, if you know P(s’|s, a), you can solve for the
optimum policy (s). This is done by solving Bellman’s equation:

U(s) = R(s) + ymcellxz P(s'|s,a)U(s’) Vs,s'

« Bellman’s equation is N nonlinear equations in N unknowns (N is
the number of states). In general, the only way to solve it is by
exhaustively testing every possible policy (0{d"} computations
where d is the number of possible actions).



Two approaches to solving an MDP

We've learned two practical algorithms for solving an MDP:
1. Value lteration: focuses on finding U(s)
2. Policy lteration: focus on finding m(s)



Two approaches to solving an MDP

Value lteration: focuses on finding U(s)
— Initialize with the value of a length-0 path: U,(s) =0
— lterate by finding the best value of a length-t path:

U:(s) = R(s) + y max ZP(S |5, a)Us_1(5)

acA(s)



Value lteration

U, r=1)

U,(s) = R(s) + ymaztixz P(s'|s,a)U,(s")
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Value iteration

Optimal utilities with discount factor 1
(Result of value iteration)
0.812 0.868 0.918 + 1
0.762 0.660 —1
0.705 0.655 0.611 0.388
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Two approaches to solving an MDP

Policy Iteration: focus on finding m(s)
— Initialize with a completely arbitrary initial policy, e.g.:
mo(s) = Left
— lterate:
Policy evaluation: find out the value of each state under current policy:

UT(s) = R(s) +7 ) P(s'ls m(sHU™(s")

Policy improvement: change the action, in each state, to improve
value:

(s)= argmaxz P(s'|s,a)U™(s)

a€cA(s)



1. Policy Evaluation:

To(S):

Umo(s) = R(s) +y ) P(s'ls, mo(s)U™(s)

...write it in matrix form:

U (1)

U™ (N)

R (1)

R (V)

Ty

PAILR()) - PIN|La(N))][U™ (D)
PAIN, (1)) ~ PNIN,z0) Lo
...and solve it: U™ (s):

+0.50 +0.69 +0.74

—1.40 —1.44—-1.39

—1.40




2. Policy Improvement: 7o(S):

Umo(s) = R(s) +y ) P(s'ls, mo(s)U™(s)

m.(s) = argmaxz P(s'|s, my(s))U™(s")

11 (S)

T & Umo) (s):
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Two approaches to deep reinforcement

learning

* Deep Q learning: train a network to estimate Q(s,a)

— Like value iteration: we focus on Q(s,a), which is closely related
to U(s)

— Big problem: Q(s,a) is very noisy, needs lots of smoothing
 Imitation learning: train a network to imitate a human

being

— Like policy iteration: focus directly on estimating rz(s)

— Big problem: the only way to train this is by imitating a human!



Deep Q learning

Train the neural network weights in order to
minimize the mean-squared error:

1
L = EE[(f(gi C_i) o Qlocal (§' C_i) )2]

Qocar (5, @) is the estimated value of the M

current action:

Quoca e @) = Re(3e) + ¥ max f Gean, @) >E]



Imitation Learning

If we have |A| possible, actions, 1 < a < |A4]|, we could train
the network to learn a hidden layer h(s) so that:

exp(Wg h(s))
}l,lel exp(w{ h(s))

m,(s) = =P(A =al|S =5)

Meaning “the probability that the best action is a.”



Two approaches to deep reinforcement

learning

* Deep Q learning: train a network to estimate Q(s,a)

— Like value iteration: we focus on Q(s,a), which is closely related
to U(s)

— Big problem: Q(s,a) is very noisy, needs lots of smoothing
 Imitation learning: train a network to imitate a human

being

— Like policy iteration: focus directly on estimating rz(s)

— Big problem: the only way to train this is by imitating a human!
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The Actor-Critic Algorithm

« Deep Q-learning gives us a network Q(s,a) which is very
noisy, so we don't really want to trust it

* A policy network can directly estimate (s). The only
problem is that we have no way to train it, unless we
Imitate human behavior.



Actor-critic
algorithm

So let’s train two neural nets!
e Q:(s,a) is the critic, and is
trained according to the
deep Q-learning algorithm

(MMSE).
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The Actor-Critic Algorithm

Main idea:

* The actor is a policy network that decides what action to
perform:

m,(s) = Probability that a is the best action in state s

* The critic is a deep Q-learning network that estimates the
quality of that action (Q(s, a)).

Q(s,a) = Expected sum of future rewards if (s, a)

* The critic is noisy, so they don't get to decide the action.
Instead, we only use the critic to help us to train the actor.




The Actor-Critic Algorithm

m,(s) = Probability that a is the best action in state s
Q(s,a) = Expected sum of future rewards if (s,a)

* The critic is noisy, so they don't get to decide the action.
Instead, we only use the critic to help us to train the actor.

L==) 1a(5)Q(s,0)
a
* The training loss = negative expected sum of future
rewards given action a, averaged over the probability with
which the actor chooses action a.



The Actor-Critic Algorithm: Forward-Prop

g Actor m,(s) = P(als)

Critic pue S,a
- Qc(s,@)



The Actor-Critic Algorithm: Back-Prop

Nl g Actor To(s) mum  mmm — ¥
m wmm Loctor = _Zna(s)Qt(sl a)
z A
l

+(S,q) w— ——I
¢ —p = (; (s, Q) T
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w—Lcritic = E (Q:(S,a) — Qroca (s,a) )2



Asynchronous advantage
actor-critic (A3C

TORCS car racing simulation video

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016



https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Overview: All of the Model-Free Reinforcement
Learning Algorithms You've Learned

 Policy learning: learn mt(s) directly
— Imitation learning

* Q-learning: learn Q(s,a) = R(s) + vy Y., P(s'|s,a)U(s")
— Table-based: TD, SARSA
— Deep Q-learning

 Actor-Critic: learn both



