
Deep
Reinforcement

Learning

CS440/ECE448
Lecture 35

Mark Hasegawa-Johnson, 4/2022
CC-BY 4.0: you may remix or redistribute if
you cite the source

Image: Megajuice, CC0,
https://commons.wikimedia.org/

w/index.php?curid=57895741

https://commons.wikimedia.org/

Review: Reinforcement Learning

• Markov Decision Process (MDP): Given P(s’|s,a) and R(s),
you can solve for 𝜋∗(𝑠), the optimal policy, by finding U(s),
the value of each state, using either value iteration or
policy iteration.

• Model-Based Reinforcement Learning: If P(s’|s,a) and
R(s) are unknown, you can find for 𝜋(𝑠) by using the
observation-model-policy loop.

• Model-Free Reinforcement Learning: Instead of learning
P(s’|s,a) and then calculating 𝜋(𝑠), we can directly find the
optimum action by learning Q(s,a).

Outline

• Imitation learning: learn the optimal policy by imitating a
human

• Deep Q learning: compute Q(s,a) using a neural network

Policy Learning

Why can’t we just learn a model (neural net, or even a table
lookup) that does this:

Model 𝑎 = 𝜋(𝑠)𝑠

Probabilistic Policy

If we have |𝐴| possible, actions, 1 ≤ 𝑎 ≤ |𝐴|, we could train
the network to learn a hidden layer ℎ(𝑠) so that:

𝜋! 𝑠 =
exp 𝑤!"ℎ(𝑠)

∑#$%
|'| exp 𝑤#"ℎ(𝑠)

= 𝑃 𝐴 = 𝑎|𝑆 = 𝑠

Meaning “the probability that the best action is a.”

How do we train it?

• Training data only give us 𝑠(, 𝑎(, 𝑠(), 𝑅(.
• BAD IDEA: train the network to choose
A = 𝑎! that maximizes the immediate
reward, 𝑅!, and just ignore future
rewards.

• GOOD IDEA: Train the network to
maximize 𝑈 𝑠!" = sum of all future
rewards.

• PROBLEM: we don’t know 𝑈 𝑠() .

𝑠", 𝑎", 𝑠"# , 𝑅"
𝑠$, 𝑎$, 𝑠$# , 𝑅$
𝑠%, 𝑎%, 𝑠%# , 𝑅%
𝑠&, 𝑎&, 𝑠&# , 𝑅&
𝑠', 𝑎', 𝑠'# , 𝑅'

⋮

How to make Policy Learning trainable

1. Actor-Critic RL. We’ll come back to this next time.
2. Imitation learning.

Imitation learning

• In some applications, you cannot bootstrap
yourself from random policies
– High-dimensional state and action spaces where

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world,

especially in cases of failure
• Solution: learn to imitate sample trajectories or

demonstrations
– This is also helpful when there is no natural reward

formulation

Imitation learning

• 𝑠* = a representation of the state of the environment at
time t (can be a real-valued vector)

• 𝑎*= the action that a human actor performed in response
to this state (must be discrete)

• 𝑓# 𝑠* = 𝑘*+ element in the softmax output of a neural
network, given 𝑠* as the input

• Training criterion: train the neural network in order to
minimize

ℒ = − log 𝑓!# 𝑠*

Overview of imitation learning methods

Hussein et al. Imitation Learning: A Survey of Learning Methods, 2018.

Methods differ in:
• Feature representation: raw

pixels/joint angles, or have you
already used some other method
to learn a deep feature
representation?

• Training criterion: classification
(discrete actions), or regression
(continuous actions)?

https://dl.acm.org/doi/abs/10.1145/3054912?casa_token=ncsnlHnKn7kAAAAA:mSlkKdc2HTg8BMnGGo3g9yncEeGTRc3q6eRC4fEopc1M6QAwdiuS2vAowztAhHh7dHMxEwlO77U

Example: Coarse-to-Fine Imitation Learning

Edward Johns, Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration, 2021.

https://www.youtube.com/watch?v=4JxQ81NqOIM

Outline

• Imitation learning: learn the optimal policy by imitating a
human

• Deep Q learning: compute Q(s,a) using a neural network

Review: Q-Learning
• Q(s,a) – the “quality” of an action

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾4
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈(𝑠) = max
#∈%(!)

𝑄(𝑠, 𝑎)

• Q-learning
• Off-policy learning: TD

𝑄()*#(𝑠+ , 𝑎+ = 𝑅+(𝑠+) + 𝛾 max
#"∈%(!!"#)

𝑄+(𝑠+,-, 𝑎′)

𝑄+,- 𝑠+ , 𝑎+ = 𝑄+ 𝑠+ , 𝑎+ + 𝛼 𝑄()*#(𝑠+ , 𝑎+ − 𝑄+ 𝑠+ , 𝑎+
• On-policy learning: SARSA

𝑎+,- = 𝜋+(𝑠+,-)
𝑄()*#(𝑠+ , 𝑎+ = 𝑅+(𝑠+) + 𝛾𝑄+(𝑠+,-, 𝑎+,-)

Deep Q learning
Instead of discrete 𝑠, suppose 𝑠
is a vector of real numbers, e.g.,
the image from the robot’s eye
camera:

𝑠 = 𝑠$, … , 𝑠% =
Instead of discrete 𝑎, suppose �⃗�
is a vector, e.g., cannon angle
and velocity,

�⃗� = 𝑎$, … , 𝑎&
Deep Q-learning uses a neural
network to compute an estimate
𝑓(𝑠, �⃗�) which is as close as
possible to 𝑄(𝑠, �⃗�). 𝑎$ … 𝑎& 1

𝑓(𝑠, �⃗�)

1

1

𝑠$ … 𝑠%

1

1
Copyright Taito.

MMSE Deep Q learning
Suppose we train the neural network
weights in order to minimize the mean-
squared error (MMSE):

ℒ =
1
2𝐸 𝑓 𝑠, �⃗� − 𝑄(𝑠, �⃗�) '

(where I’m using 𝐸 6 as a lazy way to
write “average over all training runs of the
game”).
Then, for each weight 𝑤, we update as

𝑤 ← 𝑤 − 𝜂
𝑑ℒ
𝑑𝑤

𝑎$ … 𝑎& 1

𝑓 𝑠, �⃗�

1

1

𝑠$ … 𝑠%

1

1

What makes deep Q learning harder than
normal neural network training

• We don’t know the true value of
𝑄(𝑠, �⃗�) for any of the training runs!

• 𝑄 𝑠, �⃗� is defined to be the expected
value of performing action �⃗�. We
never know its true expected value: all
we know is whether we won or lost
that particular game.

• So we can’t compute ℒ, and we can’t
compute (ℒ

(*
, and we can’t update 𝑤! 𝑎$ … 𝑎& 1

𝑓 𝑠, �⃗�

1

1

𝑠$ … 𝑠%

1

1

The solution: 𝑄>?@A>
Remember that Q learning was defined as

𝑄+,- 𝑠+ , 𝑎+
= 𝑄+ 𝑠+ , 𝑎+ + 𝛼 𝑄()*#(𝑠+ , 𝑎+ − 𝑄+ 𝑠+ , 𝑎+

where 𝑄()*#(𝑠+ , 𝑎+ is defined, e.g., in TD as

𝑄()*#(𝑠+ , 𝑎+ = 𝑅+(𝑠+) + 𝛾 max
#"

𝑄+(𝑠+,-, 𝑎′)

…for 𝑠+,- equal to the next state we reach after
action 𝑎+ on this particular game.

The solution: 𝑄>?@A>
Let’s define deep Q learning using the same
𝑄()*#(:

ℒ =
1
2
𝐸 𝑓 𝑠+ , �⃗�+ − 𝑄()*#((𝑠+ , �⃗�+) .

where 𝑄()*#((𝑠+ , �⃗�+) is:
𝑄()*#((𝑠+ , �⃗�+) = 𝑅+(𝑠+) + 𝛾 max

#"
𝑓 𝑠+,-, �⃗�′

Now we have an L that depends only on things
we know (𝑓 𝑠+ , �⃗�+ , 𝑅+(𝑠+), and 𝑓 𝑠+,-, �⃗�′), so it
can be calculated, differentiated, and used to
update the neural network.

Dealing with training instability
• Challenges

– Target values are not fixed
– Successive experiences are correlated and dependent on the policy
– Policy may change rapidly with slight changes to parameters, leading to

drastic change in data distribution
• Solutions

– Freeze target Q network
– Use experience replay

Experience replay
• At each time step:

– Take action �⃗�+ according to epsilon-greedy policy
– Store experience (𝑠+ , �⃗�+ , 𝑟+,-, 𝑠+,-) in replay memory buffer

(𝑠$, �⃗�$, 𝑟', 𝑠')
(𝑠', �⃗�', 𝑟+, 𝑠+)

…
(𝑠,, �⃗�,, 𝑟,-$, 𝑠,-$)

• Learning:
– Randomly sample a

minibatch, 𝒟, from the replay
buffer.

𝒟 =randomly
sampled set of

tuples

Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari
• End-to-end learning of Q(s,a) from pixels s
• Output is Q(s,a) for 18 joystick/button configurations
• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari
• Input state s is stack of raw pixels from last 4 frames
• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

Deep Q-Learning Playing Atari Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Summary: Deep RL, Part 1

• Imitation learning: learn the optimal policy by imitating a
human

ℒ = − log 𝑓!# 𝑠*
• Deep Q learning: compute Q(s,a) using a neural network

ℒ =
1
2𝐸 𝑓 𝑠*, �⃗�* − 𝑄HIJ!H(𝑠*, �⃗�*) K

𝑄HIJ!H(𝑠*, �⃗�*) = 𝑅*(𝑠*) + 𝛾max!)
𝑓 𝑠*L%, �⃗�′

