

What we've learned so far

- Markov Decision Process (MDP): Given P(s'|s,a) and R(s), you can solve for $\pi^*(s)$, the optimal policy, by finding U(s), the value of each state, using either value iteration or policy iteration.
- Model-Based Reinforcement Learning: If P(s'|s,a) and R(s) are unknown, you can find for $\pi(s)$ by using the observation-model-policy loop:
 - Observation: Create a training dataset by trying n consecutive actions, using an exploration-exploitation tradeoff like epsilon-first or epsilongreedy
 - Model: Estimate P(s'|s,a) and R(s) using maximum likelihood estimation or Laplace smoothing
 - Policy: Find the optimum policy using value iteration or policy iteration.

Today: Model-Free Learning

Why can't we just learn a model (neural net, or even a table lookup) that does this:

$$s \longrightarrow Model \longrightarrow a = \pi^*(s)$$

Outline

- Q(s,a) the "quality" of an action
- Q-learning
- Off-policy learning: TD
- On-policy learning: SARSA

Bellman's Equation

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

When we talked about solving Bellman's equation before, we said that the optimum policy is given by the "max" operation: the action that gives you that maximum is the action you should take.

The Quality of an Action

The goal of Q-learning is to learn a function, Q(s,a), such that the best action to take is the action that maximizes Q:

 $\pi^*(s) = \operatorname*{argmax}_{a \in A(s)} Q(s, a)$

How about if we define Q(s,a) to be "The expected future reward I will achieve if I take action a in state s?"

The Quality of an Action

Suppose we know everything: we know P(s'|s,a), R(s), γ , and U(s). Then we collect our total expected future reward by doing these things:

- Collect our current reward, R(s)
- Discount all future rewards by γ
- Make a transition to a future state, s', according to P(s'|s,a)
- Then collect all future rewards, U(s')

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) U(s')$$

The Quality of an Action

...so the Q-function splits Bellman's equation into two parts: $U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$

...becomes...

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a)U(s')$$
$$U(s) = \max_{a \in A(s)} Q(s,a)$$

The Q-function without U

Suppose we just want Q(s,a), and we don't want to have to calculate U(s). Then we can plug $U(s') = \max_{a' \in A(s')} Q(s', a')$ into the RHS to get $Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a' \in A(s')} Q(s', a')$

It has these steps:

- Collect our current reward, R(s)
- Discount all future rewards by γ
- Make a transition to a future state, s', according to P(s'|s,a)
- Choose the optimum action, a', from state s', and collect all future rewards.

		\bigcirc
; ??		

$$R(s) = \begin{cases} +1 & s = (4,3) \\ -1 & s = (4,2) \\ -0.04 & \text{otherwise} \end{cases}$$

$$P(s'|s,a) = \begin{cases} 0.8 & \text{intended} \\ 0.1 & \text{fall left} \\ 0.1 & \text{fall right} \end{cases}$$

 $\gamma = 1$

Gridworld: Utility of each state

$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' s, a) U(s')$						
0.81	0.87	0.92		(Calculated using value iteration.)		
0.76		0.66				
0.71	0.66	0.61	0.39			

Gridworld: The Q-function

0.78	0.83	0.88	
0.77 0.81	0.78 0.87	0.81 0.92	$\leftrightarrow \rightarrow$
0.74	0.83	0.68	
0.76		0.66	
0.72 0.72		0.6469	
0.68		0.42	
0.71	0.62	0.59	-0.74
0.67 0.63	0.66 0.58	0.61 0.40	0.39 0.21
0.66	0.62	0.55	0.37

Calculated using a two-step value iteration:

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) U(s')$$

$$U(s) = \max_{a \in A(s)} Q(s, a)$$

Gridworld: Relationship between Q and U

 $U(s) = \max_{a \in A(s)} Q(s, a)$

0.78 0.77 0.81 0.74	0.83 0.78 0.87 0.83	0.88 0.81 0.92 0.68	$ \bigcirc $	0.81	0.87	0.92	
0.76 0.72 0.72 0.68		0.66 0.6469 0.42		0.76		0.66	
0.71 0.67 0.63 0.66	0.62 0.66 0.58 0.62	0.59 0.61 0.40 0.55	-0.74 0.39 0.21 0.37	0.71	0.66	0.61	0.39

Outline

- Q(s,a) the "quality" of an action
- Q-learning
- Off-policy learning: TD
- On-policy learning: SARSA

Reinforcement learning: Key concepts

Key concept: What if you don't know P(s'|s,a) and R(s)? Can you still estimate Q(s,a)?

- Method #1: Model-based learning. Estimate P(s'|s,a) and R(s), then use them to compute Q(s,a).
- 2. Method #2 (today): Model-free learning. Try some stuff, observe the results, use the results to estimate Q(s,a).

Q-learning

Q(s,a) is the total of all current & future rewards that you expect to get if you perform action a in state s.

...so how about this strategy...

- 1. Play the game an infinite number of times.
- 2. Each time you try action a in state s, measure the reward that you receive from that point onward for the rest of the game.
- 3. Average.

Q-learning: a slightly more practical version

Q(s,a) is the total of all current & future rewards that you expect to get if you perform action a in state s.

...so how about this strategy...

- 1. Play the game an infinite <u>finite</u> number of times. <u>Keep track of</u> $Q_t(s, a)$, the estimate of Q after the tth iteration.
- 2. Each time you try action a in state s, measure the reward that you receive from that point onward for the rest of the game. in the current state, plus γ times $Q_t(s', a')$.
- 3. Average Q_t with #2 in order to get Q_{t+1} .

Suppose we start out with $Q_1(s, a) = 0$ for all states and actions.

Robot starts out in state (3,1).

Suppose we start out with $Q_1(s, a) = 0$ for all states and actions.

Robot starts out in state (3,1). Robot receives a reward of -0.04. Robot tries to move UP... but falls right, to state (4,1).

Now we update the Q((3,1),UP) as: $Q((3,1), UP) = R((3,1)) + \gamma U((4,1))$ = -0.04

The three main problems with reinforcement learning

- 1. We don't know the reward function. All we know is the reward we got this time around.
- 2. We don't know the transition probabilities. All we know is the state that we reached this time around.
- 3. We don't know the utility of the state we reached. All we know is our current (noisy) estimate of Q(s,a).

Outline

- Q(s,a) the "quality" of an action
- Q-learning
- Off-policy learning: TD
- On-policy learning: SARSA

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a' \in A(s')} Q(s',a')$$

Let's solve these problems as follows:

- Instead of R(s), use $R_t(s)$, the reward we got this time.
- Instead of summing over *P*(*s*'|*s*, *a*), just set s' equal to whatever state followed s this time.
- Instead of the true value of *Q*(*s*, *a*), use our current estimate, *Q*_t(*s*, *a*).

$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma \max_{a' \in A(s_{t+1})} Q_t(s_{t+1}, a')$$

Let's solve these problems as follows:

- Instead of R(s), use $R_t(s_t)$, the reward we got this time.
- Instead of summing over P(s'|s, a), just set $s' = s_{t+1}$, i.e., whatever state followed s_t .
- Instead of the true value of *Q*(*s*, *a*), use our current estimate, *Q*_t(*s*, *a*).

$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma \max_{a' \in A(s_{t+1})} Q_t(s_{t+1}, a')$$

Problem: NOISY!

- s_{t+1} is random, and
- Q_t(s_{t+1}, a') is not the real value of Q, only our current estimate, therefore
- $Q_{local}(s_t, a_t)$ might be very far away from Q(s, a). It might even be worse than $Q_t(s, a)$.

Solution: interpolate, using a small interpolation constant α that's $0 < \alpha < 1$:

$$Q_{t+1}(s,a) = (1-\alpha)Q_t(s,a) + \alpha Q_{local}(s,a)$$
$$= Q_t(s,a) + \alpha (Q_{local}(s,a) - Q_t(s,a))$$

 $Q_{local}(s, a) - Q_t(s, a)$ is called the "time difference" or TD.

- 1. If the TD is positive, it means action *a* was <u>better</u> than we expected, so $Q_{t+1}(s, a) = Q_t(s, a) + \alpha TD$ is an increase.
- 2. If the TD is negative, it means action *a* was <u>worse</u> than we expected, so $Q_{t+1}(s, a) = Q_t(s, a) + \alpha TD$ is a decrease.

Exploration versus exploitation

- TD-learning has one gap, still: when you reach state s, how do you choose an action?
- You might think that you just choose $a^* = \max_{a \in A(s)} Q_t(s, a)$, but that has the following problem: what if $Q_t(s, a)$ is wrong?
- The solution is to use an exploration strategy. For example,
 - Epsilon-first strategy: if there's an action we've chosen less than $1/\epsilon$ times, then choose that. Otherwise, choose a^* .
 - Epsilon-greedy strategy: with probability 1ϵ , choose a^* . With probability ϵ , choose an action uniformly at random.

Putting it all together, here's the whole TD learning algorithm:

- 1. When you reach state s, use your current exploration versus exploitation policy, $\pi_t(s)$, to choose some action $a = \pi_t(s)$.
- 2. Observe the state s' that you end up in, and the reward you receive, and then calculate Qlocal:

$$Q_{local}(s,a) = R_t(s) + \gamma \max_{a' \in A(s')} Q_t(s',a')$$

3. Calculate the time difference, and update:

$$Q_{t+1}(s,a) = Q_t(s,a) + \alpha \big(Q_{local}(s,a) - Q_t(s,a) \big)$$

Repeat.

Putting it all together, here's the whole TD learning algorithm:

- 1. When you reach state s, use your current exploration versus exploitation policy, $\pi_t(s)$, to choose some action $a = \pi_t(s)$.
- 2. Observe the state s' that you end up in, and the reward you receive, and then calculate Qlocal:

$$Q_{local}(s,a) = R_t(s) + \gamma \max_{a' \in A(s')} Q_t(s',a')$$

3. Calculate the time difference, and update:

$$Q_{t+1}(s,a) = Q_t(s,a) + \alpha \big(Q_{local}(s,a) - Q_t(s,a) \big)$$

The action TD-learning assumes you will perform

Repeat.

The action you actually perform

TD learning is an off-policy learning algorithm

TD learning is called an off-policy learning algorithm because it assumes an action

 $\operatorname{argmax}_{a' \in A(s')} Q_t(s', a')$

...which is different from the action dictated by your current exploration versus exploitation policy

$$a' = \pi_t(s')$$

Sometimes off-policy learning converges slowly, for example, because the TD-learning update is not taking advantage of your exploration.

Outline

- Q(s,a) the "quality" of an action
- Q-learning
- Off-policy learning: TD
- On-policy learning: SARSA

On-policy learning: SARSA

We can create an "on-policy learning" algorithm by deciding in advance which action (a') we'll perform in state s', and then using that action in the update equation:

- 1. Assume that you're currently in state s_t , and you've already chosen action a_t .
- 2. Observe the state s_{t+1} that you end up in, and then use your current policy to choose $a_{t+1} = \pi_t(s_{t+1})$.
- 3. Calculate Qlocal and the update equation as:

$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma Q_t(s_{t+1}, a_{t+1})$$

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha (Q_{local}(s_t, a_t) - Q_t(s_t, a_t))$$

4. Go to step 2.

On-policy learning: SARSA

This algorithm is called SARSA (state-action-rewardstate-action) because:

- In order to compute the TD-learning version of Q_{local} , you only need to know the tuple (s_t, a_t, R_t, s_{t+1}) : $Q_{local}(s_t, a_t) = R_t(s_t) + \gamma \max_{a' \in A(s_{t+1})} Q_t(s_{t+1}, a')$
- In order to compute the SARSA version of Q_{local} , you need to have already picked out $(s_t, a_t, R_t, s_{t+1}, a_{t+1})$: $Q_{local}(s_t, a_t) = R_t(s_t) + \gamma Q_t(s_{t+1}, a_{t+1})$

Summary

• Q(s,a) – the "quality" of an action

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a)U(s')$$
$$U(s) = \max_{a \in A(s)} Q(s,a)$$

- Q-learning
- Off-policy learning: TD

$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma \max_{a' \in A(s_{t+1})} Q_t(s_{t+1}, a')$$
$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha (Q_{local}(s_t, a_t) - Q_t(s_t, a_t))$$

• On-policy learning: SARSA

$$a_{t+1} = \pi_t(s_{t+1})$$

$$Q_{local}(s_t, a_t) = R_t(s_t) + \gamma Q_t(s_{t+1}, a_{t+1})$$