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What we’ve learned so far

• Markov Decision Process (MDP): Given P(s’|s,a) and R(s), you 
can solve for 𝜋∗(𝑠), the optimal policy, by finding U(s), the value 
of each state, using either value iteration or policy iteration.

• Model-Based Reinforcement Learning:  If P(s’|s,a) and R(s) are 
unknown, you can find for 𝜋(𝑠) by using the observation-model-
policy loop:
– Observation: Create a training dataset by trying n consecutive actions, 

using an exploration-exploitation tradeoff like epsilon-first or epsilon-
greedy

– Model: Estimate P(s’|s,a) and R(s) using maximum likelihood 
estimation or Laplace smoothing

– Policy: Find the optimum policy using value iteration or policy iteration.



Today: Model-Free Learning

Why can’t we just learn a model (neural net, or even a table 
lookup) that does this:

Model 𝑎 = 𝜋∗(𝑠)𝑠



Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA



Bellman’s Equation

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈#(%)

*
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

When we talked about solving Bellman’s equation before, 
we said that the optimum policy is given by the “max” 
operation: the action that gives you that maximum is the 
action you should take.



The Quality of an Action

The goal of Q-learning is to learn a function, Q(s,a), such 
that the best action to take is the action that maximizes Q:

𝜋∗(𝑠)= argmax
!∈#(%)

𝑄(𝑠, 𝑎)

How about if we define  Q(s,a) to be “The expected future 
reward I will achieve if I take action a in state s?”



The Quality of an Action
Suppose we know everything: we know P(s’|s,a), R(s), 𝛾, and U(s).  
Then we collect our total expected future reward by doing these 
things:
• Collect our current reward, R(s)
• Discount all future rewards by 𝛾
• Make a transition to a future state, s’, according to P(s’|s,a)
• Then collect all future rewards, U(s’)

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾)
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")



The Quality of an Action

…so the Q-function splits Bellman’s equation into two parts:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈#(%)

*
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

…becomes…

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾*
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

𝑈(𝑠) = max
!∈#(%)

𝑄(𝑠, 𝑎)



The Q-function without U
Suppose we just want Q(s,a), and we don’t want to have to calculate 
U(s).  Then we can plug 𝑈(𝑠′) = max

"#∈%('#)
𝑄(𝑠′, 𝑎′) into the RHS to get

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾1
'#

𝑃 𝑠# 𝑠, 𝑎 max
"#∈%('#)

𝑄(𝑠′, 𝑎′)

It has these steps:
• Collect our current reward, R(s)
• Discount all future rewards by 𝛾
• Make a transition to a future state, s’, according to P(s’|s,a)
• Choose the optimum action, a’, from state s’, and collect all future 

rewards.



Example: Gridworld

𝑅(𝑠) = 3
+1 𝑠 = (4,3)
−1 𝑠 = (4,2)
−0.04 otherwise

𝑃 𝑠# 𝑠, 𝑎 = 3
0.8 intended
0.1 fall left
0.1 fall right

𝛾 = 1



Gridworld: Utility of each state

0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

(Calculated using value iteration.)

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
#∈%(!)

)
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")



Gridworld: The Q-function

Calculated using a two-step value 
iteration: 

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾)
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈(𝑠) = max
#∈%(!)

𝑄(𝑠, 𝑎)
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Gridworld: Relationship between Q and U
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𝑈(𝑠) = max
!∈#(%)

𝑄(𝑠, 𝑎)



Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA



Reinforcement learning: Key concepts

Key concept: What if you don’t know P(s’|s,a) and R(s)?  
Can you still estimate Q(s,a)?
1. Method #1: Model-based learning.  Estimate P(s’|s,a) 

and R(s), then use them to compute Q(s,a).
2. Method #2 (today): Model-free learning.  Try some stuff, 

observe the results, use the results to estimate Q(s,a).



Q-learning
Q(s,a) is the total of all current & future rewards that you expect to 
get if you perform action a in state s.

…so how about this strategy…

1. Play the game an infinite number of times.
2. Each time you try action a in state s, measure the reward that 

you receive from that point onward for the rest of the game.
3. Average.



Q-learning: a slightly more practical version
Q(s,a) is the total of all current & future rewards that you expect to get 
if you perform action a in state s.

…so how about this strategy…

1. Play the game an infinite finite number of times.  Keep track of 
𝑸𝒕(𝒔, 𝒂), the estimate of Q after the tth iteration.

2. Each time you try action a in state s, measure the reward that you 
receive from that point onward for the rest of the game. in the 
current state, plus 𝜸 times 𝑸𝒕(𝒔′, 𝒂′). 

3. Average 𝑸𝒕 with #2 in order to get 𝑸𝒕*𝟏.



Example: Gridworld

Suppose we start out with 
𝑸𝟏 𝒔, 𝒂 = 𝟎 for all states and 

actions.

Robot starts out in state (3,1).
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Example: Gridworld

Suppose we start out with 
𝑸𝟏 𝒔, 𝒂 = 𝟎 for all states and 

actions.

Robot starts out in state (3,1).
Robot receives a reward of -0.04.

Robot tries to move UP...
but falls right, to state (4,1).

0
0 0

0

0
0 0

0

0
0 0

0
0

0 0

0
0

0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0



Example: Gridworld

Now we update the Q((3,1),UP) as:

𝑄 (3,1), UP = 𝑅 (3,1) + 𝛾𝑈 4,1

= −0.04
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The three main problems with 
reinforcement learning

1. We don’t know the reward function. All we know is the 
reward we got this time around.

2. We don’t know the transition probabilities. All we know is
the state that we reached this time around.

3. We don’t know the utility of the state we reached.  All we 
know is our current (noisy) estimate of Q(s,a).



Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA



TD learning

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾*
%'

𝑃 𝑠' 𝑠, 𝑎 max
!'∈#(%')

𝑄(𝑠′, 𝑎′)

Let’s solve these problems as follows:
• Instead of 𝑅(𝑠), use 𝑅)(𝑠), the reward we got this time.
• Instead of summing over 𝑃(𝑠’|𝑠, 𝑎), just set s’ equal to 

whatever state followed s this time.
• Instead of the true value of 𝑄(𝑠, 𝑎), use our current 

estimate, 𝑄)(𝑠, 𝑎).



TD learning

𝑄*+,!*(𝑠), 𝑎)) = 𝑅) 𝑠) + 𝛾 max
!'∈#(%,-.)

𝑄)(𝑠)-., 𝑎′)

Let’s solve these problems as follows:
• Instead of 𝑅(𝑠), use 𝑅)(𝑠)), the reward we got this time.
• Instead of summing over 𝑃(𝑠’|𝑠, 𝑎), just set 𝑠' = 𝑠)-., 

i.e., whatever state followed 𝑠).
• Instead of the true value of 𝑄(𝑠, 𝑎), use our current 

estimate, 𝑄)(𝑠, 𝑎).



TD learning

𝑄*+,!*(𝑠), 𝑎)) = 𝑅) 𝑠) + 𝛾 max
!'∈#(%,-.)

𝑄)(𝑠)-., 𝑎′)

Problem: NOISY!
• 𝑠)-. is random, and
• 𝑄)(𝑠)-., 𝑎′) is not the real value of Q, only our current 

estimate, therefore
• 𝑄*+,!*(𝑠), 𝑎)) might be very far away from 𝑄 𝑠, 𝑎 .  It 

might even be worse than 𝑄)(𝑠, 𝑎).



TD learning

Solution: interpolate, using a small interpolation constant 
𝛼 that’s 0 < 𝛼 < 1:

𝑄)-. 𝑠, 𝑎 = 1 − 𝛼 𝑄) 𝑠, 𝑎 + 𝛼𝑄*+,!* 𝑠, 𝑎

= 𝑄) 𝑠, 𝑎 + 𝛼 𝑄*+,!* 𝑠, 𝑎 − 𝑄) 𝑠, 𝑎



TD learning

𝑄*+,!* 𝑠, 𝑎 − 𝑄) 𝑠, 𝑎 is called the “time difference” or TD.

1. If the TD is positive, it means action 𝑎 was better than 
we expected, so 𝑄)-. 𝑠, 𝑎 = 𝑄) 𝑠, 𝑎 + 𝛼𝑇𝐷 is an 
increase.

2. If the TD is negative, it means action 𝑎 was worse
than we expected, so 𝑄)-. 𝑠, 𝑎 = 𝑄) 𝑠, 𝑎 + 𝛼𝑇𝐷 is a 
decrease.



Exploration versus exploitation
• TD-learning has one gap, still: when you reach state s, how do you choose 

an action?
• You might think that you just choose 𝑎∗ = max

"∈$(&)
𝑄( (𝑠, 𝑎), but that has the 

following problem: what if 𝑄( (𝑠, 𝑎) is wrong?
• The solution is to use an exploration strategy.  For example,

– Epsilon-first strategy: if there’s an action we’ve chosen less than 1/𝜖
times, then choose that.  Otherwise, choose 𝑎∗.

– Epsilon-greedy strategy: with probability 1 − 𝜖, choose 𝑎∗.  With probability 
𝜖, choose an action uniformly at random.



TD learning
Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation 
policy, 𝜋!(𝑠), to choose some action 𝑎 = 𝜋!(𝑠).  

2. Observe the state s’ that you end up in, and the reward you receive, and then 
calculate Qlocal:

𝑄"#$%" 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾 max
%&∈((*&)

𝑄!(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄!,- 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄"#$%" 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

Repeat.



TD learning
Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation 
policy, 𝜋!(𝑠), to choose some action 𝑎 = 𝜋!(𝑠).  

2. Observe the state s’ that you end up in, and the reward you receive, and then 
calculate Qlocal:

𝑄"#$%" 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾 max
%&∈((*&)

𝑄!(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄!,- 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄"#$%" 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

Repeat.

The action 
TD-learning 
assumes 
you will 
perform

The action 
you actually 
perform



TD learning is an off-policy learning 
algorithm 

TD learning is called an off-policy learning algorithm because 
it assumes an action

argmax
23∈5(63)

𝑄7(𝑠′, 𝑎′)

…which is different from the action dictated by your current 
exploration versus exploitation policy

𝑎3 = 𝜋7(𝑠′)
Sometimes off-policy learning converges slowly, for example, 
because the TD-learning update is not taking advantage of 
your exploration.



Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA



On-policy learning: SARSA
We can create an “on-policy learning” algorithm by deciding in advance which action (𝑎’) 
we’ll perform in state 𝑠’, and then using that action in the update equation:

1. Assume that you’re currently in state 𝑠!, and you’ve already chosen action 𝑎!.  
2. Observe the state 𝑠!"# that you end up in, and then use your current policy to choose 

𝑎!"# = 𝜋!(𝑠!"#).
3. Calculate Qlocal and the update equation as:

𝑄$%&'$ 𝑠!, 𝑎! = 𝑅!(𝑠!) + 𝛾𝑄!(𝑠!"#, 𝑎!"#)

𝑄!"# 𝑠!, 𝑎! = 𝑄! 𝑠!, 𝑎! + 𝛼 𝑄$%&'$ 𝑠!, 𝑎! − 𝑄! 𝑠!, 𝑎!

4. Go to step 2.



On-policy learning: SARSA

This algorithm is called SARSA (state-action-reward-
state-action) because:
• In order to compute the TD-learning version of 𝑄*+,!*, 

you only need to know the tuple (𝑠), 𝑎), 𝑅), 𝑠)-.): 
𝑄*+,!* 𝑠), 𝑎) = 𝑅)(𝑠)) + 𝛾 max

!'∈#(%,-.)
𝑄)(𝑠)-., 𝑎′)

• In order to compute the SARSA version of 𝑄*+,!*, you 
need to have already picked out (𝑠), 𝑎), 𝑅), 𝑠)-., 𝑎)-.): 

𝑄*+,!* 𝑠), 𝑎) = 𝑅)(𝑠)) + 𝛾𝑄)(𝑠)-., 𝑎)-.)



Summary
• Q(s,a) – the “quality” of an action

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾>
&)

𝑃 𝑠) 𝑠, 𝑎 𝑈(𝑠))

𝑈(𝑠) = max
"∈$(&)

𝑄(𝑠, 𝑎)

• Q-learning
• Off-policy learning: TD

𝑄*+,"* 𝑠( , 𝑎( = 𝑅((𝑠() + 𝛾 max
")∈$(&!"#)

𝑄((𝑠(-., 𝑎′)

𝑄(-. 𝑠( , 𝑎( = 𝑄( 𝑠( , 𝑎( + 𝛼 𝑄*+,"* 𝑠( , 𝑎( − 𝑄( 𝑠( , 𝑎(
• On-policy learning: SARSA

𝑎(-. = 𝜋((𝑠(-.)
𝑄*+,"* 𝑠( , 𝑎( = 𝑅((𝑠() + 𝛾𝑄((𝑠(-., 𝑎(-.)


