
Model-Free
Reinforcement

Learning

CS440/ECE448
Lecture 34

Mark Hasegawa-Johnson, 4/2022,
including slides by Svetlana Lazebnik,
11/2017
CC-BY 4.0: you may remix or redistribute if
you cite the source

Image: Megajuice, CC0,
https://commons.wikimedia.org/

w/index.php?curid=57895741

https://commons.wikimedia.org/

What we’ve learned so far

• Markov Decision Process (MDP): Given P(s’|s,a) and R(s), you
can solve for 𝜋∗(𝑠), the optimal policy, by finding U(s), the value
of each state, using either value iteration or policy iteration.

• Model-Based Reinforcement Learning: If P(s’|s,a) and R(s) are
unknown, you can find for 𝜋(𝑠) by using the observation-model-
policy loop:
– Observation: Create a training dataset by trying n consecutive actions,

using an exploration-exploitation tradeoff like epsilon-first or epsilon-
greedy

– Model: Estimate P(s’|s,a) and R(s) using maximum likelihood
estimation or Laplace smoothing

– Policy: Find the optimum policy using value iteration or policy iteration.

Today: Model-Free Learning

Why can’t we just learn a model (neural net, or even a table
lookup) that does this:

Model 𝑎 = 𝜋∗(𝑠)𝑠

Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA

Bellman’s Equation

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈#(%)

*
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

When we talked about solving Bellman’s equation before,
we said that the optimum policy is given by the “max”
operation: the action that gives you that maximum is the
action you should take.

The Quality of an Action

The goal of Q-learning is to learn a function, Q(s,a), such
that the best action to take is the action that maximizes Q:

𝜋∗(𝑠)= argmax
!∈#(%)

𝑄(𝑠, 𝑎)

How about if we define Q(s,a) to be “The expected future
reward I will achieve if I take action a in state s?”

The Quality of an Action
Suppose we know everything: we know P(s’|s,a), R(s), 𝛾, and U(s).
Then we collect our total expected future reward by doing these
things:
• Collect our current reward, R(s)
• Discount all future rewards by 𝛾
• Make a transition to a future state, s’, according to P(s’|s,a)
• Then collect all future rewards, U(s’)

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾)
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

The Quality of an Action

…so the Q-function splits Bellman’s equation into two parts:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈#(%)

*
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

…becomes…

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾*
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

𝑈(𝑠) = max
!∈#(%)

𝑄(𝑠, 𝑎)

The Q-function without U
Suppose we just want Q(s,a), and we don’t want to have to calculate
U(s). Then we can plug 𝑈(𝑠′) = max

"#∈%('#)
𝑄(𝑠′, 𝑎′) into the RHS to get

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾1
'#

𝑃 𝑠# 𝑠, 𝑎 max
"#∈%('#)

𝑄(𝑠′, 𝑎′)

It has these steps:
• Collect our current reward, R(s)
• Discount all future rewards by 𝛾
• Make a transition to a future state, s’, according to P(s’|s,a)
• Choose the optimum action, a’, from state s’, and collect all future

rewards.

Example: Gridworld

𝑅(𝑠) = 3
+1 𝑠 = (4,3)
−1 𝑠 = (4,2)
−0.04 otherwise

𝑃 𝑠# 𝑠, 𝑎 = 3
0.8 intended
0.1 fall left
0.1 fall right

𝛾 = 1

Gridworld: Utility of each state

0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

(Calculated using value iteration.)

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
#∈%(!)

)
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

Gridworld: The Q-function

Calculated using a two-step value
iteration:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾)
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈(𝑠) = max
#∈%(!)

𝑄(𝑠, 𝑎)

0.78
0.77 0.81

0.74

0.83
0.78 0.87

0.83

0.88
0.81 0.92

0.68
0.66

0.64 -.69

0.42
-0.74

0.39 0.21

0.37

0.59
0.61 0.40

0.55

0.62
0.66 0.58

0.62

0.71
0.67 0.63

0.66

0.76
0.72 0.72

0.68

Gridworld: Relationship between Q and U

0.78
0.77 0.81

0.74

0.83
0.78 0.87

0.83

0.88
0.81 0.92

0.68
0.66

0.64 -.69

0.42
-0.74

0.39 0.21

0.37

0.59
0.61 0.40

0.55

0.62
0.66 0.58

0.62

0.71
0.67 0.63

0.66

0.76
0.72 0.72

0.68

0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

𝑈(𝑠) = max
!∈#(%)

𝑄(𝑠, 𝑎)

Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA

Reinforcement learning: Key concepts

Key concept: What if you don’t know P(s’|s,a) and R(s)?
Can you still estimate Q(s,a)?
1. Method #1: Model-based learning. Estimate P(s’|s,a)

and R(s), then use them to compute Q(s,a).
2. Method #2 (today): Model-free learning. Try some stuff,

observe the results, use the results to estimate Q(s,a).

Q-learning
Q(s,a) is the total of all current & future rewards that you expect to
get if you perform action a in state s.

…so how about this strategy…

1. Play the game an infinite number of times.
2. Each time you try action a in state s, measure the reward that

you receive from that point onward for the rest of the game.
3. Average.

Q-learning: a slightly more practical version
Q(s,a) is the total of all current & future rewards that you expect to get
if you perform action a in state s.

…so how about this strategy…

1. Play the game an infinite finite number of times. Keep track of
𝑸𝒕(𝒔, 𝒂), the estimate of Q after the tth iteration.

2. Each time you try action a in state s, measure the reward that you
receive from that point onward for the rest of the game. in the
current state, plus 𝜸 times 𝑸𝒕(𝒔′, 𝒂′).

3. Average 𝑸𝒕 with #2 in order to get 𝑸𝒕*𝟏.

Example: Gridworld

Suppose we start out with
𝑸𝟏 𝒔, 𝒂 = 𝟎 for all states and

actions.

Robot starts out in state (3,1).

0
0 0

0

0
0 0

0

0
0 0

0
0

0 0

0
0

0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

Example: Gridworld

Suppose we start out with
𝑸𝟏 𝒔, 𝒂 = 𝟎 for all states and

actions.

Robot starts out in state (3,1).
Robot receives a reward of -0.04.

Robot tries to move UP...
but falls right, to state (4,1).

0
0 0

0

0
0 0

0

0
0 0

0
0

0 0

0
0

0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

Example: Gridworld

Now we update the Q((3,1),UP) as:

𝑄 (3,1), UP = 𝑅 (3,1) + 𝛾𝑈 4,1

= −0.04

0
0 0

0

0
0 0

0

0
0 0

0
0

0 0

0
0

0 0

0

-0.04
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

The three main problems with
reinforcement learning

1. We don’t know the reward function. All we know is the
reward we got this time around.

2. We don’t know the transition probabilities. All we know is
the state that we reached this time around.

3. We don’t know the utility of the state we reached. All we
know is our current (noisy) estimate of Q(s,a).

Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA

TD learning

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾*
%'

𝑃 𝑠' 𝑠, 𝑎 max
!'∈#(%')

𝑄(𝑠′, 𝑎′)

Let’s solve these problems as follows:
• Instead of 𝑅(𝑠), use 𝑅)(𝑠), the reward we got this time.
• Instead of summing over 𝑃(𝑠’|𝑠, 𝑎), just set s’ equal to

whatever state followed s this time.
• Instead of the true value of 𝑄(𝑠, 𝑎), use our current

estimate, 𝑄)(𝑠, 𝑎).

TD learning

𝑄*+,!*(𝑠), 𝑎)) = 𝑅) 𝑠) + 𝛾 max
!'∈#(%,-.)

𝑄)(𝑠)-., 𝑎′)

Let’s solve these problems as follows:
• Instead of 𝑅(𝑠), use 𝑅)(𝑠)), the reward we got this time.
• Instead of summing over 𝑃(𝑠’|𝑠, 𝑎), just set 𝑠' = 𝑠)-.,

i.e., whatever state followed 𝑠).
• Instead of the true value of 𝑄(𝑠, 𝑎), use our current

estimate, 𝑄)(𝑠, 𝑎).

TD learning

𝑄*+,!*(𝑠), 𝑎)) = 𝑅) 𝑠) + 𝛾 max
!'∈#(%,-.)

𝑄)(𝑠)-., 𝑎′)

Problem: NOISY!
• 𝑠)-. is random, and
• 𝑄)(𝑠)-., 𝑎′) is not the real value of Q, only our current

estimate, therefore
• 𝑄*+,!*(𝑠), 𝑎)) might be very far away from 𝑄 𝑠, 𝑎 . It

might even be worse than 𝑄)(𝑠, 𝑎).

TD learning

Solution: interpolate, using a small interpolation constant
𝛼 that’s 0 < 𝛼 < 1:

𝑄)-. 𝑠, 𝑎 = 1 − 𝛼 𝑄) 𝑠, 𝑎 + 𝛼𝑄*+,!* 𝑠, 𝑎

= 𝑄) 𝑠, 𝑎 + 𝛼 𝑄*+,!* 𝑠, 𝑎 − 𝑄) 𝑠, 𝑎

TD learning

𝑄*+,!* 𝑠, 𝑎 − 𝑄) 𝑠, 𝑎 is called the “time difference” or TD.

1. If the TD is positive, it means action 𝑎 was better than
we expected, so 𝑄)-. 𝑠, 𝑎 = 𝑄) 𝑠, 𝑎 + 𝛼𝑇𝐷 is an
increase.

2. If the TD is negative, it means action 𝑎 was worse
than we expected, so 𝑄)-. 𝑠, 𝑎 = 𝑄) 𝑠, 𝑎 + 𝛼𝑇𝐷 is a
decrease.

Exploration versus exploitation
• TD-learning has one gap, still: when you reach state s, how do you choose

an action?
• You might think that you just choose 𝑎∗ = max

"∈$(&)
𝑄((𝑠, 𝑎), but that has the

following problem: what if 𝑄((𝑠, 𝑎) is wrong?
• The solution is to use an exploration strategy. For example,

– Epsilon-first strategy: if there’s an action we’ve chosen less than 1/𝜖
times, then choose that. Otherwise, choose 𝑎∗.

– Epsilon-greedy strategy: with probability 1 − 𝜖, choose 𝑎∗. With probability
𝜖, choose an action uniformly at random.

TD learning
Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation
policy, 𝜋!(𝑠), to choose some action 𝑎 = 𝜋!(𝑠).

2. Observe the state s’ that you end up in, and the reward you receive, and then
calculate Qlocal:

𝑄"#$%" 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾 max
%&∈((*&)

𝑄!(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄!,- 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄"#$%" 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

Repeat.

TD learning
Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation
policy, 𝜋!(𝑠), to choose some action 𝑎 = 𝜋!(𝑠).

2. Observe the state s’ that you end up in, and the reward you receive, and then
calculate Qlocal:

𝑄"#$%" 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾 max
%&∈((*&)

𝑄!(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄!,- 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄"#$%" 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

Repeat.

The action
TD-learning
assumes
you will
perform

The action
you actually
perform

TD learning is an off-policy learning
algorithm

TD learning is called an off-policy learning algorithm because
it assumes an action

argmax
23∈5(63)

𝑄7(𝑠′, 𝑎′)

…which is different from the action dictated by your current
exploration versus exploitation policy

𝑎3 = 𝜋7(𝑠′)
Sometimes off-policy learning converges slowly, for example,
because the TD-learning update is not taking advantage of
your exploration.

Outline

• Q(s,a) – the “quality” of an action
• Q-learning
• Off-policy learning: TD
• On-policy learning: SARSA

On-policy learning: SARSA
We can create an “on-policy learning” algorithm by deciding in advance which action (𝑎’)
we’ll perform in state 𝑠’, and then using that action in the update equation:

1. Assume that you’re currently in state 𝑠!, and you’ve already chosen action 𝑎!.
2. Observe the state 𝑠!"# that you end up in, and then use your current policy to choose

𝑎!"# = 𝜋!(𝑠!"#).
3. Calculate Qlocal and the update equation as:

𝑄$%&'$ 𝑠!, 𝑎! = 𝑅!(𝑠!) + 𝛾𝑄!(𝑠!"#, 𝑎!"#)

𝑄!"# 𝑠!, 𝑎! = 𝑄! 𝑠!, 𝑎! + 𝛼 𝑄$%&'$ 𝑠!, 𝑎! − 𝑄! 𝑠!, 𝑎!

4. Go to step 2.

On-policy learning: SARSA

This algorithm is called SARSA (state-action-reward-
state-action) because:
• In order to compute the TD-learning version of 𝑄*+,!*,

you only need to know the tuple (𝑠), 𝑎), 𝑅), 𝑠)-.):
𝑄*+,!* 𝑠), 𝑎) = 𝑅)(𝑠)) + 𝛾 max

!'∈#(%,-.)
𝑄)(𝑠)-., 𝑎′)

• In order to compute the SARSA version of 𝑄*+,!*, you
need to have already picked out (𝑠), 𝑎), 𝑅), 𝑠)-., 𝑎)-.):

𝑄*+,!* 𝑠), 𝑎) = 𝑅)(𝑠)) + 𝛾𝑄)(𝑠)-., 𝑎)-.)

Summary
• Q(s,a) – the “quality” of an action

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾>
&)

𝑃 𝑠) 𝑠, 𝑎 𝑈(𝑠))

𝑈(𝑠) = max
"∈$(&)

𝑄(𝑠, 𝑎)

• Q-learning
• Off-policy learning: TD

𝑄*+,"* 𝑠(, 𝑎(= 𝑅((𝑠() + 𝛾 max
")∈$(&!"#)

𝑄((𝑠(-., 𝑎′)

𝑄(-. 𝑠(, 𝑎(= 𝑄(𝑠(, 𝑎(+ 𝛼 𝑄*+,"* 𝑠(, 𝑎(− 𝑄(𝑠(, 𝑎(
• On-policy learning: SARSA

𝑎(-. = 𝜋((𝑠(-.)
𝑄*+,"* 𝑠(, 𝑎(= 𝑅((𝑠() + 𝛾𝑄((𝑠(-., 𝑎(-.)

