
CS 440/ECE448 Lecture 33:
Model-Based Reinforcement

Learning
Mark Hasegawa-Johnson, 4/2022

Including slides by Svetlana Lazebnik, 11/2016
CC-BY 4.0: Re-use at will, but please cite the source.

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

Review: Markov Decision Process
• MDP defined by states, actions, transition model, reward function
• The “solution” to an MDP is the policy: what do you do when you’re in any

given state
• The Bellman equation tells the utility of any given state, and incidentally, also

tells you the optimum policy. The Bellman equation is N nonlinear equations
in N unknowns (the policy), therefore it can’t be solved in closed form.
• Value iteration:

• At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i
steps in time

• … so finding the best action = optimize based on (i+1)-step lookahead
• Policy iteration:

• Find the utilities that result from the current policy,
• Improve the current policy

Reinforcement learning:
Basic scheme
But what if you don’t know 𝑃(𝑠’|𝑠, 𝑎) or 𝑅(𝑠)?
Answer: “learning by doing” (a.k.a. reinforcement learning).
In each time step:
• Take some action
• Observe the outcome of the action: successor state and reward
• Update some internal representation of the environment and policy
• If you reach a terminal state, just start over (each pass through the

environment is called a trial)

Model-Based and Model-Free RL

• Model-Based Reinforcement Learning:
• Explore randomly.
• At each state 𝑠, see what reward you get. Estimate 𝑅(𝑠) from these

measurements.
• At each state 𝑠, try some action 𝑎, and see what state 𝑠’ you end up in.

Estimate 𝑃(𝑠’|𝑠, 𝑎) from these measurements.
• Once you have learned 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠) well enough, then solve the MDP

to find the optimal policy, 𝜋(𝑠).
• Model-Free Reinforcement Learning:

• Learn a function 𝑄(𝑠, 𝑎) = quality of action 𝑎 in state 𝑠, or…
• Learn the best policy, 𝜋(𝑠), directly.
• Next lecture: more about how you might accomplish these things.

Example of model-based reinforcement
learning: Playing classic Atari video games

Model-Based Reinforcement Learning
for Atari (Kaiser, Babaeizadeh, Milos, Osinski, Campbell,
Czechowski, Erhan, Finn, Kozakowski, Levine, Mohiuddin,
Sepassi, Tucker, and Michalewski)

• Blog and videos:
https://sites.google.com/view/model
basedrlatari/home

• Article:
https://arxiv.org/abs/1903.00374

Screenshot of the video game “Freeway,” copyright
Activision. Reproduced here under the terms of fair use
enumerated at
https://en.wikipedia.org/w/index.php?curid=56419703

https://sites.google.com/view/modelbasedrlatari/home
https://arxiv.org/abs/1903.00374

Example of model-based reinforcement
learning: Theseus the Mouse

Claude Shannon and Theseus the Mouse. Public domain image, Bell Labs.

https://techchannel.att.com/playvideo/2010/03/16/In-Their-Own-Words-Claude-Shannon-Demonstrates-Machine-Learning

Model-based reinforcement learning:
Theseus’ strategy

Learning phase:
• At each position in the maze (s),
• For every possible action 𝑎 ∈ Forward, Left, Right, Back :
• If the action succeeded in changing the state (𝑠’ ≠ 𝑠), then set
𝑃(𝑠’|𝑠, 𝑎) = 1
• If not, set 𝑃(𝑠’|𝑠, 𝑎) = 0 for all 𝑠’ ≠ 𝑠

Once you’ve learned the maze, then compute the best policy (𝜋(𝑠)) using
Value Iteration.
• If 𝑃(𝑠’|𝑠, 𝑎) ∈ 0,1 , Value Iteration = BFS

Outline of Today’s Lecture
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄(𝑠, 𝑎).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 1/𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

Outline
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄(𝑠, 𝑎).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 1/𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

The observation-model-policy loop
Basic idea:
1. Observation: Follow some initial policy, to guide your actions.
2. Model: Try to learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠).
3. Policy: Use your estimated 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠) to decide on a new policy

(using Value Iteration, for example).

Observation-Model-Policy Loop: Theseus

• If you’re in state 𝑠, and there’s an
action, 𝑎, that you’ve never taken
before while in this state, then
take it.
• If you’ve already taken all possible

actions from this state, then
choose the best one.
• Continue re-estimating the model

after every action. If transition
probabilities change, compute a
better policy.

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

What Theseus never had to deal with:
Probabilities
• What happens if P(s’|s,a) is not 0

or 1, but something in between?
• Trying it just once is not enough

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

How to deal with probabilities

• Suppose, for example, that you
want to estimate 𝑃(𝑠’|𝑠, 𝑎)with a
precision of 0.1.
• In other words, if the true value is
𝑃(𝑠’|𝑠, 𝑎), and your estimate is
A𝑃 (𝑠’|𝑠, 𝑎), you want it to be true
that
| A𝑃 (𝑠’|𝑠, 𝑎) − 𝑃(𝑠’|𝑠, 𝑎)| < 0.1

• How can you do that?

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

The epsilon-first strategy
The “epsilon-first” strategy tries
every action 1/𝜖 times, where 𝜖 is
the desired modeling precision. For
example, if we want
| A𝑃 (𝑠’|𝑠, 𝑎) − 𝑃(𝑠’|𝑠, 𝑎)| < 0.1

… then we might set !
"
= 10.*

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

* We can never guarantee that | "𝑃 (𝑠’|𝑠, 𝑎) − 𝑃(𝑠’|𝑠, 𝑎)| < 𝜖 with 100% confidence, but using 1/𝜖 trials is enough to be
pretty confident. If you’ve taken ECE 313 or CS 361, you should be able to work out the relationship more precisely.

The epsilon-first strategy
The epsilon-first strategy works like
this:
• Keep two different tables:

• 𝑁(𝑠, 𝑎) tells you how many times
action a has been performed in state
s

• 𝑀(𝑠’|𝑠, 𝑎) is the number of times
that it resulted in state 𝑠’.

• The current model estimate is

𝑃(𝑠’|𝑠, 𝑎) ≈
𝑀(𝑠#|𝑠, 𝑎)
𝑁(𝑠, 𝑎)

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

The epsilon-first strategy
As you wander through the maze,
you reach some state, 𝑠.
• If there is any action, 𝑎, for which
𝑁 𝑠, 𝑎 < 1/𝜖, then try that
action.
• If not, then use value iteration

(with the current estimates of
𝑃(𝑠’|𝑠, 𝑎)) to decide what is the
best action to take.

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

The epsilon-first strategy
As you wander through the maze,
you reach some state, 𝑠.
• If there is any action, 𝑎, for which
𝑁 𝑠, 𝑎 < 1/𝜖, then explore (= try
the action, to see what it does).
• If not, then exploit your

knowledge (choose the action
that, according to your model, will
lead to the highest utility).

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

Outline
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄(𝑠, 𝑎).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 1/𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

Exploration vs. Exploitation
• Exploration: take a new action with unknown consequences

• Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

• Cons:
• When you’re exploring, you’re not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
• Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

• Cons:
• Might also prevent you from discovering the true optimal strategy

“Search represents a core feature of cognition:”
Exploration versus exploitation in space, mind, and society.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410143/

How to trade off exploration vs. exploitation
Epsilon-first strategy: when you reach state 𝑠, check how many times
you’ve tested each of its available actions.

• Explore for the first 𝟏/𝝐 trials: If the least-explored action has been tested
fewer than 1/ϵ times, then perform that action (1/ϵ is an integer).

• Exploit thereafter: Once you’ve finished exploring, start exploiting (work to
maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
• With probability 𝝐, Explore: choose any action, uniformly at random.
• With probability (𝟏 − 𝝐), Exploit: choose the action with the highest expected

utility, according to your current estimates.
• Guarantee: 𝑃(𝑠’|𝑠, 𝑎) converges to its true value as #trials → ∞.

The epsilon-greedy strategy
The epsilon-greedy strategy works
like this:
• Keep two different tables:

• 𝑁(𝑠, 𝑎) tells you how many times
action a has been performed in state
s

• 𝑀(𝑠’|𝑠, 𝑎) is the number of times
that it resulted in state 𝑠’.

• The current model estimate is

𝑃(𝑠’|𝑠, 𝑎) ≈
𝑀(𝑠#|𝑠, 𝑎)
𝑁(𝑠, 𝑎)

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

The epsilon-greedy strategy
As you wander through the maze, you reach some state, 𝑠. You
generate a uniform random number, 𝑧 ∈ (0,1).
• If 𝑧 ≤ 𝜖, then explore. Choose an action, 𝑎, uniformly at random,

and try it. See what 𝑠’ results. Increment 𝑁(𝑠, 𝑎) and 𝑀(𝑠’|𝑠, 𝑎).
• This happens with probability 𝜖.

• If 𝑧 > 𝜖, then exploit. Use value iteration or policy iteration to figure
out the best action in the current state, then do that action.
• This happens with probability 1 − 𝜖.

Compare: Epsilon-first and Epsilon-greedy

Advantages of Epsilon-first:
• In the beginning, when 𝑃(𝑠’|𝑠, 𝑎) is

still inaccurate, we just try things at
random (explore).
• We can choose the level of

precision that’s “enough” for us.
When 𝑃(𝑠’|𝑠, 𝑎) reaches that
point, we stop exploring, and
instead, we focus on getting the
biggest rewards possible (exploit).

Advantages of Epsilon-greedy:
• Gradually, over a series of many

experiments, 𝑁(𝑠, 𝑎) → ∞
• Therefore, as the number of

experiments gets large,

| ,𝑃 (𝑠’|𝑠, 𝑎) − 𝑃(𝑠’|𝑠, 𝑎)| → 0

For both: 𝑃(𝑠’|𝑠, 𝑎) ≈ $(&!|&,))
+(&,))

Outline
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄 𝑠, 𝑎 directly, without ever explicitly

learning 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 1/𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

