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A contemporary backgammon set.  Public domain photo by 
Manuel Hegner, 2013, 

https://commons.wikimedia.org/w/index.php?curid=25006945

Hill_Climbing_with_Simulated_Annealing.gif, Public domain image, Kingpin13, 2013



Outline

• Stochastic games: the game itself is random
• Stochastic search: the game is deterministic, but we use randomness 

in the search, to find a fast approximate solution



Stochastic games

How can we incorporate dice throwing into the game 
tree?



Minimax
State evolves deterministically (when a player 
acts, that action uniquely determines the 
following state).

Current state is visible to both players.

Each player tries to maximize his or her own 
reward: 

• Maximize (over all possible moves I can 
make) the 

• Minimum (over all possible moves Min can 
make) of the resulting utility:

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

𝑈 𝑠′ = min
!""∈$(!")

𝑈(𝑠"")



Expectiminimax
State evolves stochastically (when a player 
acts, the game changes RANDOMLY, with a 
probability distribution 𝑃 𝑠" 𝑠, 𝑎 that depends 
on the action, 𝑎).

Current state, 𝑠,  is visible to the player.

The player tries to maximize his or her own 
reward: 

• Maximize (over all possible moves I can 
make) the 

• Expected value (over all possible successor 
states) of the resulting utility:

𝑄 𝑠, 𝑎 = 0
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")



Expectiminimax
State evolves stochastically (when a player acts, that 
action influences the state transition probability).

Current state is visible to both players.

Each player tries to maximize his or her own reward: 

• Maximize (over all possible moves I can make) the 

• Minimum (over all possible moves Min can make) of the 

• Expected value (over all possible successor states) of the 
resulting utility:

𝑈 𝑠 = max
'

0
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈 𝑠′ = min
'"

0
!""

𝑃 𝑠"" 𝑠′, 𝑎′ 𝑈(𝑠"")



Expectiminimax: notation
= MAX node.   𝑈 𝑠 = max

'∈((!)
𝑄(𝑠, 𝑎)

= MIN node.   𝑈 𝑠 = min
'∈((!)

𝑄(𝑠, 𝑎)

= Chance node.   𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

H



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

Emojis by Twitter, CC BY 4.0, 
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Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

By ICMA Photos - Coin 
Toss, CC BY-SA 2.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

71147286



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

H

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918



Expectiminimax example

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: he flips a coin and moves his 
game piece in the direction indicated.

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918



Expectiminimax example

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.
$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public 

Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: he flips a coin and moves his 
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw.



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: he flips a coin and moves his 
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw. 0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2
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Expectiminimax example
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Chance node:

𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")
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Expectiminimax example
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Expectiminimax example
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Outline

• Stochastic games: the game itself is random
• Stochastic search: the game is deterministic, but we use randomness 

in the search, to find a fast approximate solution



Stochastic search

Hill_Climbing_with_Simulated_Annealing.gif, Public domain image, Kingpin13, 2013



Computational Complexity of Minimax & 
Alpha-Beta for Deterministic Games
• Computational complexity of minimax is 𝑂{𝑏(}
• Alpha-beta reduces the complexity, in the best case, to 𝑂{𝑏(/*}
• There is no way to do an exact search with better complexity, but…
• Stochastic search (a.k.a. Monte Carlo tree search) finds an 

approximate answer by randomly sampling from the possible moves



• An approximate solution: stochastic search

𝑣(𝑠) ≈
1
𝑛8
+,-

.

𝑣(𝑖/0 random game starting from 𝑠)

• Asymptotically optimal: as 𝑛 → ∞, the approximation gets better.
• Controlled computational complexity: choose n to match the amount of 

computation you can afford.

Stochastic search



• Depth-limited search out to level d, 
then random simulation for a few 
levels after that

• Starting at level d:
• Select: choose the next state in the 

frontier
• Expand: find all of its children
• Simulate: play a random game from 

that node, to see what value results.  
Take that value to be the true value of 
this state

• Backpropagate: use these values in a 
minimax search, over d levels, to find 
the best move

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

Stochastic search

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf


Case study: AlphaGo

• “Gentlemen 
should not 
waste their time 
on trivial games 
-- they should 
play Go.”

• -- Confucius,

• The Analects

• ca. 500 B. C. E.

Anton Ninno, Roy Laird, Ph.D.
antonninno@yahoo.com
roylaird@gmail.com

special thanks to Kiseido Publications 



AlphaGo
Deep convolutional neural 
networks
• Treat the Go board as an 

image
• Can be trained to predict 

distribution over 
possible moves (policy) 
or expected value of 
position

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo
• Policy network: Given a game state, 𝑠, 

predict what would be the best next move.
• Input: game board as an image, 𝑠.  
• Output: 𝑝(𝑎|𝑠), probability that action 
𝑎 is best.

• Value network: Given a game state, 𝑠, 
compute the expected value of the board 
for player 0 (MAX).
• Input: game board as an image, 𝑠.  
• Output: 𝑣(𝑠), value of the game state.

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


Stochastic Search in AlphaGo
• Each edge in the search tree has 
• Probabilities 𝑝(𝑎|𝑠) computed by the policy network
• State+Move values 𝑄 𝑠, 𝑎 computed by the value network
• Counts 𝑁 𝑠, 𝑎 specifying how many times that move has been tried

• Tree traversal policy selects actions randomly according to 
some combination of 𝑝(𝑎|𝑠), 𝑄 𝑠, 𝑎 , and 𝑁 𝑠, 𝑎
• At the end of each simulation, values of the final boards are 

averaged in order to re-estimate the value of the initial move.



D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

Stochastic Search in AlphaGo

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


Conclusions
• Stochastic games: the game itself is random, so we need to use 

expectiminimax instead of minimax:
𝑈 𝑠 = max

!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑈(𝑠#)

𝑈 𝑠′ = min
!#

'
"##

𝑃 𝑠## 𝑠′, 𝑎′ 𝑈(𝑠##)

• Stochastic search: the game is deterministic, but we use randomness 
in the search, to find a fast approximate solution
• Select and expand nodes as usual, using minimax
• Simulate the leaf nodes: 𝑣(𝑠) ≈ )

*
∑+,)
* 𝑣(𝑖-. random game starting from 𝑠)

• Back-propagate using minimax


