
CS440/ECE448 Lecture 31:
Stochastic Search & Stochastic

Games
Mark Hasegawa-Johnson, 4/2022

CC-BY-4.0: feel free to copy if you cite the source

A contemporary backgammon set. Public domain photo by
Manuel Hegner, 2013,

https://commons.wikimedia.org/w/index.php?curid=25006945

Hill_Climbing_with_Simulated_Annealing.gif, Public domain image, Kingpin13, 2013

Outline

• Stochastic games: the game itself is random
• Stochastic search: the game is deterministic, but we use randomness

in the search, to find a fast approximate solution

Stochastic games

How can we incorporate dice throwing into the game
tree?

Minimax
State evolves deterministically (when a player
acts, that action uniquely determines the
following state).

Current state is visible to both players.

Each player tries to maximize his or her own
reward:

• Maximize (over all possible moves I can
make) the

• Minimum (over all possible moves Min can
make) of the resulting utility:

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

𝑈 𝑠′ = min
!""∈$(!")

𝑈(𝑠"")

Expectiminimax
State evolves stochastically (when a player
acts, the game changes RANDOMLY, with a
probability distribution 𝑃 𝑠" 𝑠, 𝑎 that depends
on the action, 𝑎).

Current state, 𝑠, is visible to the player.

The player tries to maximize his or her own
reward:

• Maximize (over all possible moves I can
make) the

• Expected value (over all possible successor
states) of the resulting utility:

𝑄 𝑠, 𝑎 = 0
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

Expectiminimax
State evolves stochastically (when a player acts, that
action influences the state transition probability).

Current state is visible to both players.

Each player tries to maximize his or her own reward:

• Maximize (over all possible moves I can make) the

• Minimum (over all possible moves Min can make) of the

• Expected value (over all possible successor states) of the
resulting utility:

𝑈 𝑠 = max
'

0
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈 𝑠′ = min
'"

0
!""

𝑃 𝑠"" 𝑠′, 𝑎′ 𝑈(𝑠"")

Expectiminimax: notation
= MAX node. 𝑈 𝑠 = max

'∈((!)
𝑄(𝑠, 𝑎)

= MIN node. 𝑈 𝑠 = min
'∈((!)

𝑄(𝑠, 𝑎)

= Chance node. 𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By ICMA Photos - Coin
Toss, CC BY-SA 2.0,

https://commons.wikimed
ia.org/w/index.php?curid=

71147286

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.
$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public

Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw.

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw. 0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

H

H

H

H

HHH

H

T

T T

TTTT

T H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

H

H

H

H

HHH

H

T

T T

TTTT

T

Chance node:

𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 1 -1

H

H

H

H

HHH

H

T

T T

TTTT

T

Max node:

𝑈 𝑠 = max
#∈%(!)

𝑄(𝑠, 𝑎)

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 1 -1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T

Chance node:

𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 -1 1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T

Min node:

𝑈 𝑠 = min
#∈%(!)

𝑄(𝑠, 𝑎)

H

Outline

• Stochastic games: the game itself is random
• Stochastic search: the game is deterministic, but we use randomness

in the search, to find a fast approximate solution

Stochastic search

Hill_Climbing_with_Simulated_Annealing.gif, Public domain image, Kingpin13, 2013

Computational Complexity of Minimax &
Alpha-Beta for Deterministic Games
• Computational complexity of minimax is 𝑂{𝑏(}
• Alpha-beta reduces the complexity, in the best case, to 𝑂{𝑏(/*}
• There is no way to do an exact search with better complexity, but…
• Stochastic search (a.k.a. Monte Carlo tree search) finds an

approximate answer by randomly sampling from the possible moves

• An approximate solution: stochastic search

𝑣(𝑠) ≈
1
𝑛8
+,-

.

𝑣(𝑖/0 random game starting from 𝑠)

• Asymptotically optimal: as 𝑛 → ∞, the approximation gets better.
• Controlled computational complexity: choose n to match the amount of

computation you can afford.

Stochastic search

• Depth-limited search out to level d,
then random simulation for a few
levels after that

• Starting at level d:
• Select: choose the next state in the

frontier
• Expand: find all of its children
• Simulate: play a random game from

that node, to see what value results.
Take that value to be the true value of
this state

• Backpropagate: use these values in a
minimax search, over d levels, to find
the best move

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

Stochastic search

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf

Case study: AlphaGo

• “Gentlemen
should not
waste their time
on trivial games
-- they should
play Go.”

• -- Confucius,

• The Analects

• ca. 500 B. C. E.

Anton Ninno, Roy Laird, Ph.D.
antonninno@yahoo.com
roylaird@gmail.com

special thanks to Kiseido Publications

AlphaGo
Deep convolutional neural
networks
• Treat the Go board as an

image
• Can be trained to predict

distribution over
possible moves (policy)
or expected value of
position

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo
• Policy network: Given a game state, 𝑠,

predict what would be the best next move.
• Input: game board as an image, 𝑠.
• Output: 𝑝(𝑎|𝑠), probability that action
𝑎 is best.

• Value network: Given a game state, 𝑠,
compute the expected value of the board
for player 0 (MAX).
• Input: game board as an image, 𝑠.
• Output: 𝑣(𝑠), value of the game state.

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Stochastic Search in AlphaGo
• Each edge in the search tree has
• Probabilities 𝑝(𝑎|𝑠) computed by the policy network
• State+Move values 𝑄 𝑠, 𝑎 computed by the value network
• Counts 𝑁 𝑠, 𝑎 specifying how many times that move has been tried

• Tree traversal policy selects actions randomly according to
some combination of 𝑝(𝑎|𝑠), 𝑄 𝑠, 𝑎 , and 𝑁 𝑠, 𝑎
• At the end of each simulation, values of the final boards are

averaged in order to re-estimate the value of the initial move.

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

Stochastic Search in AlphaGo

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Conclusions
• Stochastic games: the game itself is random, so we need to use

expectiminimax instead of minimax:
𝑈 𝑠 = max

!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑈(𝑠#)

𝑈 𝑠′ = min
!#

'
"##

𝑃 𝑠## 𝑠′, 𝑎′ 𝑈(𝑠##)

• Stochastic search: the game is deterministic, but we use randomness
in the search, to find a fast approximate solution
• Select and expand nodes as usual, using minimax
• Simulate the leaf nodes: 𝑣(𝑠) ≈)

*
∑+,)
* 𝑣(𝑖-. random game starting from 𝑠)

• Back-propagate using minimax

