CS440/ECE448 Lecture 31: Stochastic Search \& Stochastic Games

Mark Hasegawa-Johnson, 4/2022
CC-BY-4.0: feel free to copy if you cite the source

Hill_Climbing_with_Simulated_Annealing.gif, Public domain image, Kingpin13, 2013

A contemporary backgammon set. Public domain photo by Manuel Hegner, 2013,
https://commons.wikimedia.org/w/index.php?curid=25006945

Outline

- Stochastic games: the game itself is random
- Stochastic search: the game is deterministic, but we use randomness in the search, to find a fast approximate solution

Stochastic games

How can we incorporate dice throwing into the game tree?

Minimax

State evolves deterministically (when a player acts, that action uniquely determines the following state).
Current state is visible to both players.
Each player tries to maximize his or her own reward:

- Maximize (over all possible moves I can make) the
- Minimum (over all possible moves Min can make) of the resulting utility:

$$
\begin{gathered}
U(s)=\max _{s^{\prime} \in C(s)} U\left(s^{\prime}\right) \\
U\left(s^{\prime}\right)=\min _{s^{\prime \prime} \prime \in C\left(s^{\prime}\right)} U\left(s^{\prime \prime}\right)
\end{gathered}
$$

Expectiminimax

State evolves stochastically (when a player acts, the game changes RANDOMLY, with a probability distribution $P\left(s^{\prime} \mid s, a\right)$ that depends on the action, a).

Current state, s, is visible to the player.
The player tries to maximize his or her own reward:

- Maximize (over all possible moves I can
 make) the
- Expected value (over all possible successor states) of the resulting utility:

$$
Q(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)
$$

Expectiminimax

State evolves stochastically (when a player acts, that action influences the state transition probability).

Current state is visible to both players.
Each player tries to maximize his or her own reward:

- Maximize (over all possible moves I can make) the
- Minimum (over all possible moves Min can make) of the
- Expected value (over all possible successor states) of the
 resulting utility:

$$
\begin{aligned}
U(s) & =\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right) \\
U\left(s^{\prime}\right) & =\min _{a \prime} \sum_{s^{\prime \prime}} P\left(s^{\prime \prime} \mid s^{\prime}, a^{\prime}\right) U\left(s^{\prime \prime}\right)
\end{aligned}
$$

Expectiminimax: notation

$=$ MAX node. $U(s)=\max _{a \in A(s)} Q(s, a)$
$=$ MIN node. $U(s)=\min _{a \in A(s)} Q(s, a)$
$=$ Chance node. $Q(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)$

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.

By ICMA Photos - Coin Toss, CC BY-SA 2.0,
https://commons.wikimed ia.org/w/index.php?curid= 71147286

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: he flips a coin and moves his game piece in the direction indicated.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: he flips a coin and moves his game piece in the direction indicated.
Reward: $\$ 2$ to the winner, $\$ 0$ for a draw.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366. \$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public

Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: he flips a coin and moves his game piece in the direction indicated.
Reward: $\$ 2$ to the winner, $\$ 0$ for a draw.

Expectiminimax example
Chance node:

$$
Q(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)
$$

Expectiminimax example Max node:

$$
U(s)=\max _{a \in A(s)} Q(s, a)
$$

Expectiminimax example
Chance node:

$$
Q(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)
$$

Expectiminimax example Min node:

$$
U(s)=\min _{a \in A(s)} Q(s, a)
$$

Outline

- Stochastic games: the game itself is random
- Stochastic search: the game is deterministic, but we use randomness in the search, to find a fast approximate solution

Stochastic search

Hill_Climbing_with_Simulated_Annealing.gif, Public domain image, Kingpin13, 2013

Computational Complexity of Minimax \& Alpha-Beta for Deterministic Games

- Computational complexity of minimax is $O\left\{b^{d}\right\}$
- Alpha-beta reduces the complexity, in the best case, to $O\left\{b^{d / 2}\right\}$
- There is no way to do an exact search with better complexity, but...
- Stochastic search (a.k.a. Monte Carlo tree search) finds an approximate answer by randomly sampling from the possible moves

Stochastic search

- An approximate solution: stochastic search

$$
v(s) \approx \frac{1}{n} \sum_{i=1}^{n} v\left(i^{\text {th }} \text { random game starting from } s\right)
$$

- Asymptotically optimal: as $n \rightarrow \infty$, the approximation gets better.
- Controlled computational complexity: choose n to match the amount of computation you can afford.

Stochastic search

- Depth-limited search out to level d, then random simulation for a few levels after that
- Starting at level d:
- Select: choose the next state in the frontier
- Expand: find all of its children
- Simulate: play a random game from that node, to see what value results. Take that value to be the true value of
 this state
- Backpropagate: use these values in a minimax search, over d levels, to find the best move

Case study: AlphaGo

- "Gentlemen should not waste their time on trivial games
-- they should play Go."
- -- Confucius,
- The Analects
- ca. 500 B. C. E.

Anton Ninno, Roy Laird, Ph.D.
antonninno@yahoo.com
roylaird@gmail.com
special thanks to Kiseido Publications

AlphaGo

Deep convolutional neural networks

- Treat the Go board as an image
- Can be trained to predict distribution over possible moves (policy) or expected value of position

AlphaGo

Policy network
$p_{\sigma / \rho}(a \mid s)$

- Policy network: Given a game state, s, predict what would be the best next move.
- Input: game board as an image, s.
- Output: $p(a \mid s)$, probability that action a is best.
- Value network: Given a game state, s, compute the expected value of the board for player 0 (MAX).
- Input: game board as an image, s.
- Output: $v(s)$, value of the game state.

Stochastic Search in AlphaGo

- Each edge in the search tree has
- Probabilities $p(a \mid s)$ computed by the policy network
- State+Move values $Q(s, a)$ computed by the value network
- Counts $N(s, a)$ specifying how many times that move has been tried
- Tree traversal policy selects actions randomly according to some combination of $p(a \mid s), Q(s, a)$, and $N(s, a)$
- At the end of each simulation, values of the final boards are averaged in order to re-estimate the value of the initial move.

Stochastic Search in AlphaGo

Figure $3 \mid$ Monte Carlo tree search in AlphaGo. a, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus $u(P)$ that depends on a stored prior probability P for that edge. \mathbf{b}, The leaf node may be expanded; the new node is processed once by the policy network p_{σ} and the output probabilities are stored as prior probabilities P for each action. c, At the end of a simulation, the leaf node
c
Evaluation

d
Backup

is evaluated in two ways: using the value network v_{θ}; and by running a rollout to the end of the game with the fast rollout policy p_{π}, then computing the winner with function r. d, Action values Q are updated to track the mean value of all evaluations $r(\cdot)$ and $v_{\theta}(\cdot)$ in the subtree below that action.
D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

Conclusions

- Stochastic games: the game itself is random, so we need to use expectiminimax instead of minimax:

$$
\begin{aligned}
U(s) & =\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right) \\
U\left(s^{\prime}\right) & =\min _{a^{\prime}} \sum_{s^{\prime \prime}} P\left(s^{\prime \prime} \mid s^{\prime}, a^{\prime}\right) U\left(s^{\prime \prime}\right)
\end{aligned}
$$

- Stochastic search: the game is deterministic, but we use randomness in the search, to find a fast approximate solution
- Select and expand nodes as usual, using minimax
- Simulate the leaf nodes: $v(s) \approx \frac{1}{n} \sum_{i=1}^{n} v\left(i^{\text {th }}\right.$ random game starting from $\left.s\right)$
- Back-propagate using minimax

