
Lecture 28: Exam 2 Review
CC-BY 4.0: share at will, but cite the source

Mark Hasegawa-Johnson, 4/2022

Exam 2 Mechanics

• If you’re in the online section, or have signed up to take the exam
online, you should get an email sometime during the day Friday (4/1)
giving you a zoom URL
• If you’ve signed up for a conflict exam, you should get email

sometime during the day Friday (4/1) to schedule it
• Otherwise, please show up here (1002 ECEB) on Monday 4/4 at

1:00pm.

Exam 2 Mechanics

• Permitted: one page of handwritten notes, front & back
• Not permitted: calculators, computers, textbook

Exam 2 Content

• Lectures 15-18: Search
• Search: BFS, DFS, Explored set, Explored dict
• UCS, Greedy, A* Search
• Heuristics: admissible, consistent, dominant
• Constraint satisfaction problems

• Lectures 20-24: Bayesian networks
• Bayesian networks; inference by enumeration
• Learning: Laplace smoothing, Expectation maximization
• Hidden Markov models
• Viterbi algorithm
• Part of speech tagging

Search
• BFS: frontier is a queue

• Time complexity = space complexity = 𝑂 𝑏!
• Complete and, if every step has the same cost, optimal

• DFS: frontier is a stack
• Time complexity = 𝑂 𝑏" , space complexity = 𝑂 𝑚𝑏
• Neither optimal nor even (if there are loops or an infinite search space) complete

• UCS: frontier = priority queue sorted by g(n)
• Complete and optimal
• Time complexity = space complexity = # states with g(n) < best path to goal

• Greedy: frontier = priority queue sorted by h(n)
• Neither complete nor optimal
• Time complexity = space complexity = 𝑂 𝑏"

• A*: frontier = priority queue sorted by h(n)+g(n). Complete and optimal if:
• h(n) admissible and explored set not used (explored dict is OK), or if
• h(n) consistent
• Time complexity = space complexity = # states with g(n)+h(n) < best path to goal

Explored set vs. Explored dict

• Explored set
• Advantage: complexity is never worse than exhaustive search
• Disadvantage: suboptimal if there is any reason to think the first path to a

state might ever not be the best path to that state

• Explored dict
• Advantage: guaranteed to be optimal
• Disadvantage: not guaranteed to limit complexity below that of an exhaustive

search, if there is any reason to think the first path to a state might ever not
be the best path to that state

Heuristics

• Admissible: ℎ(𝑛) ≤ 𝑑(𝑛)
• Guarantees that the first time you expand the goal state, it will be the best

path

• Consistent: ℎ(𝑚) − ℎ(𝑛) ≤ 𝑑(𝑚) − 𝑑(𝑛) if 𝑑(𝑚) − 𝑑(𝑛) ≥ 0
• Guarantees that the first time you expand any state, it will be the best path to

that state

• Dominant: ℎ!(𝑛) dominates ℎ"(𝑛) if ℎ!(𝑛) ≥ ℎ"(𝑛) for all n.
• If both are admissible, it guarantees that search using ℎ!(𝑛) will be faster

than search using ℎ"(𝑛)

Constraint satisfaction problem

• Every path to goal has the same depth, so DFS is as good as BFS
• Every successful path has the same cost, so the A* complexity guarantee (#

states with g(n)+h(n)<best cost) is trivial and useless
• Instead, we use heuristics that rank-order search candidates based on

rough estimates of probability of success
• LRV: choose the variable with the fewest remaining values

• Minimize the current branching factor
• MCV: choose the variable that causes the most constraints

• Because you’ll have to solve that variable eventually
• LCV: choose the value that causes the fewest constraints

• Because it’s most likely to be the correct answer

Bayesian networks: Structure

• Nodes: random variables

• Arcs: interactions
• An arrow from one variable to another indicates

direct causal influence of variable #1 on variable #2
• Must form a directed, acyclic graph

Conditional Independence ≠ Independence

• B and E (no common ancestor, common
descendant A):
• Independent
• Not conditionally independent given A

• J and M (common ancestor A, no common
descendant):
• Not independent
• Conditionally independent given A

• B and M (B is the ancestor of M):
• Not independent
• Conditionally independent given A

Belief propagation, step by step

1. Identify a path through the Bayesian network that includes all
variables, including the query variable and all observed variables,
starting at their common ancestor

2. Calculate the joint probability of the query variable and all observed
variables, iteratively marginalizing out all intermediate variables
step-by-step along the path.
1. Product Step: 𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐴, 𝐵)𝑃(𝐶|𝐴, 𝐵)
2. Sum Step: 𝑃 𝐴, 𝐶 = ∑# 𝑃(𝐴, 𝐵 = 𝑏, 𝐶)

3. Apply Bayes’ rule to get the desired conditional probability

Laplace smoothing

Just like in naïve Bayes:
• Laplace smoothing makes it possible for things to happen in the test data

that never happened in the training data. For example, maximum likelihood
resulted in 𝑃 𝐹 = 𝐹|𝑆 = 𝑇, 𝐴 = 𝑇 = 0, but with Laplace smoothing, we
smooth that parameter to 𝑃 𝐹 = 𝐹|𝑆 = 𝑇, 𝐴 = 𝑇 = #

!$"#
• This smoothing improves generalization from training data to test data.

Laplace smoothing

Unlike naïve Bayes:
• In Bayesian networks, we usually assume that we know the cardinality of each

random variable in advance, so no extra probability mass is kept aside for OOV
events.

𝑃 𝑋 = 𝑥|𝐻 = ℎ =
(# observations of (H=ℎ, X=𝑥))+k

observations of (H=ℎ) + 𝑘 G (# distinct values of 𝑋)

Expectation Maximization (EM): Main idea

Remember that maximum likelihood estimation counts examples:

𝑃 𝐹 = 𝑇 𝐴 = 𝑎, 𝑆 = 𝑠 = # days A=a, "#$, &#'
days "#$, (#)

Expectation maximization is similar, but using “expected counts” instead of
actual counts:

𝑃 𝐹 = 𝑇 𝐴 = 𝑎, 𝑆 = 𝑠 =
𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠, 𝐹 = 𝑇]

𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠]

Where E[X] means “expected value of X”.

Expectation Maximization (EM) is iterative
INITIALIZE: guess the model parameters.

ITERATE until convergence. If F and A are fully observed on each day,
but S is sometimes unobserved, then:
1. E-Step: 𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹 = 𝑓] = ∑%:'$(',*$(*𝑃 𝑆 = 𝑠|𝑎, 𝑓

2. M-Step: 𝑃 𝐹 = 𝑓 𝑆 = 𝑠, 𝐴 = 𝑎 = +[#days .(/,0(',1(*]
+[#days .(/, 0(']

Continue the iteration, shown above, until the model parameters stop
changing.

Hidden Markov Model

• A hidden Markov model assumes that both the state and the
observation are Markov.
• State Transitions: the Markov assumption means that each state

variable depends only on the preceding time step:
P(Yt | Y0, …, Yt-1) = P(Yt | Yt-1)

• Observation model: the Markov assumption means that each state
variable depends only on the current state:

P(Xt | Y0, …, Yt, X1, …, Xt-1) = P(Xt | Yt)

Y0

X1

Y1

Xt-1

Yt-1

Xt

Yt…
X2

Y2

Outline

• Belief propagation
• What is 𝑃(𝑌%|𝑋! = 𝑥!, … , 𝑋& = 𝑥&)?

• Viterbi Algorithm
• What is the most probable sequence {𝑌!, … , 𝑌&} given observations {𝑋! =
𝑥!, … , 𝑋& = 𝑥&}?

The Trellis

Va
lu

e
of

 th
e

hi
dd

en
 v

ar
ia

bl
e,

 𝑅
% T

F

𝑈5 = 𝐹 𝑈6 = 𝑇 𝑈7 = 𝑇
Time

…

𝑈8 = 𝐹

• X-Axis = time
• Y-Axis = state variable

(𝑅3)
• Node = a particular state

at a particular time
• Edge = possible

transition from 𝑅34! to
𝑅3

Viterbi Algorithm: Key concepts
Nodes and edges have numbers attached to them:
• Edge Probability: Probability of taking that transition, and then generating the

next observed output

𝑒%53 = 𝑃 𝑅3 = 𝑗, 𝑈3 = 𝑢3|𝑅34! = 𝑖

• Node Probability: Probability of the best path until node j at time t

𝑣53 = max
6',…,6()'

𝑃 𝑈! = 𝑢!… ,𝑈3 = 𝑢3, 𝑅! = 𝑟!, … , 𝑅3 = 𝑗

Viterbi Algorithm: the iteration step
Given edge probabilities defined as

𝑒%,5,3 = 𝑃 𝑅3 = 𝑗, 𝑈3 = 𝑢3|𝑅34! = 𝑖
and node probabilities defined as

𝑣5,3 = max
6',…,6()*,%

𝑃 𝑈! = 𝑢!… ,𝑈3 = 𝑢3, 𝑅! = 𝑟!, … , 𝑅34! = 𝑖, 𝑅3 = 𝑗

The node probability can be efficiently computed as

𝑣9,: = max
;

𝑣;,:<5𝑒;,9,:

Parts of speech

Most modern English dictionaries use these POS tags.
• Open-class words (anybody can make up a new word, in any of these

classes, at any time): nouns, verbs, adjectives, adverbs, interjections
• Closed-class words (it’s hard to make up a new word in these

classes): pronouns, prepositions, conjunctions, determiners

Most published, tagged data use POS tags that are finer-grained than
the nine tags listed above. For example, the next few slides describe
the Penn Treebank POS tag set.

Why do POS tagging?

• Because it’s highly accurate, typically 97%. That means you can run a
POS tagger as a pre-processing step, before doing harder natural
language understanding tasks.
• Because it’s necessary, if you want to know what the words in the

sentence mean.

Will Will ? Will will . Will will will Will ’s will to Will .
MD NNP SYM NNP MD SYM NNP MD VB NNP POS NN TO NNP SYM

Viterbi algorithm key formulas

Initial Node Probability:
log 𝑣5,! = log𝜋% + log 𝑏5,8'

Edge Probability:
log 𝑒%53 = log𝑎%5 + log 𝑏5,8(

Node Probability:
log 𝑣5,3 = max

%
log 𝑣%,34! + log 𝑒%53

Backpointer:
𝑖5,3∗ = argmax

%
log 𝑣%,34! + log 𝑒%53

Some sample problems

• Search
• BN
• HMM

Sample problem:
Search
(Assume ties are resolved in alphabetical
order)

• What path would BFS return? Answer: SG
• What states would be expanded? Answer: S, A, and G

• What path would DFS return? Answer: SABDG
• What states would be expanded? Answer: S, A, B, D, and G

• What path would UCS return? Answer: SACG
• What states would be expanded? Answer: S, A, C, D, B, and G

Sample problem:
Search
(Assume ties are resolved in alphabetical
order)

• Find the smallest possible modification that
makes h1 admissible
• Answer: h1(S)=4

• After your modification, which of these two
heuristics will result in the fastest run-time for
A* search?
• Answer: h1, because it still dominates h2

• Find the smallest possible modification that
makes h2 both admissible and consistent
• Answer: h2(S)=3

State H1 H2

S 5 4

A 3 2

B 6 6

C 2 1

D 3 3

G 0 0

Sample problem:
Bayesian network

P(A=T)=0.4,
P(B=T)=0.1, and

What is P(A=T|B=T,C=T)?

Answer:

𝑃 𝐴 = 𝑇 𝐵 = 𝑇, 𝐶 = 𝑇 =
𝑃(𝐴 = 𝑇, 𝐵 = 𝑇, 𝐶 = 𝑇)

𝑃(𝐵 = 𝑇, 𝐶 = 𝑇)

=
𝑃 𝐴 = 𝑇 𝑃 𝐵 = 𝑇 𝑃(𝐶 = 𝑇|𝐴 = 𝑇, 𝐵 = 𝑇)

∑)#'' 𝑃 𝐴 = 𝑎 𝑃 𝐵 = 𝑇 𝑃(𝐶 = 𝑇|𝐴 = 𝑎, 𝐵 = 𝑇)

=
(0.4)(0.1)(0.9)

0.4 0.1 0.9 + (0.6)(0.1)(0.7)

A, B P(C=T|A,B)

F,F 0.7

F,T 0.7

T,F 0.1

T,T 0.9

Sample problem:
Bayesian network

P(A=T)=0.4,
P(B=T)=0.1, and

Suppose we have a series of
observations with one missing
value for A, as shown. What is
the expected number of days
on which A is true?

Answer:
3 + 𝑃 𝐴 = 𝑇 𝐵 = 𝑇, 𝐶 = 𝑇

= 3 +
(0.4)(0.1)(0.9)

0.4 0.1 0.9 + (0.6)(0.1)(0.7)

A, B P(C=T|A,
B)

F,F 0.7

F,T 0.7

T,F 0.1

T,T 0.9

Day A B C
1 T T F

2 T F T
3 F T T

4 T T T
5 ? T T

Sample problem:
HMM

• Find P(X2=V|E1=bill, E2=rose)

N V
0.2

0.8 0.2

0.8

Sample problem:
HMM

• Find the most likely state sequence

N V
0.8

0.8 0.1

0.8

Va
lu

e
of

 th
e

hi
dd

en
 v

ar
ia

bl
e,

 𝑅
% N

V
𝐸! = 𝑏𝑖𝑙𝑙 𝐸" = 𝑟𝑜𝑠𝑒

