Lecture 28: Exam 2 Review

CC-BY 4.0: share at will, but cite the source

Mark Hasegawa-Johnson, 4/2022

Exam 2 Mechanics

- If you're in the online section, or have signed up to take the exam online, you should get an email sometime during the day Friday (4/1) giving you a zoom URL
- If you've signed up for a conflict exam, you should get email sometime during the day Friday (4/1) to schedule it
- Otherwise, please show up here (1002 ECEB) on Monday 4/4 at 1:00pm.

Exam 2 Mechanics

- Permitted: one page of handwritten notes, front & back
- Not permitted: calculators, computers, textbook

Exam 2 Content

- Lectures 15-18: Search
 - Search: BFS, DFS, Explored set, Explored dict
 - UCS, Greedy, A* Search
 - Heuristics: admissible, consistent, dominant
 - Constraint satisfaction problems
- Lectures 20-24: Bayesian networks
 - Bayesian networks; inference by enumeration
 - Learning: Laplace smoothing, Expectation maximization
 - Hidden Markov models
 - Viterbi algorithm
 - Part of speech tagging

Search

- BFS: frontier is a queue
 - Time complexity = space complexity = $O\{b^d\}$
 - Complete and, if every step has the same cost, optimal
- DFS: frontier is a stack
 - Time complexity = $O\{b^m\}$, space complexity = $O\{mb\}$
 - Neither optimal nor even (if there are loops or an infinite search space) complete
- UCS: frontier = priority queue sorted by g(n)
 - Complete and optimal
 - Time complexity = space complexity = # states with g(n) < best path to goal
- Greedy: frontier = priority queue sorted by h(n)
 - Neither complete nor optimal
 - Time complexity = space complexity = $O\{b^m\}$
- A*: frontier = priority queue sorted by h(n)+g(n). Complete and optimal if:
 - h(n) admissible and explored set not used (explored dict is OK), or if
 - h(n) consistent
 - Time complexity = space complexity = # states with g(n)+h(n) < best path to goal

Explored set vs. Explored dict

- Explored set
 - Advantage: complexity is never worse than exhaustive search
 - Disadvantage: suboptimal if there is any reason to think the first path to a state might ever not be the best path to that state
- Explored dict
 - Advantage: guaranteed to be optimal
 - Disadvantage: not guaranteed to limit complexity below that of an exhaustive search, if there is any reason to think the first path to a state might ever not be the best path to that state

Heuristics

- Admissible: $h(n) \leq d(n)$
 - Guarantees that the first time you expand the goal state, it will be the best path
- Consistent: $h(m) h(n) \le d(m) d(n)$ if $d(m) d(n) \ge 0$
 - Guarantees that the first time you expand any state, it will be the best path to that state
- Dominant: $h_1(n)$ dominates $h_2(n)$ if $h_1(n) \ge h_2(n)$ for all n.
 - If both are admissible, it guarantees that search using $h_1(n)$ will be faster than search using $h_2(n)$

Constraint satisfaction problem

- Every path to goal has the same depth, so DFS is as good as BFS
- Every successful path has the same cost, so the A* complexity guarantee (# states with g(n)+h(n)<best cost) is trivial and useless
- Instead, we use heuristics that rank-order search candidates based on rough estimates of probability of success
- LRV: choose the variable with the fewest remaining values
 - Minimize the current branching factor
- MCV: choose the variable that causes the most constraints
 - Because you'll have to solve that variable eventually
- LCV: choose the value that causes the fewest constraints
 - Because it's most likely to be the correct answer

Bayesian networks: Structure

- Arcs: interactions
 - An arrow from one variable to another indicates direct <u>causal</u> influence of variable #1 on variable #2
 - Must form a directed, acyclic graph

Conditional Independence ≠ Independence

- B and E (no common ancestor, common descendant A):
 - Independent
 - Not conditionally independent given A
- J and M (common ancestor A, no common descendant):
 - Not independent
 - Conditionally independent given A
- B and M (B is the ancestor of M):
 - Not independent
 - Conditionally independent given A

Belief propagation, step by step

- 1. Identify a path through the Bayesian network that includes all variables, including the query variable and all observed variables, starting at their common ancestor
- 2. Calculate the joint probability of the query variable and all observed variables, iteratively marginalizing out all intermediate variables step-by-step along the path.
 - 1. Product Step: P(A, B, C) = P(A, B)P(C|A, B)
 - 2. Sum Step: $P(A, C) = \sum_{b} P(A, B = b, C)$
- 3. Apply Bayes' rule to get the desired conditional probability

Laplace smoothing

Just like in naïve Bayes:

- Laplace smoothing makes it possible for things to happen in the test data that never happened in the training data. For example, maximum likelihood resulted in P(F = F | S = T, A = T) = 0, but with Laplace smoothing, we smooth that parameter to $P(F = F | S = T, A = T) = \frac{k}{1+2k}$
- This smoothing improves generalization from training data to test data.

Laplace smoothing

Unlike naïve Bayes:

 In Bayesian networks, we usually assume that we know the cardinality of each random variable in advance, so no extra probability mass is kept aside for OOV events.

$$P(X = x | H = h) = \frac{(\text{\# observations of } (H=h, X=x)) + k}{(\text{\# observations of } (H=h)) + k \cdot (\text{\# distinct values of } X)}$$

Expectation Maximization (EM): Main idea

Remember that maximum likelihood estimation counts examples:

$$P(F = T | A = a, S = s) = \frac{\# \text{ days } A = a, S = s, F = T}{\# \text{ days } S = s, A = a}$$

Expectation maximization is similar, but using "expected counts" instead of actual counts:

$$P(F = T | A = a, S = s) = \frac{E[\# \text{ days } A = a, S = s, F = T]}{E[\# \text{ days } A = a, S = s]}$$

Where E[X] means "expected value of X".

Expectation Maximization (EM) is iterative **INITIALIZE**: **guess** the model parameters.

ITERATE until convergence. If F and A are fully observed on each day, but S is sometimes unobserved, then:

1. E-Step:
$$E[\# \text{ days } S = s, A = a, F = f] = \sum_{i:a_i = a, f_i = f} P(S = s | a, f)$$

2. M-Step: $P(F = f | S = s, A = a) = \frac{E[\# \text{ days } S = s, A = a, F = f]}{E[\# \text{ days } S = s, A = a]}$

Continue the iteration, shown above, until the model parameters stop changing.

Hidden Markov Model

- A hidden Markov model assumes that both the state and the observation are Markov.
- <u>State Transitions</u>: the Markov assumption means that each state variable depends only on the preceding time step:

 $P(Y_{t} | Y_{0}, ..., Y_{t-1}) = P(Y_{t} | Y_{t-1})$

• **Observation model:** the Markov assumption means that each state variable depends only on the current state:

 $P(X_t | Y_0, ..., Y_t, X_1, ..., X_{t-1}) = P(X_t | Y_t)$

Outline

- Belief propagation
 - What is $P(Y_t | X_1 = x_1, ..., X_T = x_T)$?
- Viterbi Algorithm
 - What is the most probable sequence $\{Y_1, \dots, Y_T\}$ given observations $\{X_1 = x_1, \dots, X_T = x_T\}$?

The Trellis

- X-Axis = time
- Y-Axis = state variable (R_t)
- Node = a particular state at a particular time
- Edge = possible transition from R_{t-1} to R_t

Viterbi Algorithm: Key concepts

Nodes and edges have numbers attached to them:

 <u>Edge Probability</u>: Probability of taking that transition, and then generating the next observed output

$$e_{ijt} = P(R_t = j, U_t = u_t | R_{t-1} = i)$$

• Node Probability: Probability of the best path until node j at time t

$$v_{jt} = \max_{r_1, \dots, r_{t-1}} P(U_1 = u_1 \dots, U_t = u_t, R_1 = r_1, \dots, R_t = j)$$

Viterbi Algorithm: the iteration step

Given edge probabilities defined as

$$e_{i,j,t} = P(R_t = j, U_t = u_t | R_{t-1} = i)$$

and node probabilities defined as

$$v_{j,t} = \max_{r_1,\dots,r_{t-2},i} P(U_1 = u_1 \dots, U_t = u_t, R_1 = r_1, \dots, R_{t-1} = i, R_t = j)$$

The node probability can be efficiently computed as

$$v_{j,t} = \max_{i} v_{i,t-1} e_{i,j,t}$$

Parts of speech

Most modern English dictionaries use these POS tags.

- **Open-class words** (anybody can make up a new word, in any of these classes, at any time): nouns, verbs, adjectives, adverbs, interjections
- **Closed-class words** (it's hard to make up a new word in these classes): pronouns, prepositions, conjunctions, determiners

Most published, tagged data use POS tags that are finer-grained than the nine tags listed above. For example, the next few slides describe the Penn Treebank POS tag set.

Why do POS tagging?

- Because it's highly accurate, typically 97%. That means you can run a POS tagger as a pre-processing step, before doing harder natural language understanding tasks.
- Because it's necessary, if you want to know what the words in the sentence mean.

Will Will ? Will will . Will will will Will 's will to Will . MD NNP SYM NNP MD SYM NNP MD VB NNP POS NN TO NNP SYM

Viterbi algorithm key formulas

Initial Node Probability:

$$\log v_{j,1} = \log \pi_i + \log b_{j,x_1}$$

Edge Probability:

$$\log e_{ijt} = \log a_{ij} + \log b_{j,x_t}$$

Node Probability:

$$\log v_{j,t} = \max_{i} \left(\log v_{i,t-1} + \log e_{ijt} \right)$$

Backpointer:

$$i_{j,t}^* = \operatorname*{argmax}_{i} \left(\log v_{i,t-1} + \log e_{ijt} \right)$$

Some sample problems

- Search
- BN
- HMM

Sample problem: Search

(Assume ties are resolved in alphabetical order)

- What path would BFS return? Answer: SG
 - What states would be expanded? Answer: S, A, and G
- What path would DFS return? Answer: SABDG
 - What states would be expanded? Answer: S, A, B, D, and G
- What path would UCS return? Answer: SACG
 - What states would be expanded? Answer: S, A, C, D, B, and G

Sample problem: Search

(Assume ties are resolved in alphabetical order)

State	H1	H2
S	5	4
А	3	2
В	6	6
С	2	1
D	3	3
G	0	0

- Find the smallest possible modification that makes h1 admissible
 - Answer: h1(S)=4
- After your modification, which of these two heuristics will result in the fastest run-time for A* search?
 - Answer: h1, because it still dominates h2
- Find the smallest possible modification that makes h2 both admissible and consistent
 - Answer: h2(S)=3

Sample problem: Bayesian network

А, В	P(C=T A,B)
F,F	0.7
F,T	0.7
T,F	0.1
Т,Т	0.9

P(A=T)=0.4,

What is P(A=T|B=T,C=T)?

Answer:

$$P(A = T|B = T, C = T) = \frac{P(A = T, B = T, C = T)}{P(B = T, C = T)}$$
$$= \frac{P(A = T)P(B = T)P(C = T|A = T, B = T)}{\sum_{a=T}^{T} P(A = a)P(B = T)P(C = T|A = a, B = T)}$$
$$= \frac{(0.4)(0.1)(0.9)}{(0.4)(0.1)(0.9) + (0.6)(0.1)(0.7)}$$

Sample problem: Bayesian network

P(B=T)=0.1, and				
А, В	P(C=T A, B)			
F,F	0.7			
F,T	0.7			
T,F	0.1			
T,T	0.9			

 $P(\Delta = T) = 0 \Lambda$

Day	Α	В	С	
1	Т	Т	F	
2	Т	F	Т	
3	F	т	Т	
4	Т	Т	Т	
5	?	т	Т	

 A
 B

 C

Suppose we have a series of observations with one missing value for A, as shown. What is the expected number of days on which A is true?

Answer:

3 + P(A = T | B = T, C = T)= 3 + $\frac{(0.4)(0.1)(0.9)}{(0.4)(0.1)(0.9) + (0.6)(0.1)(0.7)}$

Find P(X2=V|E1=bill, E2=rose)

Solution: Using the forward algorithm, we can compute the joint probabilities as

$$P(E, X_2 = V) = P(X_1 = N, E_1, X_2 = V, E_2) + P(X_1 = V, E_1, X_2 = V, E_2)$$

= (0.8)(0.4)(0.9)(0.2) + (0.2)(0.2)(0.1)(0.2)
$$P(E, X_2 = N) = P(X_1 = N, E_1, X_2 = N, E_2) + P(X_1 = V, E_1, X_2 = N, E_2)$$

= (0.8)(0.4)(0.1)(0.4) + (0.2)(0.2)(0.9)(0.4)

Dividing the first row by the sum of the two rows, we get

 $P(X_2 = V|E) = \frac{(0.8)(0.4)(0.9)(0.2) + (0.2)(0.2)(0.1)(0.2)}{(0.8)(0.4)(0.9)(0.2) + (0.2)(0.2)(0.1)(0.2) + (0.8)(0.4)(0.1)(0.4) + (0.2)(0.2)(0.9)(0.4)}$

