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Semantics of 
Bayesian Networks

Remember the graph semantics of a Bayesian network: Edges denote 
dependence.  This graph means:

𝑃 𝑌!, 𝑋!, … , 𝑌" , 𝑋" ='
#$!

"

𝑃 𝑌#|𝑌#%! 𝑃 𝑋#|𝑌#

𝑌!"# 𝑌! 𝑌!$#

𝑋!"# 𝑋! 𝑋!$#

… …



Belief Propagation 
and Viterbi 
Algorithm

So far, we’ve discussed two types of inference.
• Belief propagation computes 𝑃 𝑌&'()*, 𝑋!, … , 𝑋" by repeating the 

following two steps for every t:
• Multiply: 𝑃 … , 𝑌!"# = 𝑖, 𝑋!"#, 𝑌! = 𝑗, 𝑋! = 𝑃 … , 𝑌!"# = 𝑖, 𝑋!"# 𝑃(
)

𝑌! = 𝑗|𝑌!"# =
𝑖 𝑃 𝑋!|𝑌! = 𝑗

• If 𝑡 − 1 ≠ query, then Add: 𝑃 … , 𝑌! = 𝑗, 𝑋! = ∑$ 𝑃 … , 𝑌!"# = 𝑖, 𝑋!"#, 𝑌! = 𝑗, 𝑋!
• The Viterbi algorithm finds the most probable sequence 𝑌!, … , 𝑌" given 
𝑋!, … , 𝑋" by repeating the following two steps for every t:
• Multiply: 𝑃 … , 𝑌!"# = 𝑖, 𝑋!"#, 𝑌! = 𝑗, 𝑋! = 𝑣$,!"#𝑃 𝑌! = 𝑗|𝑌!"# = 𝑖 𝑃 𝑋!|𝑌! = 𝑗
• Take the maximum: 𝑣&,! = max

$
𝑃 … , 𝑌!"# = 𝑖, 𝑋!"#, 𝑌! = 𝑗, 𝑋!

𝑌!"# 𝑌! 𝑌!$#

𝑋!"# 𝑋! 𝑋!$#

… …



The 3 types of 
parameters

Both Belief Propagation and Viterbi depend on three index variables:
• 𝑗 is the index of 𝑌#.  We’re trying to compute 𝑃 … , 𝑌# = 𝑗, 𝑋#
• 𝑖 is the index of 𝑌#%!.  We know that 𝑌# depends on 𝑌#%! by way of 
𝑃 𝑌# = 𝑗|𝑌#%! = 𝑖
• 𝑘 is the index of 𝑋#. 𝑋# and 𝑌# are related by 𝑃 𝑋# = 𝑘|𝑌# = 𝑗

𝑌!"# 𝑌! 𝑌!$#

𝑋!"# 𝑋! 𝑋!$#

… …



Writing them as 
vectors and 
matrices

Let’s write these as vectors and matrices:

ℎ! =
ℎ#,!
⋮

ℎ',!
, ℎ&,! = 𝑃 … , 𝑌! = 𝑗, 𝑋!

𝑈 =
𝑢#,# ⋯ 𝑢#,'
⋮ ⋱ ⋮

𝑢',# ⋯ 𝑢','
, 𝑢&,$ = 𝑃 𝑌! = 𝑗|𝑌!"# = 𝑖

𝑊 =
𝑤#,# ⋯ 𝑤#,()#
⋮ ⋱ ⋮

𝑤',# ⋯ 𝑤',()#
, 𝑤&,* = 𝑃 𝑋! = 𝑘|𝑌! = 𝑗

𝑌!"# 𝑌! 𝑌!$#

𝑋!"# 𝑋! 𝑋!$#

… …



Log Belief 
Propagation

Now, if we write out the whole logarithm of belief propagation:

ln 𝑃 … , 𝑌! = 𝑗, 𝑋! = ln4
"

𝑃 … , 𝑌!#$ = 𝑖, 𝑋!#$ 𝑃 𝑌! = 𝑗|𝑌!#$ = 𝑖 + ln𝑃 𝑋! = 𝑘|𝑌! = 𝑗

… we discover that we can write it as:
ℎ! = exp ln𝑈ℎ!#$ + ln𝑊�⃗�!

…where we’ve defined:

�⃗�! =
𝑥$,!
⋮

𝑥&'$,!
, 𝑥(,!= B1 𝑋! = 𝑘

0 otherwise

𝑌!"# 𝑌! 𝑌!$#

𝑋!"# 𝑋! 𝑋!$#

… …



Recurrent neural 
network

Into a neural network with this 
flowgraph:

ℎ! = exp ln𝑈ℎ!"# + ln𝑊�⃗�!

𝑌!"# 𝑌! 𝑌!$#

𝑋!"# 𝑋! 𝑋!$#

… …

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …

We have turned a Bayesian network 
with this dependency structure:

𝑃 … , 𝑌!#$, 𝑋!#$, 𝑌!, 𝑋!
= 𝑃 … , 𝑌!#$, 𝑋!#$ 𝑃 𝑌!|𝑌!#$ 𝑃 𝑋!|𝑌!
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Recurrent neural 
network (RNN)

A recurrent neural network (RNN) is a network in which the hidden nodes at time t 
depend on the input at time t, and on the hidden nodes at time t-1:

ℎ! = 𝑔 𝑈ℎ!"#,𝑊�⃗�!

...where U and W are weight matrices, and g() is some kind of scalar nonlinearity.

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …



Recurrent neural 
network (RNN)

For example, suppose that we have the sentence

“John hit the ball”

... and we want to find each word’s part of speech.

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …



Recurrent neural 
network (RNN)

Let’s define

�⃗�! =

1 if 𝑋! = ball
1 if 𝑋! = hit
1 if 𝑋! = John
1 if 𝑋! = the

…so the observation sequence is…

�⃗�# =
0
0
1
0

, �⃗�+ =
0
1
0
0

, �⃗�, =
0
0
0
1

, �⃗�- =
1
0
0
0

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …



Recurrent neural 
network (RNN)

Let’s define

ℎ! = 𝑔 𝑈ℎ!"# +𝑊�⃗�! ≈
𝑃 𝑌! = Det|𝑋#, … , 𝑋!
𝑃 𝑌! = Noun|𝑋#, … , 𝑋!
𝑃 𝑌! = Verb|𝑋#, … , 𝑋!

The approximation is not too bad if we use the following nonlinearity:

𝑔 𝜉 =
softmax# 𝜉 − 1
softmax+ 𝜉 − 1
softmax, 𝜉 − 1

, softmax& 𝜉 − 1 =
𝑒.!"#

∑$/#' 𝑒.""#

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …



Recurrent neural 
network (RNN)

Using the HMM logic, reasonable weight matrices might be:

ℎ! ≈
𝑃 𝑌! = Det|𝑋#, … , 𝑋!
𝑃 𝑌! = Noun|𝑋#, … , 𝑋!
𝑃 𝑌! = Verb|𝑋#, … , 𝑋!

, 𝑢&,$ = 𝑃 𝑌! = 𝑗|𝑌!"# = 𝑖 , 𝑈 =
1
10

1 1 8
8 1 1
1 8 1

�⃗�! =

1 if 𝑋! = ball
1 if 𝑋! = hit
1 if 𝑋! = John
1 if 𝑋! = the

, 𝑤&,* = 𝑃 𝑋! = 𝑘|𝑌! = 𝑗 , 𝑊 =
1
100

1 1
49 1
1 97

1 97
49 1
1 1

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …



Recurrent neural 
network (RNN)

Plugging it all together, we get

ℎ! = 𝑔 𝑈ℎ" +𝑊�⃗�! = 𝑔
0
0
0
+

1
100

1 1
49 1
1 97

1 97
49 1
1 1

0
0
1
0

= 𝑔
0.01
0.49
0.01

=
0.28
0.44
0.28

ℎ# = 𝑔 𝑈ℎ! +𝑊�⃗�# = 𝑔
1
10

1 1 8
8 1 1
1 8 1

0.28
0.44
0.28

+
1
100

1 1
49 1
1 97

1 97
49 1
1 1

0
1
0
0

=
0.20
0.20
0.60

ℎ$ = 𝑔 𝑈ℎ# +𝑊�⃗�$ = 𝑔
1
10

1 1 8
8 1 1
1 8 1

0.20
0.20
0.60

+
1
100

1 1
49 1
1 97

1 97
49 1
1 1

0
0
0
1

=
0.63
0.18
0.18

ℎ% = 𝑔 𝑈ℎ$ +𝑊�⃗�% = 𝑔
1
10

1 1 8
8 1 1
1 8 1

0.63
0.18
0.18

+
1
100

1 1
49 1
1 97

1 97
49 1
1 1

1
0
0
0

=
0.24
0.53
0.24

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …



Recurrent neural 
network (RNN)

If we interpret ℎ&,! ≈ 𝑃 𝑌! = 𝑗|𝑋#, … , 𝑋! , then we have that 
𝑃 𝑌# = Noun|𝑋# = John ≈ 0.44,

𝑃 𝑌+ = Verb|𝑋# = John, 𝑋+ = hit ≈ 0.60,
𝑃 𝑌, = Det|𝑋# = John, 𝑋+ = hit, 𝑋, = the ≈ 0.63,

𝑃 𝑌- = Noun|𝑋# = John, 𝑋+ = hit, 𝑋, = the, 𝑋- = ball ≈ 0.53.

These probabilities are not very confident --- the RNN is only calculating approximate 
probabilities, not exact probabilities, so it loses some confidence.  But in each case, it got 
the right answer!

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …
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Training an RNN

An RNN is trained using gradient descent, just like any other neural network!

𝑢&,$ ← 𝑢&,$ − 𝜂
𝜕𝔏
𝜕𝑢&,$

𝑤&,* ← 𝑤&,* − 𝜂
𝜕𝔏
𝜕𝑤&,*

…where 𝔏 is the loss function, and 𝜂 is a step size.

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …



Training an RNN: How can we solve this?
The big difference is that now the 
loss function depends on U and W in 
many different ways:
• The loss function depends on each 

of the state vectors ℎ!
• Each of the state vectors depends 

on 𝑈 and 𝑊
• Each of the state vectors ALSO 

depends on the previous state 
vector, ℎ!"# …

• … which ALSO depends on 𝑈 and 
𝑊, and on ℎ!"+ …

• AUGH!

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …

𝔏



Back-propagation through time
The solution is something called 
back-propagation through time:

𝑑𝔏
𝑑ℎ$,!

=
𝜕𝔏
𝜕ℎ$,!

+
𝑑𝔏

𝑑ℎ&,!)#

𝜕ℎ&,!)#
𝜕ℎ$,!

• The first term measures losses 
caused directly by ℎ$,!,  for 
example, if ℎ$,! is wrong.

• The second term measures losses 
caused indirectly, for example, 
because ℎ$,! caused ℎ&,!)# to be 
wrong. 

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …

𝔏



Back-propagation through time
Once we’ve back-propagated 
through time, then we add up all the 
different ways in which the weight 
matrix affects the output:

𝑑𝔏
𝑑𝑢&,$

=f
!/#

0
𝑑𝔏
𝑑ℎ$,!

𝜕ℎ$,!
𝜕𝑢&,$

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …

𝔏



Back-propagation through time
Notice that this is just like training a 
very deep network!
• Back-propagation through time: 

back-propagate from time step 𝑡 +
1 to time step 𝑡

• Back-propagation in a very deep 
network: back-propagate from 
layer 𝑙 + 1 to layer 𝑙

Toolkits like PyTorch use the same 
code in both cases.

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …

𝔏
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Exponential 
forgetting

Regular RNNs have a problem: they forget 
what they know!

For example, suppose that the feedback 

matrix is U = #
+

, so that ℎ! =
#
+
ℎ!"#.  

Then the state vector decays as #
+

!
!

ℎ!"# ℎ! ℎ!$#

�⃗�!"# �⃗�! �⃗�!$#

… …

Exponential-decay.png.  CC-SA-4.0, Svjo, 2017



Long-Short Term Memory (LSTM)
A Long-Short Term Memory network (LSTM) solves 
the exponential forgetting problem using something 
called a gate.

Remember that a normal RNN computes 

ℎ! = 𝑔 𝑈ℎ!"# +𝑊�⃗�!

…so if U = #
+

, and if 𝑔(i) is linear, then ℎ! =
#
+

!
.

CC-SA-4.0, 
MingxianLin, 

2018



Long-Short Term Memory (LSTM)
An LSTM computes

𝑐! = 𝑓!𝑐!"# + 𝑖!�⃗�!

This is just like a regular RNN, except that now, 𝑓!
and 𝑖! are not constant.  They are adjusted, 
depending on what the LSTM sees in the input.

CC-SA-4.0, 
MingxianLin, 

2018



Long-Short Term Memory (LSTM)
An LSTM computes

𝑐! = 𝑓!𝑐!"# + 𝑖!�⃗�!
𝑓! and 𝑖! are called the “forget gate” and the “input 
gate,” respectively.  They are computed as

𝑓! = 𝜎 𝑈$ℎ!"# +𝑊$�⃗�!
𝑖! = 𝜎 𝑈%ℎ!"# +𝑊%�⃗�!

…where 𝜎 , is the logistic sigmoid function.  Remember 
that 0 < 𝜎 , < 1.  So:

• If the LSTM wants to remember what it knows, then it 
will choose 𝑓! ≈ 1.

• If the LSTM wants to forget what it knows, then it will 
choose 𝑓! ≈ 0.

CC-SA-4.0, 
MingxianLin, 

2018



Long-Short Term Memory (LSTM)

𝑓! = 𝜎 𝑈1ℎ!"# +𝑊1�⃗�!
𝑖! = 𝜎 𝑈$ℎ!"# +𝑊$�⃗�!

In order to decide whether to remember what it 

knows, the LSTM compares 𝑈1ℎ!"# to 𝑊1�⃗�!. 

Before it does that, it decides whether it needs to 
make such a comparison: ℎ!"# is equal to the 
previous time step’s memory cell, multiplied by an 
“output gate” 𝑜!"#:

ℎ! = 𝑜!𝑐!
𝑜! = 𝜎 𝑈2ℎ!"# +𝑊2�⃗�!

CC-SA-4.0, 
MingxianLin, 

2018



Long-Short Term Memory (LSTM)
An LSTM replaces the one equation of a normal 
RNN:

ℎ! = 𝑔 𝑈ℎ!"# +𝑊�⃗�!

…with these five equations:

• Forget Gate: 𝑓! = 𝜎 𝑈1ℎ!"# +𝑊1�⃗�!

• Input Gate: 𝑖! = 𝜎 𝑈$ℎ!"# +𝑊$�⃗�!

• Output Gate: 𝑜! = 𝜎 𝑈2ℎ!"# +𝑊2�⃗�!

• Cell: 𝑐! = 𝑓!𝑐!"# + 𝑖!�⃗�!

• Output: ℎ! = 𝑜!𝑐!

CC-SA-4.0, 
MingxianLin, 

2018



LSTM: Remember when you want to 
remember, forget when you want to forget

Remember that an 
RNN tends to forget 

exponentially, like 
this:

Exponential-
decay.png.  
CC-SA-4.0, 
Svjo, 2017

An LSTM forgets 
more like this:

𝑓! ≈ 1 during these time steps 𝑓! ≈ 0 during these time steps
𝑡

𝑐!

ℎ!
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ℎ# = 𝑔 𝑈ℎ#%!,𝑊�⃗�#

• Training a recurrent neural network
𝑑𝔏
𝑑ℎN,#

=
𝜕𝔏
𝜕ℎN,#

+
𝑑𝔏

𝑑ℎO,#P!

𝜕ℎO,#P!
𝜕ℎN,#

• Long short-term memory (LSTM)
𝑐# = 𝑓#𝑐#%! + 𝑖#�⃗�#


