
Lecture 24: Part of 
Speech Tagging

CC-BY 4.0: copy at will, but cite the source
Mark Hasegawa-Johnson

3/2022

Luca della Robbia, Priscian, or the Grammarian (1437-1439). Marble panel from the 
North side, lower basement of the bell tower of Florence, Italy. Museo dell'Opera del 

Duomo.  Public domain photo by Jastrow, 2006

https://commons.wikimedia.org/wiki/Luca_della_Robbia
https://commons.wikimedia.org/wiki/Priscian


Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm



Semantics: Montague grammar

Richard Montague defined formal semantics as follows:
• ”Understanding a sentence” means that you can specify the 

conditions under which the sentence would be true
• The meaning of a sentence is composed of the meanings of its words. 

For example:

Richard Montague, 1930-1971
photograph © Richard Thomason

Logical form Example Meaning
some(P,Q) “some people sing” ∃𝑥: ( 𝑃𝑥 ∧ 𝑄𝑥 )
a(P,Q) “a bird sings” ∃𝑥: ( 𝑃𝑥 ∧ 𝑄𝑥 )
every(P,Q) “every bird sings” ∀𝑥: ( 𝑃𝑥 → 𝑄𝑥 )
no(P,Q) “no bird snores” ∀𝑥: ( 𝑃𝑥 → ¬ 𝑄𝑥 )



Syntax

Syntax is the study of how words 
combine.
• Syntax is a descriptive science: it 

simply describes how words 
combine when people are using 
them naturally.
• Compositional semantics studies 

the meanings of those 
combinations.

ParseTree.svg.  Public domain image, Stannered, 2007



Grammar
A grammar is a mathematical specification of the 
set of all word sequences that form valid 
sentences in a language (e.g., English).
• Recursively enumerable: any grammar that 

can be decided by a Turing machine
• Context-sensitive: phrase A is expanded into 

phrases B and C using rules of the form 𝛼𝐴𝛽 →
𝛼𝐵𝐶𝛽 for specified contexts 𝛼 and 𝛽.
• Context-free: phrase A is expanded into 

phrases B and C using context-free rules: 𝐴 →
𝐵𝐶.
• Regular: phrase A can only be expanded into a 

word followed by another phrase: 𝐴 → 𝑎𝐵.

Chomsky-hierarchy.svg.  CC-SA 3.0, J. Finkelstein, 2010



Grammar

Humans usually think of natural 
language using context-free 
grammar (CFG).  For example,

𝑆 → 𝑁𝑃 𝑉𝑃
𝑉𝑃 → 𝑉 𝑁𝑃
𝑁𝑃 → 𝐷𝑒𝑡 𝑁
𝑁𝑃 → John
𝑉 → hit
𝐷𝑒𝑡 → the
𝑁 → ball

ParseTree.svg.  Public domain image, Stannered, 2007



Grammar

A CFG with finite recursion depth 
can be written as a regular 
grammar.  For example:

𝑆 → John 𝑉𝑃
𝑉𝑃 → hit 𝑁𝑃
𝑁𝑃 → the 𝑁
𝑁 → ball

ParseTree.svg.  Public domain image, Stannered, 2007



Grammar

A regular grammar can be written 
using an HMM.
• The phrase is the state variable
• The word is the observed variable

𝑆 → John 𝑉𝑃
𝑉𝑃 → hit 𝑁𝑃
𝑁𝑃 → the 𝑁
𝑁 → ball

S VP NP N

John hit the ball



Key concepts: syntax and semantics

• Compositional semantics studies how sentence meaning is computed 
from word meanings.
• Syntax studies the ways in which words combine.
• A grammar is a mathematical specification of the sequences of words 

that form valid sentences in a language.
• A context-free grammar with finite recursion depth can be written as 

a regular grammar.
• A regular grammar can be written as an HMM.



Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm



Parts of speech
Many grammars are written in 
terms of parts of speech, to make 
them a bit more general.  For 
example, this one…

ParseTree.svg.  Public domain image, Stannered, 2007

S VP NP NP

N Det N

…could be generalized like this…

V



Parts of speech

For some reason, most of the part-of-
speech (POS) systems proposed by 
philosophers have 2! parts of 
speech, for some value of N.
• Plato (350BC) proposed that there 

are 2 parts of speech: nouns and 
verbs.

POS

Nouns Verbs



Parts of speech

For some reason, most of the part-of-
speech (POS) systems proposed by 
philosophers have 2! parts of 
speech, for some value of N.
• Plato (350BC) proposed that there 

are 2 parts of speech: nouns and 
verbs.
• Yāska (600BC) proposed that there 

are 4 parts of speech.

POS

Inflectable Uninflectable

Nouns Verbs Pre-
verbs Particles



Parts of speech

For some reason, most of the part-of-
speech (POS) systems proposed by 
philosophers have 2! parts of 
speech, for some value of N.
• Plato (350BC) proposed that there 

are 2 parts of speech: nouns and 
verbs.
• Yāska (600BC) proposed that there 

are 4 parts of speech.
• Dionysus Thrax (100BC) proposed 8 

parts of speech.

POS

Inflectable Uninflectable

Nouns
Verbs

Participles
Articles

Pronouns
Prepositions

Adverbs
Conjunctions



Parts of speech

Most modern English dictionaries use these POS tags.
• Open-class words (anybody can make up a new word, in any of these 

classes, at any time): nouns, verbs, adjectives, adverbs, interjections
• Closed-class words (it’s hard to make up a new word in these 

classes): pronouns, prepositions, conjunctions, determiners

Most published, tagged data use POS tags that are finer-grained than 
the nine tags listed above.  For example, the next few slides describe 
the Penn Treebank POS tag set.



Nouns

The Penn Treebank noun categories are:
• NN (singular or mass common noun): llama, thought, communism
• NNS (plural common noun): llamas, thoughts
• NNP (singular proper noun): Jane, IBM, Mexico
• NNPS (plural proper noun): Osbournes, Carolinas
• VBG (gerund): eating



Verbs

The Penn Treebank verb categories are:
• VB (verb base form): eat
• VBD (verb past tense): ate
• VBP (verb non-3sg present): eat
• VBZ (verb 3sg present): eats
• MD (modal): can as in “can lift”, should as in “should go”
• RP (particle): up as in “get up,” off as in “take off”



Adjectives

The Penn Treebank has several categories that might be considered types of 
adjectives:
• CD (cardinal number --- use this tag regardless of whether the number is 

being used as a noun or adjective): one, two, twenty
• JJ (adjective): yellow, exceptional, tall
• JJR (comparative adjective): yellower, taller
• JJS (superlative adjective): yellowest, tallest
• PRP$ (possessive pronoun): your, one’s
• VBN (verb past participle): eaten, compiled
• WP$ (wh-possessive): whose



Determiners, Prepositions and Conjunctions

The Penn Treebank has a lot of things that look like determiners, 
prepositions, or conjunctions:
• CC (coordinating conjunction): and, but, or
• DT (determiner): a, the
• IN (preposition or subordinating conjunction): of, in, by
• PDT (predeterminer): all, both
• POS (possessive ending): ‘s, as in “Bob’s dog”
• TO (any use of the word “to”): to
• WDT (wh-determiner): which, that



Why do POS tagging?

• Because it’s highly accurate, typically 97%.  That means you can run a 
POS tagger as a pre-processing step, before doing harder natural 
language understanding tasks.
• Because it’s necessary, if you want to know what the words in the 

sentence mean.

Will Will ?  Will will .  Will will will Will ’s will to Will .
MD NNP SYM NNP MD SYM NNP MD VB NNP POS NN TO NNP SYM



Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm



An HMM for POS tagging
The basic idea of an HMM POS tagger is:
• Treat the part of speech as the hidden state variable
• Treat the word as observed

ParseTree.svg.  Public domain image, Stannered, 2007

N V DT N

John the ballhit



HMM as a Bayes Net

This slide shows an HMM as a 
Bayes Net.  You should remember 
the graph semantics of a Bayes net:
• Nodes are random variables.
• Edges denote stochastic 

dependence.

𝑌()* 𝑌( 𝑌(+*

𝑋!"# 𝑋!$#𝑋!

……



HMM as a Finite State Machine

This slide shows exactly the same 
HMM, viewed in a totally different 
way.  Here, we show it as a finite 
state machine:
• Nodes denote states.
• Edges denote possible transitions 

between the states.

N V𝑃(𝑌! = 𝑁|𝑌!"# = 𝑁)

D

𝑃(𝑌! = 𝐷|𝑌!"# = 𝐷)

𝑃(𝑌! = 𝑉|𝑌!"# = 𝑉)𝑃(𝑌! = 𝑉|𝑌!"# = 𝑁)

𝑃(𝑌! = 𝐷|𝑌!"# = 𝑉)𝑃(𝑌! = 𝑁|𝑌!"# = 𝑁)



Parameters of an HMM

Suppose that there are N distinct POS tags, and V 
distinct words.  Then the parameters of an HMM 
are:
• 𝜋" = 𝑃(𝑌# = 𝑗).  There are 𝑁 of these.
• 𝑎$" = 𝑃(𝑌% = 𝑗|𝑌%&# = 𝑖).  There are 𝑁' of these.
• 𝑏"( = 𝑃 𝑋% = 𝑘|𝑌% = 𝑗 .  There are 𝑁𝑉 of these.

N V

D
𝑎$%

𝑎%%

𝑎%&

𝑎&&

𝑎&$ 𝑎$$



Estimating the Parameters of an HMM

𝜋! =
#sentences that start with POS 𝑗 + 𝑘
#sentences in the training corpus + 𝑘𝑁

𝑎"! =
#times 𝑗 follows 𝑖 + 𝑘

#times tag 𝑖 occurs in training corpus + 𝑘𝑁

𝑏!# =
#times tag 𝑗 is matched to word 𝑘 + 𝑘

#times tag 𝑗 occurs in training corpus + 𝑘(𝑉 + 1)

N V

D
𝑎$%

𝑎%%

𝑎%&

𝑎&&

𝑎&$ 𝑎$$



Outline

• Syntax and semantics
• Part of speech tagging
• An HMM for POS tagging
• The Viterbi algorithm



Viterbi Algorithm: Key concepts
Nodes and edges have numbers attached to them:
• Edge Probability: Probability of taking that transition, and then generating the 

next observed output

𝑒$"% = 𝑃 𝑌% = 𝑗, 𝑋% = 𝑥%|𝑌%&# = 𝑖

• Node Probability: Probability of the best path until node j at time t

𝑣",% = max
*$,…,*%&$

𝑃 𝑋# = 𝑥#… ,𝑋% = 𝑥%, 𝑌# = 𝑦#, … , 𝑌% = 𝑗



Viterbi Algorithm for POS tagging
• Edge Probability:

𝑒$"% = 𝑃 𝑌% = 𝑗, 𝑋% = 𝑥%|𝑌%&# = 𝑖
= 𝑃 𝑌% = 𝑗|𝑌%&# = 𝑖 𝑃 𝑋% = 𝑥%|𝑌% = 𝑗

= 𝑎$"𝑏",,%
• Initial Node Probability: Probability of starting in 

a particular node:
𝑣",# = 𝑃 𝑋# = 𝑥#, 𝑌# = 𝑗
= 𝑃 𝑌# = 𝑗 𝑃 𝑋% = 𝑥#|𝑌% = 𝑗

= 𝜋"𝑏",,$

N V

D
𝑎$%

𝑎%%

𝑎%&

𝑎&&

𝑎&$ 𝑎$$



Trellis

Initial Node Probability: 
𝑣",# = 𝜋"𝑏",,$

Edge Probability:
𝑒$"% = 𝑎$"𝑏",,%

𝜋!𝑏!,#$%&

𝜋'𝑏',#$%&

𝑋' = John 𝑋( = hit 𝑋) = the 𝑋* = ball

𝜋(𝑏(,#$%&

𝑎 -
!
𝑏 !
,.
/0

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎 -
!
𝑏 !
,0.
1

𝑎 -
!
𝑏 !
,23
44

𝑎 5
-
𝑏 -
,23
44

𝑎 5
-
𝑏 -
,0.
1

𝑎 5
-
𝑏 -
,.
/0

𝑎!!𝑏!,./0 𝑎!!𝑏!,0.1 𝑎!!𝑏!,2344

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0



Viterbi Algorithm for POS tagging
Node Probability:

𝑣",% = max
*$,…,*%&$

𝑃 … ,𝑋% = 𝑥%, … , 𝑌% = 𝑗

= max
$ M

N

max
*$,…,*%&,

𝑃 … ,𝑋%&# = 𝑥%&#, … , 𝑌%&# = 𝑖 𝑃(

)

𝑌%
= 𝑗|𝑌%&# = 𝑖 𝑃 𝑋% = 𝑥%|𝑌% = 𝑗

= max
$

𝑣$,%&#𝑒$"%

N V

D
𝑎$%

𝑎%%

𝑎%&

𝑎&&

𝑎&$ 𝑎$$



Trellis

Node Probability: 
𝑣+,- = max

.
𝑣.,-/0𝑒.+-

Backpointer:
𝑖+,-∗ = argmax

.
𝑣.,-/0𝑒.+-

Shown: possible backpointers.  
Actual backpointers depend on 
model parameters!

𝜋!𝑏!,#$%&

𝜋'𝑏',#$%& 𝑣5,7

𝑣8,7

𝑋' = John

𝑣5,9

𝑣8,9

𝑋( = hit 𝑋) = the

𝑣5,:

𝑣8,:

𝑋* = ball

𝜋(𝑏(,#$%& 𝑣;,7 𝑣;,9 𝑣;,:

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0



Backtrace

Find the node with the 
highest value of 𝑣",6 at the 
end, and follow the 
backpointers!

Shown: possible backtrace.  
Actual backtrace depends on 
model parameters!

𝜋!𝑏!,#$%&

𝜋'𝑏',#$%& 𝑣5,7

𝑣8,7

𝑋' = John

𝑣5,9

𝑣8,9

𝑋( = hit 𝑋) = the

𝑣5,:

𝑣8,:

𝑋* = ball

𝜋(𝑏(,#$%& 𝑣;,7 𝑣;,9 𝑣;,:

𝑌 +
=
N

𝑌 +
=
V

𝑌 +
=
D

𝑎55𝑏5,2344𝑎55𝑏5,0.1𝑎55𝑏5,./0



Viterbi algorithm key formulas

Initial Node Probability: 
𝑣",# = 𝜋"𝑏",,$

Edge Probability:
𝑒$"% = 𝑎$"𝑏",,%

Node Probability: 
𝑣",% = max

$
𝑣$,%&#𝑒$"%

Backpointer:
𝑖",%∗ = argmax

$
𝑣$,%&#𝑒$"%



Viterbi algorithm key formulas

Initial Node Probability: 
log 𝑣",# = log𝜋" + log 𝑏",,$

Edge Probability:
log 𝑒$"% = log𝑎$" + log 𝑏",,%

Node Probability: 
log 𝑣",% = max

$
log 𝑣$,%&# + log 𝑒$"%

Backpointer:
𝑖",%∗ = argmax

$
log 𝑣$,%&# + log 𝑒$"%



Example from Jurafsky & Martin

© Daniel Jurafsky & James H. Martin, 2021



Outline

• Syntax and semantics
• A grammar specifies which word sequences are valid sentences
• Finite-depth CFG = Regular grammar = HMM

• Part of speech tagging
• Open-class words: nouns, verbs, adverbs, adjectives, interjections
• Closed-class words: prepositions, pronouns, conjunctions, determiners

• An HMM for POS tagging
• State variable is the part of speech
• Observation is the word

• The Viterbi algorithm
• log 𝑣!,# = max

$
log 𝑣$,#%& + log 𝑒$!#


