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Outline

• Belief propagation
• What is 𝑃(𝑌!|𝑋" = 𝑥", … , 𝑋# = 𝑥#)?

• Viterbi Algorithm
• What is the most probable sequence {𝑌", … , 𝑌#} given observations {𝑋" =
𝑥", … , 𝑋# = 𝑥#}?



state

observation

Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

Since he has read a lot about rain, 
Richard proposes a hidden Markov 
model:
• Rain on day t-1 (𝑅!"#) makes rain 

on day t (𝑅!) more likely.
• Elspeth usually brings her 

umbrella (𝑈!) on days when it 
rains (𝑅!), but not always.



state

observation

Transition model

Observation model

Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

• Richard has no idea whether or not it’s 
raining on day 1, so he assumes 
𝑃(𝑅" = 𝑇) = 0.5.

• Richard learns that the weather 
changes on 3 out of 10 days, thus

𝑃 𝑅! = 𝑇|𝑅!$" = 𝑇 = 0.7
𝑃 𝑅! = 𝑇|𝑅!$" = 𝐹 = 0.3

• He also learns that Elspeth sometimes 
forgets her umbrella when it’s raining, 
and that she sometimes brings an 
umbrella when it’s not raining. 
Specifically,

𝑃 𝑈! = 𝑇|𝑅! = 𝑇 = 0.9
𝑃 𝑈! = 𝑇|𝑅! = 𝐹 = 0.2

𝑃 𝑅!
0.5

Initial
state 
model



Belief propagation in an HMM: Example

• Elspeth has no umbrella on day 1.
• Elspeth has an umbrella on days 2 

and 3.
• What is the probability that it’s 

raining on day 3?

𝑃 𝑅$ = 𝑇|𝑈# = 𝐹,𝑈% = 𝑇,𝑈$ = 𝑇
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Belief propagation, step by step

1. Identify a path through the Bayesian network that includes all 
variables, including the query variable and all observed variables, 
starting at their common ancestor

2. Calculate the joint probability of the query variable and all observed 
variables, iteratively marginalizing out all intermediate variables 
step-by-step along the path.

3. Apply Bayes’ rule to get the desired conditional probability



Step 1: Identify a path starting at their 
common ancestor
𝑃 𝑅$ = 𝑇|𝑈# = 𝐹,𝑈% = 𝑇,𝑈$ = 𝑇 ?

• Query variable: 𝑅$
• Observed variables:

• 𝑈" = 𝐹
• 𝑈% = 𝑇
• 𝑈& = 𝑇
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Observation model

𝑃 𝑅!
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Step 2: Calculate the joint probability, step-by-step…

𝑃 𝑈# = 𝐹,𝑈% = 𝑇,𝑈$ = 𝑇,𝑅$ =
𝑃 𝑈# = 𝐹,𝑈% = 𝑇,𝑅$ ×

𝑃 𝑈$ = 𝑇|𝑅$ =

*(0.11535)(0.9) 𝑅$ = 𝑇
(0.08315)(0.2) 𝑅$ = 𝐹
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Observation model
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0.5

Initial
state 
model



Step 3: Apply Bayes’ rule to get conditional probability

𝑃 𝑅& = 𝑇|𝑈' = 𝐹,𝑈( = 𝑇,𝑈& = 𝑇 =

𝑃 𝑅& = 𝑇,𝑈' = 𝐹,𝑈( = 𝑇,𝑈& = 𝑇
𝑃 𝑅& = 𝑇,𝑈' = 𝐹,𝑈( = 𝑇,𝑈& = 𝑇 +
𝑃 𝑅& = 𝐹,𝑈' = 𝐹,𝑈( = 𝑇,𝑈& = 𝑇

=
(0.11535)(0.9)

0.11535 0.9 + (0.08315)(0.2)
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Inference by Enumeration
To calculate a probability 𝑃 𝑅$|𝑈#,𝑈%, 𝑈$ :
1. Select: which variables do we need, in order to model the 

relationship among 𝑈#, 𝑈%, 𝑈$, and 𝑅$?  
• We need also 𝑅" and 𝑅%.

2. Multiply to compute joint probability:
𝑃 𝑅#, 𝑅%, 𝑅$, 𝑈#,𝑈%,𝑈$ = 𝑃 𝑅# 𝑃 𝑈#|𝑅# …𝑃 𝑈$|𝑅$

3. Add to eliminate those we don’t care about
𝑃 𝑅%, 𝑈#,𝑈%,𝑈$ =6

&',&(
𝑃 𝑅#, 𝑅%, 𝑅$, 𝑈#,𝑈%,𝑈$

4. Divide: use Bayes’ rule to get the desired conditional
𝑃 𝑅$|𝑈#,𝑈%,𝑈$ = 𝑃 𝑅$, 𝑈#,𝑈%,𝑈$ /𝑃 𝑈#,𝑈%,𝑈$

U1

R1

UT-1

RT-1

UT

RT…
U2

R2



Belief Propagation

• What is 𝑃(𝑌!|𝑋# = 𝑥#, … , 𝑋( = 𝑥()?
• The observations are 𝑋# = 𝑥#, … , 𝑋( = 𝑥(.
• The state variables are hidden.  We need to find 𝑃(𝑌# = 𝑦#, 𝑋# =
𝑥#, … , 𝑌( = 𝑦(, 𝑋( = 𝑥() for every possible setting of {𝑌#, … , 𝑌(}.
• If there are T state variables, each with N possible values, then there 

are 𝑁( possible combinations!
• The computational complexity can be 𝑂 𝑁% instead of 𝑂 𝑁( if you 

alternate the multiply and add steps, one new variable at a time.



Outline

• Belief propagation
• What is 𝑃(𝑌!|𝑋" = 𝑥", … , 𝑋# = 𝑥#)?

• Viterbi Algorithm
• What is the most probable sequence {𝑌", … , 𝑌#} given observations {𝑋" =
𝑥", … , 𝑋# = 𝑥#}?



Viterbi algorithm: inferring the entire
sequence
• Belief propagation answers questions like “what is 𝑃(𝑌!|𝑋# =
𝑥#, … , 𝑋( = 𝑥()?”  In other words, questions about one query 
variable, 𝑌!, given an arbitrary number of observed variables, 𝑋# =
𝑥#, … , 𝑋( = 𝑥(.
• Because there is only one query variable, we can keep the 

computational complexity down to 𝑂 𝑁% by alternating the multiply 
and add steps, getting rid of every other hidden variable as soon as 
it’s no longer necessary.
• But what if we want to know the most likely values of all of the

hidden variables?



Example: Speech Recognition 
• Observations: 𝑋! = spectrum of 25ms frame of the speech signal.
• State: 𝑌! = phoneme or letter being currently produced
The goal of speech recognition: find the most probable sequence {𝑌", … , 𝑌#} given observations 
{𝑋" = 𝑥", … , 𝑋# = 𝑥#}.

_ _ c c c h h a a a



Viterbi Algorithm Example
Given a particular sequence of observations, what is the most likely underlying 

sequence of states?

• Example: given 𝑈# = 𝐹,𝑈% = 𝑇,𝑈$ = 𝑇, 𝑈) = 𝐹
• what is the most likely sequence of state variables, 𝑅#, 𝑅%, 𝑅$, 𝑅)?



The Trellis

Va
lu

e 
of

 th
e 

hi
dd

en
 v

ar
ia

bl
e,

 𝑅
! T

F

𝑈8 = 𝐹 𝑈9 = 𝑇 𝑈: = 𝑇
Time

…

𝑈; = 𝐹

• X-Axis = time
• Y-Axis = state variable 

(𝑅!)
• Node = a particular state 

at a particular time
• Edge = possible 

transition from 𝑅!"# to 
𝑅!



A Path Through the Trellis
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• A path through the trellis 
is a sequence of 
connected states.

• For example, this path is 
the sequence 𝑅# =
𝑇,𝑅% = 𝐹,𝑅$ = 𝑇,𝑅) =
𝑇



Viterbi Algorithm Key Concept
Given a particular sequence of observations, what is the most 

likely underlying sequence of states?

In other words, given a particular sequence of observations, 
what is the most probable path through the trellis?



Viterbi Algorithm: Key concepts
Nodes and edges have numbers attached to them:
• Edge Probability: Probability of taking that transition, and then generating the 

next observed output

𝑒*+! = 𝑃 𝑅! = 𝑗, 𝑈! = 𝑢!|𝑅!"# = 𝑖

• Node Probability: Probability of the best path until node j at time t

𝑣+! = max
,',…,,)*'

𝑃 𝑈# = 𝑢#… ,𝑈! = 𝑢!, 𝑅# = 𝑟#, … , 𝑅! = 𝑗



Edge Probabilities

𝑒)*+
= 𝑃 𝑅+ = 𝑗, 𝑈+ = 𝑢+|𝑅+,' = 𝑖

= 𝑃 𝑅+ = 𝑗|𝑅+,' = 𝑖 ×
𝑃 𝑈+ = 𝑢+|𝑅+ = 𝑗

Notice that, since 𝑈( and 𝑈&
have the same observed values, 
their inbound edges have the 
same weights. Va
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Node Probabilities

𝑣+!
= max

,',…,,)*'
𝑃(

)

𝑈#
= 𝑢#… ,𝑈! = 𝑢!, 𝑅#
= 𝑟#, … , 𝑅! = 𝑗
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Node Probabilities: Initialization
For example, let’s 
consider how to find 𝑣<=
for 𝑡 = 1:

𝑣+# = 𝑃 𝑈# = 𝑢#, 𝑅# = 𝑗
= 𝑃 𝑅# = 𝑗
×𝑃 𝑈# = 𝑢#|𝑅# = 𝑗

= *(0.5)(0.1) 𝑗 = 𝑇
(0.5)(0.8) 𝑗 = 𝐹 Va
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… and what about time t=2?
Notice that, at time t=2, 
there are two ways to get 
to any particular state:
• The previous state might 

have been F
• The previous state might 

have been T
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Viterbi Algorithm: the iteration step
Given edge probabilities defined as

𝑒*+! = 𝑃 𝑅! = 𝑗, 𝑈! = 𝑢!|𝑅!"# = 𝑖
and node probabilities defined as

𝑣+! = max
,',…,,)*(,*

𝑃 𝑈# = 𝑢#… ,𝑈! = 𝑢!, 𝑅# = 𝑟#, … , 𝑅!"# = 𝑖, 𝑅! = 𝑗

The node probability can be efficiently computed as
𝑣<=
= max

> +

,

max
?),…,?*+,

𝑃 𝑈8 = 𝑢8… ,𝑈=@8 = 𝑢=@8, 𝑅8 = 𝑟8, … , 𝑅=@8 = 𝑖

×𝑃 𝑅= = 𝑗, 𝑈= = 𝑢=|𝑅=@8 = 𝑖



Viterbi Algorithm: the iteration step
Given edge probabilities defined as

𝑒*+! = 𝑃 𝑅! = 𝑗, 𝑈! = 𝑢!|𝑅!"# = 𝑖
and node probabilities defined as

𝑣+! = max
,',…,,)*(,*

𝑃 𝑈# = 𝑢#… ,𝑈! = 𝑢!, 𝑅# = 𝑟#, … , 𝑅!"# = 𝑖, 𝑅! = 𝑗

The node probability can be efficiently computed as

𝑣<= = max
>

𝑣>,=@8𝑒><=



… and what about time t=2?
𝑣#,% = max

,
𝑣,"𝑒,,#,%

= max 0.05 0.63 , (0.4)(0.27)
= 0.108
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… and what about time t=2?
𝑣#,% = max

,
𝑣,"𝑒,,#,%

= max 0.05 0.63 , (0.4)(0.27)
= 0.108

𝑣-,% = max
,

𝑣,"𝑒,,-,%
= max 0.05 0.06 , (0.4)(0.14)

= 0.056
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Node probabilities and backpointers
• Node Probability: Probability of the best path until node j at time t

𝑣+! = max
,',…,,)*(,*

𝑃 𝑈# = 𝑢#… ,𝑈! = 𝑢!, 𝑅# = 𝑟#, … , 𝑅!"# = 𝑖, 𝑅! = 𝑗

• Backpointer: which node, 𝑖, precedes node 𝑗 on the best path?

𝑖+!∗ = argmax
,',…,,)*(,*

𝑃 𝑈#, = 𝑢#… ,𝑈! = 𝑢!, 𝑅# = 𝑟#, … , 𝑅!"# = 𝑖, 𝑅! = 𝑗



Backpointers at t=2
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𝑖(,%∗ = argmax
*

𝑣*#𝑒*,(,%

= argmax 0.05 0.63 ,
(0.4)(0.27)
= 𝐹

𝑖/,%∗ = argmax
*

𝑣*#𝑒*,/,%

= argmax 0.05 0.06 ,
(0.4)(0.14)
= 𝐹



Backpointers at t=3
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𝑖(,$∗ = argmax
*

𝑣*%𝑒*,(,$

= argmax 0.108 0.63 ,
(0.056)(0.27)
= 𝑇

𝑖/,$∗ = argmax
*

𝑣*%𝑒*,/,$

= argmax 0.108 0.06 ,
(0.056)(0.14)
= 𝐹



Backpointers at t=4
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𝑖(,)∗ = argmax
*

𝑣*$𝑒*,(,)

= argmax 0.068 0.07 ,
(0.008)(0.03)
= 𝑇

𝑖/,)∗ = argmax
*

𝑣*$𝑒*,/,)

= argmax 0.068 0.24 ,
(0.008)(0.56)
= 𝑇



So which is the best path?

• Answer: whichever one is most probable.



Node probabilities at t=4
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𝑣(,) = max
*

𝑣*$𝑒*,(,)

= max 0.068 0.07 ,
(0.008)(0.03)
= 0.005

𝑣/,) = max
*

𝑣*$𝑒*,/,)

= max 0.068 0.24 ,
(0.008)(0.56)
= 0.016

The best path is the one that 
ends at 𝑅) = 𝐹



Termination: which is the best path?

• Best final state is whichever final state has the highest node 
probability.
• The best path leading to that state is the most probable one
• … but we’ve already found the most probable path…
• …we just need to follow the backpointers!



Follow the backpointers!
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Given the observations

𝑈#, 𝑈%, 𝑈$, 𝑈) = 𝐹, 𝑇, 𝑇, 𝐹

… and given our hidden 
Markov model, we conclude 
that the most probable 
sequence of state variables is

𝑅#, 𝑅%, 𝑅$, 𝑅) = 𝐹, 𝑇, 𝑇, 𝐹



Some conclusions

• We have discovered that, if Elspeth brings her umbrella only on days 2 
and 3, then the best inference is that it’s raining on only those days.



Some conclusions

Other types of HMMs might be less obvious.  For example, consider the 
following assertion:

A fly flies well. A well does not fly.
In order to decide if these sentences are true or false, you first need to 
know which words are nouns, which verbs, and which adverbs.
In MP4, you will solve this problem using an HMM.
• State variable = part of speech
• Observation = word
• Transition model: verbs tend to come after nouns.



Final Word: Computational Complexity
• Inference by Enumeration in an HMM: 𝒪 𝑁(

𝑃 vars you care about = 6
012.3"4567 8569

𝑃 all vars

… the complexity can be reduced to 𝒪 𝑇𝑁% if you add over each don’t-
care variable as soon as you no longer need it.
• Decoding using the Viterbi Algorithm: 𝒪 𝑇𝑁%

𝑣+! = max
*

𝑣*,!"#𝑒*+!
Max over N values of 𝑖, performed for N values of 𝑗, and for T values of 𝑡. 


