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Outline

• HMM: Probabilistic reasoning over time
• Two views of an HMM: as a Bayes Net, as an FSM
• Inference: Belief propagation in an HMM
• Parameter learning: Maximum likelihood
• Parameter learning: EM



Probabilistic reasoning over time

• So far, we’ve mostly dealt with episodic environments
• Exceptions: games with multiple moves, planning

• In particular, the Bayesian networks we’ve seen so far 
describe static situations
• Each random variable gets a single fixed value in a single 

problem instance

• Now we consider the problem of describing 
probabilistic environments that evolve over time
• Examples: robot localization, human activity detection, 

tracking, speech recognition, machine translation, 



Probabilistic reasoning over time

• At each time slice t, the state of the world is described by an unobservable 
state variable Yt and an observable observation variable Xt

• State Transitions: in general, the value of Yt depends on the whole past 
history:

P(Yt | Y0, …, Yt-1) = P(Yt | Y0:t-1) 
• Observation model: in general, the value of Xt depends on all current and 

past states and observations:
P(Xt | Y0, …, Yt, X1, …, Xt-1) = P(Xt | Y0:t, X1:t-1) 



Hidden Markov Model

• A hidden Markov model assumes that both the state and the 
observation are Markov.
• State Transitions: the Markov assumption means that each state 

variable depends only on the preceding time step:
P(Yt | Y0, …, Yt-1) = P(Yt | Yt-1) 

• Observation model: the Markov assumption means that each state 
variable depends only on the current state:

P(Xt | Y0, …, Yt, X1, …, Xt-1) = P(Xt | Yt) 
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Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

• Elspeth Dunsany is an AI researcher at the Canadian company Unitek.
• Richard Feynman is an AI, named after the famous physicist, whose 

personality he resembles.
• To keep him from escaping, Richard’s workstation is not connected to 

the internet.  He knows about rain but has never seen it.
• He has noticed, however, that Elspeth sometimes brings an umbrella 

to work.  He correctly infers that she is more likely to carry an 
umbrella on days when it rains.



state

observation

Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

Since he has read a lot about rain, 
Richard proposes a hidden Markov 
model:
• Rain on day t-1 (𝑅!"#=T) makes 

rain on day t (𝑅! = 𝑇) more likely.
• Elspeth usually brings her 

umbrella (𝑈! = 𝑇) on days when 
it rains (𝑅! = 𝑇), but not always.



state

observation

Transition model

Observation model

Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

• Richard learns that the weather 
changes on 3 out of 10 days, thus
𝑃 𝑅! = 𝑇|𝑅!"# = 𝑇 = 0.7
𝑃 𝑅! = 𝑇|𝑅!"# = 𝐹 = 0.3

• He also learns that Elspeth 
sometimes forgets her umbrella 
when it’s raining, and that she 
sometimes brings an umbrella 
when it’s not raining. Specifically,

𝑃 𝑈! = 𝑇|𝑅! = 𝑇 = 0.9
𝑃 𝑈! = 𝑇|𝑅! = 𝐹 = 0.2



Applications of HMMs
• Speech recognition HMMs:

• Observations are acoustic signals 
(continuous valued)

• States are specific positions in specific words 
(so, tens of thousands)

• Machine translation HMMs:
• Observations are words (tens of thousands)
• States are cross-lingual alignments

• Robot tracking:
• Observations are range readings 

(continuous)
• States are positions on a map

Source: Tamara Berg



Example: Speech Recognition 
• Observations: 𝑋! = spectrum of 25ms frame of the speech signal.
• State: 𝑌! = phoneme or letter being currently produced
Example utterance: “chapter one,” from a Librivox recording of Pride and Prejudice.
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• HMM: Probabilistic reasoning over time
• Two views of an HMM: as a Bayes Net, as an FSM
• Inference: Belief propagation in an HMM
• Parameter learning: Maximum likelihood
• Parameter learning: EM and Hard EM
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Observation model

HMM as a Bayes Net

This slide shows an HMM as a 
Bayes Net.  You should remember 
the graph semantics of a Bayes net:
• Nodes are random variables.
• Edges denote stochastic 

dependence.



HMM as a Finite State Machine

This slide shows exactly the same 
HMM, viewed in a totally different 
way.  Here, we show it as a finite 
state machine:
• Nodes denote states.
• Edges denote possible transitions 

between the states.
• Observation probabilities must 

be written using little table 
thingies, hanging from each state.

R=T R=F

0.7

0.7

0.3

0.3

U=T: 0.9
U=F: 0.1

U=T: 0.2
U=F: 0.8

Ut = T Ut = F

Rt = T 0.9 0.1

Rt = F 0.2 0.8

Observation probabilities
Rt = T Rt = F

Rt-1 = T 0.7 0.3

Rt-1 = F 0.3 0.7

Transition probabilities



Bayes Net vs. Finite State Machine

Finite State Machine:
• Lists the different possible states 

that the world can be in, at one 
particular time.
• Evolution over time is not 

shown.

Bayes Net:
• Lists the different time slices.
• The various possible settings of 

the state variable are not shown.

R=T R=F

0.7

0.7

0.3

0.3



Speech Recognition as a Bayes Net
• Observations: 𝑋! = spectrum of 25ms frame of the speech signal.
• State: 𝑌! = phoneme or letter being currently produced
Example utterance: “chapter one,” from a Librivox recording of Pride and Prejudice.

𝑌!𝑌"𝑌#𝑌$𝑌%𝑌&𝑌'𝑌( 𝑌)𝑌!*



Speech Recognition as a Finite State Machine

• Observations: 𝑋! = spectrum of 10ms 
“frame” of the speech signal.

• States: 𝑌! = letter or phoneme.
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Finite State Machine model of the first part of the 
word “chapter”
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Belief propagation in an HMM: Example

• Elspeth has no umbrella on day 1.
• Elspeth has an umbrella on days 2 

and 3.
• What is the probability that it’s 

raining on day 3?

𝑃 𝑅& = 𝑇|𝑈# = 𝐹, 𝑈' = 𝑇, 𝑈& = 𝑇
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Belief propagation, step by step

1. Identify a path through the Bayesian network that includes all 
variables, including the query variable and all observed variables, 
starting at their common ancestor

2. Calculate the joint probability of the query variable and all observed 
variables, iteratively marginalizing out all intermediate variables 
step-by-step along the path.

3. Apply Bayes’ rule to get the desired conditional probability



Step 1: Identify a path starting at their 
common ancestor
𝑃 𝑅& = 𝑇|𝑈# = 𝐹, 𝑈' = 𝑇, 𝑈& = 𝑇 ?

• Query variable: 𝑅&
• Observed variables:

• 𝑈' = 𝐹
• 𝑈( = 𝑇
• 𝑈) = 𝑇
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Step 2: Calculate the joint probability, step-by-step…

• 𝑃 𝑅# = 𝑇 = 0.5
• 𝑃 𝑅# = 𝐹 = 0.5
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Step 2: Calculate the joint probability, step-by-step…

• 𝑃 𝑅# = 𝑇, 𝑈# = 𝐹 = (0.5)(0.1)
• 𝑃 𝑅# = 𝐹, 𝑈# = 𝐹 = (0.5)(0.8)
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Step 2: Calculate the joint probability, step-by-step…

• 𝑃 𝑅# = 𝑇, 𝑈# = 𝐹, 𝑅' = 𝑇 =
(0.5)(0.1)(0.7)
• 𝑃 𝑅# = 𝑇, 𝑈# = 𝐹, 𝑅' = 𝐹 =
(0.5)(0.1)(0.3)

• 𝑃 𝑅# = 𝐹, 𝑈# = 𝐹, 𝑅' = 𝑇 =
(0.5)(0.8)(0.3)
• 𝑃 𝑅# = 𝐹, 𝑈# = 𝐹, 𝑅' = 𝐹 =
(0.5)(0.8)(0.7)
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…iteratively marginalizing out intermediate variables as 
you go…

𝑃 𝑈" = 𝐹, 𝑅# = 𝑇 =
𝑃 𝑅" = 𝑇,𝑈" = 𝐹, 𝑅# = 𝑇

+ 𝑃 𝑅" = 𝐹,𝑈" = 𝐹, 𝑅# = 𝑇 =
0.5 0.1 0.7 + 0.5 0.8 0.3 = 0.155

𝑃 𝑈" = 𝐹, 𝑅# = 𝐹 =

𝑃 𝑅" = 𝑇,𝑈" = 𝐹, 𝑅# = 𝐹
+ 𝑃 𝑅" = 𝐹,𝑈" = 𝐹, 𝑅# = 𝐹 =

0.5 0.1 0.3 + 0.5 0.8 0.7 = 0.295
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Step 2: Calculate the joint probability, step-by-step…

• 𝑃 𝑈! = 𝐹, 𝑅" = 𝑇,𝑈" = 𝑇 =
𝑃 𝑈! = 𝐹, 𝑅" = 𝑇 ×

𝑃 𝑈" = 𝑇|𝑅" = 𝑇 =
(0.155)(0.9)

• 𝑃 𝑈! = 𝐹, 𝑅" = 𝐹,𝑈" = 𝑇 =
𝑃 𝑈! = 𝐹, 𝑅" = 𝐹 ×

𝑃 𝑈" = 𝑇|𝑅" = 𝐹 =
(0.295)(0.2)
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Step 2: Calculate the joint probability, step-by-step…

• 𝑃 𝑈! = 𝐹, 𝑅" = 𝑇,𝑈" = 𝑇, 𝑅# =
𝑃 𝑈! = 𝐹, 𝑅" = 𝑇,𝑈" = 𝑇 ×

𝑃 𝑅#|𝑅" = 𝑇 =
(0.155)(0.9)(0.7 or 0.3)

• 𝑃 𝑈! = 𝐹, 𝑅" = 𝐹,𝑈" = 𝑇, 𝑅# =
𝑃 𝑈! = 𝐹, 𝑅" = 𝐹,𝑈" = 𝑇 ×

𝑃 𝑅#|𝑅" = 𝐹 =
(0.295)(0.2)(0.3 or 0.7)
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…iteratively marginalizing out intermediate variables as 
you go…

𝑃 𝑈# = 𝐹, 𝑈' = 𝑇, 𝑅& =

𝑃 𝑈# = 𝐹, 𝑅' = 𝑇, 𝑈' = 𝑇, 𝑅&
+ 𝑃 𝑈# = 𝐹, 𝑅' = 𝐹, 𝑈' = 𝑇, 𝑅& =

50.11535 𝑅& = 𝑇
0.08315 𝑅& = 𝐹
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Step 2: Calculate the joint probability, step-by-step…

𝑃 𝑈# = 𝐹, 𝑈' = 𝑇, 𝑈& = 𝑇, 𝑅& =
𝑃 𝑈# = 𝐹, 𝑈' = 𝑇, 𝑅& ×

𝑃 𝑈& = 𝑇|𝑅& =

5
(0.11535)(0.9) 𝑅& = 𝑇
(0.08315)(0.2) 𝑅& = 𝐹
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Step 3: Apply Bayes’ rule to get conditional probability

𝑃 𝑅# = 𝑇|𝑈! = 𝐹,𝑈" = 𝑇,𝑈# = 𝑇 =

𝑃 𝑅# = 𝑇,𝑈! = 𝐹,𝑈" = 𝑇,𝑈# = 𝑇
𝑃 𝑅# = 𝑇,𝑈! = 𝐹,𝑈" = 𝑇,𝑈# = 𝑇 +
𝑃 𝑅# = 𝐹,𝑈! = 𝐹,𝑈" = 𝑇,𝑈# = 𝑇

=
(0.11535)(0.9)

0.11535 0.9 + (0.08315)(0.2)
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Belief propagation, step by step

1. Identify a path through the Bayesian network that includes all 
variables, including the query variable and all observed variables, 
starting at their common ancestor

2. Calculate the joint probability of the query variable and all observed 
variables, iteratively marginalizing out all intermediate variables 
step-by-step along the path.
1. Product Step: 𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐴, 𝐵)𝑃(𝐶|𝐴, 𝐵)
2. Sum Step: 𝑃 𝐴, 𝐶 = ∑*𝑃(𝐴, 𝐵 = 𝑏, 𝐶)

3. Apply Bayes’ rule to get the desired conditional probability



Outline

• HMM: Probabilistic reasoning over time
• Two views of an HMM: as a Bayes Net, as an FSM
• Inference: Belief propagation in an HMM
• Parameter learning: Maximum likelihood
• Parameter learning: EM and Hard EM



Flying Cows

The University of Illinois Vaccavolatology Department has a new model 
of the way in which cows learn to fly.
• If a smart cow arrives in the pasture, it tends to remain for more than 

one day.  There is a transition probability, 𝑃(𝑆!|𝑆!"#).
• If there is smart cow present, then on that day, it is likely that one or 

more cows will fly away: 𝑃(𝐹!|𝑆!).

F1

S1

FT-1

ST-1

FT

ST…
F2

S2



Flying cows
The Vaccavolatologists went out to 
watch a nearby pasture for ten days.  
• Their results are shown in the table 

at left (True is marked as “T”; False 
is shown with a blank).

Day S F

1

2

3 T

4 T T

5 T

6 T T

7 T T

8

9 T

10

F1

S1

F2

S2 …



Maximum 
Likelihood

The transition probabilities can be estimated as:

𝑃 𝑆+ = 𝑇 𝑆+,' = 𝑇 =

# days (𝑆+ = 𝑇, 𝑆+,'=T)
# days (𝑆+,' = 𝑇)

=
4
5

𝑃 𝑆+ = 𝑇 𝑆+,' = 𝐹

=
# days (𝑆+ = 𝑇, 𝑆+,' = 𝐹)

# days (𝑆+,' = 𝐹)
=
1
4

Day S F

1

2

3 T

4 T T

5 T

6 T T

7 T T

8

9 T

10

F1

S1

F2

S2 …



Maximum 
Likelihood

The observation probabilities can be estimated 
as:

𝑃 𝐹+ = 𝑇 𝑆+ = 𝑇 =

# days (𝐹+ = 𝑇, 𝑆+ = 𝑇)
# days (𝑆+ = 𝑇)

=
3
5

𝑃 𝐹+ = 𝑇 𝑆+ = 𝐹 =

# days (𝐹+ = 𝑇, 𝑆+ = 𝐹)
# days (𝑆+ = 𝐹)

=
1
5

Day S F

1

2

3 T

4 T T

5 T

6 T T

7 T T

8

9 T

10

F1

S1

F2

S2 …
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Missing data

What can we do if some of the 
observations are missing?

Day S F

1

2

3 T

4 T T

5 T

6 T T

7 ? T

8 ?

9 ? T

10 ?

F1

S1

F2

S2 …



Missing data

What can we do if some of the observations are missing?

• Answer: we can use EM, just like any other Bayes Net.

𝑃 𝑆! = 𝑇 𝑆!"# = 𝑇 =

𝐸[# days (𝑆! = 𝑇, 𝑆!"#=T)]
E[# days (𝑆!"# = 𝑇)]

=

∑!9#: 𝑃(𝑆! = 𝑇, 𝑆!"# = 𝑇| observations)
∑!9#: 𝑃(𝑆!"# = 𝑇| observations)



Outline

• HMM: Probabilistic reasoning over time

𝑃 𝑌$:& , 𝑋!:& = 𝑃(𝑌$):
'(!

&
𝑃 𝑌'|𝑌')! 𝑃 𝑋'|𝑌'

• Two views of an HMM: as a Bayes Net, as an FSM
• Inference: Belief propagation in an HMM
• Parameter learning: Maximum likelihood

𝑃 𝑆' 𝑆')! =
# days (𝑆' , 𝑆')!)
# days (𝑆')!)

• Parameter learning: EM
𝑃 𝑆' 𝑆')! =

𝐸[# days (𝑆' , 𝑆')!)]
E[# days (𝑆')!)]


