CS440/ECE448 Lecture 22: Hidden Markov Models

Mark Hasegawa-Johnson, 3/2022
CC-BY 4.0
You may remix or redistribute if you cite the source.

Outline

- HMM: Probabilistic reasoning over time
- Two views of an HMM: as a Bayes Net, as an FSM
- Inference: Belief propagation in an HMM
- Parameter learning: Maximum likelihood
- Parameter learning: EM

Probabilistic reasoning over time

- So far, we've mostly dealt with episodic environments
- Exceptions: games with multiple moves, planning
- In particular, the Bayesian networks we've seen so far describe static situations
- Each random variable gets a single fixed value in a single problem instance
- Now we consider the problem of describing probabilistic environments that evolve over time
- Examples: robot localization, human activity detection, tracking, speech recognition, machine translation,

Probabilistic reasoning over time

- At each time slice t, the state of the world is described by an unobservable state variable Y_{t} and an observable observation variable X_{t}
- State Transitions: in general, the value of Y_{t} depends on the whole past history:

$$
P\left(Y_{t} \mid Y_{0}, \ldots, Y_{t-1}\right)=P\left(Y_{t} \mid Y_{0: t-1}\right)
$$

- Observation model: in general, the value of X_{t} depends on all current and past states and observations:

$$
P\left(X_{t} \mid Y_{0}, \ldots, Y_{t}, X_{1}, \ldots, X_{t-1}\right)=P\left(X_{t} \mid Y_{0: t}, X_{1: t-1}\right)
$$

Hidden Markov Model

- A hidden Markov model assumes that both the state and the observation are Markov.
- State Transitions: the Markov assumption means that each state variable depends only on the preceding time step:

$$
P\left(Y_{t} \mid Y_{0}, \ldots, Y_{t-1}\right)=P\left(Y_{t} \mid Y_{t-1}\right)
$$

- Observation model: the Markov assumption means that each state variable depends only on the current state:

$$
P\left(X_{t} \mid Y_{0}, \ldots, Y_{t}, X_{1}, \ldots, X_{t-1}\right)=P\left(X_{t} \mid Y_{t}\right)
$$

Example Scenario: UmbrellaWorld

Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell \& Norvig

- Elspeth Dunsany is an AI researcher at the Canadian company Unitek.
- Richard Feynman is an AI, named after the famous physicist, whose personality he resembles.
- To keep him from escaping, Richard's workstation is not connected to the internet. He knows about rain but has never seen it.
- He has noticed, however, that Elspeth sometimes brings an umbrella to work. He correctly infers that she is more likely to carry an umbrella on days when it rains.

Example Scenario: UmbrellaWorld

Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell \& Norvig

Since he has read a lot about rain, Richard proposes a hidden Markov model:

- Rain on day t-1 $\left(R_{t-1}=\mathrm{T}\right)$ makes rain on day $\mathrm{t}\left(R_{t}=T\right)$ more likely.
- Elspeth usually brings her umbrella $\left(U_{t}=T\right)$ on days when it rains $\left(R_{t}=T\right)$, but not always.

Example Scenario: UmbrellaWorld

Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell \& Norvig

- Richard learns that the weather changes on 3 out of 10 days, thus

$$
\begin{aligned}
& P\left(R_{t}=T \mid R_{t-1}=T\right)=0.7 \\
& P\left(R_{t}=T \mid R_{t-1}=F\right)=0.3
\end{aligned}
$$

- He also learns that Elspeth sometimes forgets her umbrella when it's raining, and that she sometimes brings an umbrella when it's not raining. Specifically,

$$
\begin{aligned}
& P\left(U_{t}=T \mid R_{t}=T\right)=0.9 \\
& P\left(U_{t}=T \mid R_{t}=F\right)=0.2
\end{aligned}
$$

Observation model

Applications of HMMs

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are cross-lingual alignments

Google

Translate From: Latin $\quad \Leftrightarrow \quad$ To: English $\boldsymbol{}$

- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map

Example: Speech Recognition

- Observations: $X_{t}=$ spectrum of 25 ms frame of the speech signal.
- State: $Y_{t}=$ phoneme or letter being currently produced

Example utterance: "chapter one," from a Librivox recording of Pride and Prejudice.

Outline

- HMM: Probabilistic reasoning over time
- Two views of an HMM: as a Bayes Net, as an FSM
- Inference: Belief propagation in an HMM
- Parameter learning: Maximum likelihood
- Parameter learning: EM and Hard EM

HMM as a Bayes Net

This slide shows an HMM as a Bayes Net. You should remember the graph semantics of a Bayes net:

- Nodes are random variables.
- Edges denote stochastic dependence.

Transition model

Observation model

HMM as a Finite State Machine

This slide shows exactly the same HMM, viewed in a totally different way. Here, we show it as a finite state machine:

- Nodes denote states.
- Edges denote possible transitions between the states.

Bayes Net vs. Finite State Machine

Finite State Machine:

- Lists the different possible states that the world can be in, at one particular time.
- Evolution over time is not shown.

Bayes Net:

- Lists the different time slices.
- The various possible settings of the state variable are not shown.

Speech Recognition as a Bayes Net

- Observations: $X_{t}=$ spectrum of 25 ms frame of the speech signal.
- State: $Y_{t}=$ phoneme or letter being currently produced

Example utterance: "chapter one," from a Librivox recording of Pride and Prejudice.

Speech Recognition as a Finite State Machine

- Observations: $X_{t}=$ spectrum of 10 ms "frame" of the speech signal.
- States: $Y_{t}=$ letter or phoneme.

Finite State Machine model of the first part of the word "chapter"

Outline

- HMM: Probabilistic reasoning over time
- Two views of an HMM: as a Bayes Net, as an FSM
- Inference: Belief propagation in an HMM
- Parameter learning: Maximum likelihood
- Parameter learning: EM and Hard EM

Belief propagation in an HMM: Example

Belief propagation, step by step

1. Identify a path through the Bayesian network that includes all variables, including the query variable and all observed variables, starting at their common ancestor
2. Calculate the joint probability of the query variable and all observed variables, iteratively marginalizing out all intermediate variables step-by-step along the path.
3. Apply Bayes' rule to get the desired conditional probability

Step 1: Identify a path starting at their common ancestor
$P\left(R_{3}=T \mid U_{1}=F, U_{2}=T, U_{3}=T\right)$?

Observation model

Step 2: Calculate the joint probability, step-by-step...

- $P\left(R_{1}=T\right)=0.5$
- $P\left(R_{1}=F\right)=0.5$

Observation model

Step 2: Calculate the joint probability, step-by-step...

- $P\left(R_{1}=T, U_{1}=F\right)=(0.5)(0.1)$
- $P\left(R_{1}=F, U_{1}=F\right)=(0.5)(0.8)$

Observation model

Step 2: Calculate the joint probability, step-by-step...

- $P\left(R_{1}=T, U_{1}=F, R_{2}=T\right)=$ (0.5)(0.1)(0.7)
- $P\left(R_{1}=T, U_{1}=F, R_{2}=F\right)=$ (0.5)(0.1)(0.3)
- $P\left(R_{1}=F, U_{1}=F, R_{2}=T\right)=$ (0.5)(0.8)(0.3)
- $P\left(R_{1}=F, U_{1}=F, R_{2}=F\right)=$ (0.5)(0.8)(0.7)

Observation model
...iteratively marginalizing out intermediate variables as you go...

$$
\begin{gathered}
P\left(U_{1}=F, R_{2}=T\right)= \\
P\left(R_{1}=T, U_{1}=F, R_{2}=T\right) \\
+P\left(R_{1}=F, U_{1}=F, R_{2}=T\right)= \\
(0.5)(0.1)(0.7)+(0.5)(0.8)(0.3)=0.155 \\
P\left(U_{1}=F, R_{2}=F\right)= \\
P\left(R_{1}=T, U_{1}=F, R_{2}=F\right) \\
+P\left(R_{1}=F, U_{1}=F, R_{2}=F\right)= \\
(0.5)(0.1)(0.3)+(0.5)(0.8)(0.7)=0.295
\end{gathered}
$$

Observation model

Step 2: Calculate the joint probability, step-by-step...

- $P\left(U_{1}=F, R_{2}=T, U_{2}=T\right)=$ $P\left(U_{1}=F, R_{2}=T\right) \times$

$$
P\left(U_{2}=T \mid R_{2}=T\right)=
$$

$$
(0.155)(0.9)
$$

- $P\left(U_{1}=F, R_{2}=F, U_{2}=T\right)=$ $P\left(U_{1}=F, R_{2}=F\right) \times$

$$
P\left(U_{2}=T \mid R_{2}=F\right)=
$$

(0.295)(0.2)

Observation model

Step 2: Calculate the joint probability, step-by-step...

- $P\left(U_{1}=F, R_{2}=T, U_{2}=T, R_{3}\right)=$ $P\left(U_{1}=F, R_{2}=T, U_{2}=T\right) \times$ $P\left(R_{3} \mid R_{2}=T\right)=$ (0.155)(0.9)(0.7 or 0.3)
- $P\left(U_{1}=F, R_{2}=F, U_{2}=T, R_{3}\right)=$ $P\left(U_{1}=F, R_{2}=F, U_{2}=T\right) \times$

$$
P\left(R_{3} \mid R_{2}=F\right)=
$$

(0.295)(0.2)(0.3 or 0.7)

Observation model
...iteratively marginalizing out intermediate variables as you go...

Step 2: Calculate the joint probability, step-by-step...

Observation model

Step 3: Apply Bayes' rule to get conditional probability

Observation model

Belief propagation, step by step

1. Identify a path through the Bayesian network that includes all variables, including the query variable and all observed variables, starting at their common ancestor
2. Calculate the joint probability of the query variable and all observed variables, iteratively marginalizing out all intermediate variables step-by-step along the path.
3. Product Step: $P(A, B, C)=P(A, B) P(C \mid A, B)$
4. Sum Step: $P(A, C)=\sum_{b} P(A, B=b, C)$
5. Apply Bayes' rule to get the desired conditional probability

Outline

- HMM: Probabilistic reasoning over time
- Two views of an HMM: as a Bayes Net, as an FSM
- Inference: Belief propagation in an HMM
- Parameter learning: Maximum likelihood
- Parameter learning: EM and Hard EM

Flying Cows

The University of Illinois Vaccavolatology Department has a new model of the way in which cows learn to fly.

- If a smart cow arrives in the pasture, it tends to remain for more than one day. There is a transition probability, $P\left(S_{t} \mid S_{t-1}\right)$.
- If there is smart cow present, then on that day, it is likely that one or more cows will fly away: $P\left(F_{t} \mid S_{t}\right)$.

Flying cows

The Vaccavolatologists went out to watch a nearby pasture for ten days.

- Their results are shown in the table at left (True is marked as " T "; False is shown with a blank).

Day	S	F
1		
2		
3	T	
4	T	T
5	T	
6	T	T
7	T	T
8		
9		T
10		

Maximum Likelihood

The transition probabilities can be estimated as:

$$
\begin{gathered}
P\left(S_{t}=T \mid S_{t-1}=T\right)= \\
\frac{\text { \# days }\left(S_{t}=T, S_{t-1}=T\right)}{\text { \# days }\left(S_{t-1}=T\right)}=\frac{4}{5} \\
P\left(S_{t}=T \mid S_{t-1}=F\right) \\
=\frac{\text { \# days }\left(S_{t}=T, S_{t-1}=F\right)}{\text { \# days }\left(S_{t-1}=F\right)}=\frac{1}{4}
\end{gathered}
$$

Day	S	F
1		
2		
3	T	
4	T	T
5	T	
6	T	T
7	T	T
8		
9		T
10		

Maximum Likelihood

Day	S	F
1		
2		
3	T	
4	T	T
5	T	
6	T	T
7	T	T
8		
9		T
10		

Outline

- HMM: Probabilistic reasoning over time
- Two views of an HMM: as a Bayes Net, as an FSM
- Inference: Belief propagation in an HMM
- Parameter learning: Maximum likelihood
- Parameter learning: EM

Missing data

What can we do if some of the observations are missing?

Day	S	F
1		
2		
3	T	
4	T	T
5	T	
6	T	T
7	$?$	T
8	$?$	
9	$?$	T
10	$?$	

Missing data

What can we do if some of the observations are missing?

- Answer: we can use EM, just like any other Bayes Net.

$$
\begin{gathered}
P\left(S_{t}=T \mid S_{t-1}=T\right)= \\
\frac{E\left[\# \text { days }\left(S_{t}=T, S_{t-1}=\mathrm{T}\right)\right]}{\mathrm{E}\left[\# \text { days }\left(S_{t-1}=T\right)\right]}= \\
\frac{\sum_{t=1}^{T} P\left(S_{t}=T, S_{t-1}=T \mid \text { observations }\right)}{\sum_{t=1}^{T} P\left(S_{t-1}=T \mid \text { observations }\right)}
\end{gathered}
$$

Outline

- HMM: Probabilistic reasoning over time

$$
P\left(Y_{0: T}, X_{1: T}\right)=P\left(Y_{0}\right) \prod_{t=1}^{T} P\left(Y_{t} \mid Y_{t-1}\right) P\left(X_{t} \mid Y_{t}\right)
$$

- Two views of an HMM: as a Bayes Net, as an FSM
- Inference: Belief propagation in an HMM
- Parameter learning: Maximum likelihood

$$
P\left(S_{t} \mid S_{t-1}\right)=\frac{\# \text { days }\left(S_{t}, S_{t-1}\right)}{\# \text { days }\left(S_{t-1}\right)}
$$

- Parameter learning: EM

$$
P\left(S_{t} \mid S_{t-1}\right)=\frac{E\left[\# \text { days }\left(S_{t}, S_{t-1}\right)\right]}{E\left[\# \text { days }\left(S_{t-1}\right)\right]}
$$

