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Parameter Learning for Bayesian Networks

• From observed data: Maximum likelihood
• From observed data: Laplace smoothing
• From partially observed data: Expectation maximization



Flying cows

The scenario:

Central Illinois has recently had a 
problem with flying cows.

Farmers have called the university 
to complain that their cows flew 
away.



Flying cows

The university dispatched a team 
of expert vaccavolatologists.  They 
determined that almost all flying 
cows were explained by one or 
both of the following causes:
• Smart cows.  The cows learned 

how to fly, on their own, without 
help.
• Alien intervention.  UFOs taught 

the cows how to fly.



Flying cows
The vaccavolatologists created a 
Bayes net, to help them predict 
any future instances of cow flying:
• P(A) = Probability that aliens 

teach the cow.
• P(S) = Probability that a cow is 

smart enough to figure out how 
to fly on its own.
• P(F|S,A) = Probability that a cow 

learns to fly.

A S

F



Flying cows
They went out to watch a nearby 
pasture for ten days.  
• They reported the number of 

days on which A, S, and/or F 
occurred.
• Their results are shown in the 

table at left (True is marked as 
“T”; False is shown with a blank).

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Flying cows
The vaccavolatologists now wish to 
estimate the parameters of their 
Bayes net
• P(A) 
• P(S) 
• P(F|S,A)

…so that they will be better able to 
testify before Congress about the 
relative dangers of aliens versus 
smart cows. 

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Maximum Likelihood 
Estimation

Suppose we have n training 
examples, 1 ≤ 𝑖 ≤ 𝑛, with known 
values for each of the random 
variables: 
• 𝑎! = 𝑇 or 𝑎! = 𝐹
• 𝑠! = 𝑇 or 𝑠! = 𝐹
• 𝑓! = 𝑇 or 𝑓! = 𝐹

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Maximum Likelihood 
Estimation

We can estimate model parameters 
to be the values that maximize the 
likelihood of the observations, 
subject to the constraints that

𝑃 𝐴 = 𝑇 + 𝑃 𝐴 = 𝐹 = 1
𝑃 𝑆 = 𝑇 + 𝑃 𝑆 = 𝐹 = 1

𝑃 𝐹 = 𝑇|𝑆, 𝐴 + 𝑃 𝐹 = 𝐹|𝑆, 𝐴 = 1

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Maximum Likelihood 
Estimation

The maximum likelihood parameters are

𝑃 𝐴 = 𝑇 =
# days on which 𝑎! = 𝑇

# days total

𝑃 𝑆 = 𝑇 =
# days on which 𝑠! = 𝑇

# days total

𝑃 𝐹 = 𝐹|𝑠, 𝑎 =
# days (A=𝑎,S=𝑠, F=T)
# days (A=𝑎,S=𝑠)

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Maximum Likelihood 
Estimation

The maximum likelihood parameters 
are

𝑃 𝐴 = 𝑇 =
3
10
, 𝑃 𝑆 = 𝑇 =

2
10

A S
F

a s 𝑃 𝐹 = 𝑇|𝑠, 𝒂
F F 1/6
F T 1
T F 1/2
T T 1

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Conclusions: maximum likelihood estimation

• Smart cows are far more dangerous than aliens.
• Maximum likelihood estimation is very easy to use, IF you have 

training data in which the values of ALL variables are observed.



Parameter Learning for Bayesian Networks

• From observed data: Maximum likelihood
• From observed data: Laplace smoothing
• From partially observed data: Expectation maximization



Laplace smoothing

Laplace smoothing adds an extra count of 𝑘 to both categories.
Unlike naïve Bayes, we assume that we know the cardinality of each RV in 
advance, so the denominator uses 𝑘× the known cardinality (no OOVs).

𝑃 𝐴 = 𝑇 =
# days on which 𝑎! = 𝑇 + 𝑘

(# days total)+2k

𝑃 𝑆 = 𝑇 =
# days on which 𝑠! = 𝑇 + 𝑘

# days total + 2𝑘

𝑃 𝐹 = 𝐹|𝑠, 𝑎 =
(# days (A=𝑎,S=𝑠, F=T))+k
# days (A=𝑎,S=𝑠) + 2𝑘

A S
F



Laplace smoothing
Laplace-smoothed parameters:

𝑃 𝐴 = 𝑇 =
3 + 𝑘
10 + 2𝑘 ,

𝑃 𝑆 = 𝑇 =
2 + 𝑘
10 + 2𝑘

A S
F

a s 𝑃 𝐹 = 𝑇|𝑠, 𝒂
F F (1+k)/(6+2k)
F T (1+k)/(1+2k)
T F (1+k)/(2+2k)
T T (1+k)/(1+2k)

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Conclusions: Laplace smoothing

Just like in naïve Bayes:
• Laplace smoothing makes it possible for things to happen in the test data 

that never happened in the training data.  For example, maximum likelihood 
resulted in 𝑃 𝐹 = 𝐹|𝑆 = 𝑇, 𝐴 = 𝑇 = 0, but with Laplace smoothing, we 
smooth that parameter to 𝑃 𝐹 = 𝐹|𝑆 = 𝑇, 𝐴 = 𝑇 = "

#$%"
• This smoothing improves generalization from training data to test data.



Conclusions: Laplace smoothing

Unlike naïve Bayes:
• In Bayesian networks, we assume that we know the cardinality of each random 

variable in advance, so no extra probability mass is kept aside for OOV events.

𝑃 𝑋 = 𝑥|𝐻 = ℎ =
(# observations of (H=ℎ, X=𝑥))+k

# observations of (H=ℎ) + 𝑘 H (# distinct values of 𝑋)



Parameter Learning for Bayesian Networks

• From observed data: Maximum likelihood
• From observed data: Laplace smoothing
• From partially observed data: Expectation maximization



Partially observed data

• Maximum likelihood estimation is very easy to use, IF you have 
training data in which the values of ALL variables are observed.

• …but what if some of the variables can’t be observed?
• For example: after the 6th day, the cows decide to stop responding to 

written surveys.  Therefore, it’s impossible to observe, on any given 
day, how smart the cows are.  We don’t know if 𝑠! = 𝑇 or 𝑠! = 𝐹…



Partially observed data
Suppose that we have the 
following observations:
• We know whether A=True or 

False.
• We know whether F=True or 

False.
• After the 6th day, we don’t know 

whether S is True or False (shown 
as ”?”). 

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T ? T

8 ?

9 ? T

10 ?

A S
F



Expectation Maximization (EM): Main idea 

Remember that maximum likelihood estimation counts examples:

𝑃 𝐹 = 𝑇 𝐴 = 𝑎, 𝑆 = 𝑠 = # days A=a, #$%, '$(
# days #$%, )$*

Expectation maximization is similar, but using “expected counts” instead of 
actual counts:

𝑃 𝐹 = 𝑇 𝐴 = 𝑎, 𝑆 = 𝑠 =
𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠, 𝐹 = 𝑇]

𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠]

Where E[X] means “expected value of X”.



Definition of Expectation

The expected value of a random variable is its weighted average value, 
with weights equal to the probabilities.

𝐸 #days 𝐴 = 𝑎, 𝑆 = 𝑠, 𝐹 = 𝑇 = O
!∈'()*

𝑃 𝐴! = 𝑎, 𝑆! = 𝑠, 𝐹! = 𝑇



Expectation
𝐸 #days 𝐴 = 𝐹, 𝑆 = 𝑇, 𝐹 = 𝑇

=O
!+#

#,

𝑃 𝐴! = 𝐹, 𝑆! = 𝑇, 𝐹! = 𝑇

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T ? T

8 ?

9 ? T

10 ?

A S
F



Expectation
𝐸 #days 𝐴 = 𝐹, 𝑆 = 𝑇, 𝐹 = 𝑇

=O
!+#

#,
𝑃 𝐴! = 𝐹, 𝐹! = 𝑇 ×

𝑃 𝑆! = 𝑇|𝐴! = 𝐹, 𝐹! = 𝑇

𝑃 𝐴! = 𝐹, 𝐹! = 𝑇 is either 0 or 1, 
depending on whether the event 
certainly occurred (days 2 and 9) 
or certainly did not occur (every 
other day).

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T ? T

8 ?

9 ? T

10 ?

A S
F



Expectation
𝐸 #days 𝐴 = 𝐹, 𝑆 = 𝑇, 𝐹 = 𝑇

=O
!+#

#,
𝑃 𝐴! = 𝐹, 𝐹! = 𝑇 ×

𝑃 𝑆! = 𝑇|𝐴! = 𝐹, 𝐹! = 𝑇

• 𝑃 𝑆! = 𝑇|𝐴! = 𝐹, 𝐹! = 𝑇 = 1
on day 2, because the event 
certainly occurred.
• 𝑃 𝑆! = 𝑇|𝐴! = 𝐹, 𝐹! = 𝑇 is 

unknown on day 9

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T ? T

8 ?

9 ? T

10 ?

A S
F



Expectation
𝐸 #days 𝐴 = 𝐹, 𝑆 = 𝑇, 𝐹 = 𝑇

= 1 + 𝑃 𝑆- = 𝑇|𝐴- = 𝐹, 𝐹- = 𝑇

• How can we compute 𝑃(
)

𝑆. =
𝑇|𝐴. = 𝐹, 𝐹. = 𝑇 ?
• In order to compute it, we need 

the model parameters
• The model parameters are the 

thing we’re trying to estimate!

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T ? T

8 ?

9 ? T

10 ?

A S
F



Expectation Maximization (EM) is iterative
INITIALIZE: guess the model parameters.

ITERATE until convergence:
1. E-Step: 𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹 = 𝑓] = ∑!:0!+0,2!+2𝑃 𝑆 = 𝑠|𝑎, 𝑓

2. M-Step: 𝑃 𝐹 = 𝑓 𝑆 = 𝑠, 𝐴 = 𝑎 = 3[#days 6+7,8+0,9+2]
3[#days 6+7, 8+0]

Continue the iteration, shown above, until the model parameters stop 
changing.



Example: Initialize
Marilyn Modigliani is a professional vaccavolatologist.  She gives us 
these initial guesses about the possible model parameters (her guesses 
are probably not quite right, but they are as good a guess as anybody 
else’s):

𝑃 𝐴 = 𝑇 =
1
4 , 𝑃 𝑆 = 𝑇 =

1
4

a s 𝑃 𝐹 = 𝑇|𝑠, 𝒂
F F 0
F T 1/2
T F 1/2
T T 1

A S
F



E-Step
Based on Marilyn’s model, we 
calculate 𝑃 𝑆 = 𝑇|𝑎!, 𝑓! for each 
of the missing days, as shown in 
the table at right.

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T 2/5 T

8 1/7

9 1 T

10 1/7

A S
F



E-Step
The expected counts are 

𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹 = 𝑓] = O
!:0!+0,2!+2

𝑃 𝑆 = 𝑠|𝑎, 𝑓

A S
F

a f 𝑬[# 𝒅𝒂𝒚𝒔 𝑺 = 𝑻|𝑎, 𝑓] 𝑬[# 𝒅𝒂𝒚𝒔 𝑺 = 𝑭|𝑎, 𝑓]
F F

0 + 0 + 0 +
1
7
+
1
7
=
2
7

1 + 1 + 1 +
6
7
+
6
7
=
33
7

F T 1 + 1 = 2 0+0=0
T F 0 1
T T

1 +
2
5
=
7
5

0 +
3
5
=
3
5



Now let’s re-estimate the model parameters.  For example, 

𝑃 𝐹 = 𝑇 𝑆 = 𝐹, 𝐴 = 𝐹 =
𝐸[# days 𝑆 = 𝐹, 𝐴 = 𝐹, 𝐹 = 𝑇]
𝐸[# days 𝑆 = 𝐹, 𝐴 = 𝐹]

=
0

33
7 + 0

= 0

M-Step

a f 𝑬[# 𝒅𝒂𝒚𝒔 𝑺 = 𝑻|𝑎, 𝑓] 𝑬[# 𝒅𝒂𝒚𝒔 𝑺 = 𝑭|𝑎, 𝑓]
F F

0 + 0 + 0 +
1
7
+
1
7
=
2
7

1 + 1 + 1 +
6
7
+
6
7
=
33
7

F T 1 + 1 = 2 0+0=0
T F 0 1
T T

1 +
2
5
=
7
5

0 +
3
5
=
3
5



Now let’s re-estimate the model parameters.  For example, 

𝑃 𝐹 = 𝑇 𝑆 = 𝑇, 𝐴 = 𝐹 =
𝐸[# days 𝑆 = 𝑇, 𝐴 = 𝐹, 𝐹 = 𝑇]
𝐸[# days 𝑆 = 𝑇, 𝐴 = 𝐹]

=
2

2
7 + 2

=
7
8

M-Step

a f 𝑬[# 𝒅𝒂𝒚𝒔 𝑺|𝑎, 𝑓] 𝑬[# 𝒅𝒂𝒚𝒔 ¬𝑺|𝑎, 𝑓]
F F

0 + 0 + 0 +
1
7
+
1
7
=
2
7

1 + 1 + 1 +
6
7
+
6
7
=
33
7

F T 1 + 1 = 2 0+0=0
T F 0 1
T T

1 +
2
5
=
7
5

0 +
3
5
=
3
5



M-Step
The re-estimated probabilities are

𝑃 𝐴 = 𝑇 =
# days 𝐴 = 𝑇
# days total =

3
10

𝑃 𝑆 = 𝑇 =
𝐸 #days 𝑆 = 𝑇
# days total

=
2
7 + 2 + 0 +

7
5

10
=
94
350

A S
F

a s 𝑃 𝐹 𝑆 = 𝑠, 𝐴 = 𝑎
F F 0

33
7 + 0

= 0

F T 2
2
7 + 2

=
7
8

T F 3/5

1 + 3
5

=
3
8

T T 7/5
0 + 7/5

= 1



Expectation Maximization (EM): review
INITIALIZE: guess the model parameters.

ITERATE until convergence:
1. E-Step: 𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹 = 𝑓] = ∑!:0!+0,2!+2𝑃 𝑆 = 𝑠|𝑎, 𝑓

2. M-Step: 𝑃 𝐹 = 𝑓 𝑆 = 𝑠, 𝐴 = 𝑎 = 3[#days 6+7,8+0,9+2]
3[#days 6+7, 8+0]

Continue the iteration, shown above, until the model parameters stop 
changing.



Properties of the EM algorithm

• It always converges.
• The parameters it converges to (P(A), P(S), and P(F|A,S)):
• are guaranteed to be at least as good as your initial guess, but 
• They depend on your initial guess.  Different initial guesses may 

result in different results, after the algorithm converges.
• For example, Marilyn’s initial guess was 𝑃 𝐹 = 𝑇|𝑆 = 𝐹, 𝐴 = 𝐹 =
𝟎.  Notice that we ended up with the same value!   According to 
the fully observed data we saw earlier, that might not be the best 
possible parameter for these data.



Parameter Learning for Bayesian Networks

•Maximum Likelihood (ML):

𝑃 𝐹 = 𝑇|𝑆 = 𝑠, 𝐴 = 𝑎 =
# days (A=𝑎, S=𝑠, F=T)
# days (A=𝑎, S=𝑠)

• Laplace Smoothing:

𝑃 𝐹 = 𝑇|𝑆 = 𝑠, 𝐴 = 𝑎 =
# days (A=𝑎, S=𝑠, F=T) + 𝑘
# days (A=𝑎, S=𝑠) + 2𝑘

• Expectation Maximization (EM):

𝑃 𝐹 = 𝑇 𝑆 = 𝑠, 𝐴 = 𝑎 =
𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠, 𝐹 = 𝑇]

𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠]


