CS440/ECE448 Lecture 20: Bayesian Networks

Mark Hasegawa-Johnson, 3/2022

License: CC-BY 4.0: You may redistribute or remix if you cite the source.
Outline

• Why Bayes nets? The complexity of a true Bayes classifier
• Space complexity
• Time complexity
• Independence and Conditional independence
Review: Bayesian Classifier

• Class label $Y = y$, drawn from some set of labels
• Observation $X = x$, drawn from some set of features
• Bayesian classifier: choose the class label, y, that minimizes your probability of making a mistake:

$$\hat{y} = \arg\min_y P(Y \neq y | X = x)$$
Minimum Probability of Error = Maximum A Posteriori

• The minimum probability of error (MPE) classifier is the one that minimizes your probability of making a mistake:

\[\hat{y} = \arg \min_y P(Y \neq y|X = x) \]

• The maximum a posteriori (MAP) classifier is the one that maximizes your probability of being correct:

\[\hat{y} = \arg \max_y P(Y = y|X = x) \]

• Notice: they’re the same! This is called the MPE=MAP rule.
Today: What if P(X,Y) is complicated?

Very, very common problem: P(X,Y) is complicated because both X and Y depend on some hidden variable H

\[P(Y = y|X = x) = \frac{\sum_h P(X = x, H = h, Y = y)}{\sum_{h,y'} P(X = x, H = h, Y = y')} \]

Why is this a problem?

1. **SPACE COMPLEXITY**: \(P(X = x, H = h, Y = y) \) requires \(|X| \cdot |H| \cdot |Y| \) entries
 - Example: X has cardinality 1000, H has cardinality 1000, Y has cardinality 1000, then \(P(X = x, H = h, Y = y) \) is a probability table with 1 billion entries.

2. **TIME COMPLEXITY**: The summation requires a lot of time.
Outline

• Why Bayes nets? The complexity of a true Bayes classifier
• Space complexity
• Time complexity
• Independence and Conditional independence
Bayesian networks: Structure

• **Nodes:** random variables

• **Arcs:** interactions
 • An arrow from one variable to another indicates direct *causal* influence of variable #1 on variable #2
 • Must form a directed, acyclic graph
Conditional independence and the joint distribution

• Key property: each node is conditionally independent of its non-descendants given its parents

• Suppose the nodes X_1, \ldots, X_n are sorted in topological order

• To get the joint distribution $P(X_1, \ldots, X_n)$, use chain rule:

\[
P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid X_1, \ldots, X_{i-1})
\]

\[
= \prod_{i=1}^{n} P(X_i \mid Parents(X_i))
\]
Example: Los Angeles Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
 • Example inference task: suppose Mary calls and John doesn’t call. What is the probability of a burglary?

• What are the random variables?
 • Burglary, Earthquake, Alarm, John, Mary

• What are the direct influence relationships?
 • A burglar can set the alarm off
 • An earthquake can set the alarm off
 • The alarm can cause Mary to call
 • The alarm can cause John to call
Example: Burglar Alarm

| B | E | P(A|B,E) |
|---|---|---------|
| T | T | .95 |
| T | F | .94 |
| F | T | .29 |
| F | F | .001 |

P(B) = .001

P(E) = .002

| A | P(J|A) |
|---|------|
| T | .90 |
| F | .05 |

| A | P(M|A) |
|---|------|
| T | .70 |
| F | .01 |
Space complexity: LA Burglar Alarm

• How much space do we need to store the model without dependencies?
 • 5 variables
 • Each is binary
 • \(P(B, E, A, J, M) \) is a table with \(2^5 = 32 \) entries
 • Since they add up to 1, we could store just \(2^5 - 1 = 31 \) entries

• How much space do we need to store the Bayes net parameters?
 • \(P(B), P(E) \): two numbers
 • \(P(A|B = b, E = e) \): one entry for each setting of \(b \in \{F, T\}, e \in \{F, T\} \)
 • \(P(J|A = a), P(M|A = a) \): two numbers for each setting of \(a \in \{F, T\} \)
 • Total: \(1 + 1 + 4 + 2 + 2 = 10 \) entries
Fig. 6 Bayesian diagnostic model for the symptom “no sound”

Space complexity, Huang et al. “no sound” diagnosis model

• How much space do we need to store the model without dependencies?
 • 41 binary variables: table would require $2^{41} - 1 = 2,199,023,255,551$ entries

• How much space do we need to store the Bayes net parameters?
 • One binary variable with four binary parents, requires one entry for each of the $2^4 = 16$ values of its parent variables
 • Two binary variable with three binary parents, each require 8 entries
 • Five binary variables with two binary parents, each require 4 entries
 • Twenty binary variables with one binary parent, each require 2 entries
 • Thirteen binary variables with no parents, each require 1 entry
 • Total: $16 + 2 \times 8 + 5 \times 4 + 20 \times 2 + 13 = 105$ entries
Example: Burglar Alarm

- A “model” is a complete specification of the dependencies.
- The conditional probability tables are the *model parameters.*
Outline

• Why Bayes nets? The complexity of a true Bayes classifier
• Space complexity
• Time complexity
• Independence and Conditional independence
Classification using probabilities

• Suppose Mary has called to tell you that you had a burglar alarm. Should you call the police?
 • Make a decision that maximizes the probability of being correct. This is called a MAP (maximum a posteriori) decision. You decide that you have a burglar in your house if and only if

\[
P(Burglary = T | Mary = T) > P(Burglary = F | Mary = T)
\]
Using a Bayes network to estimate a posteriori probabilities

- Notice: we don’t know $P(B|M)$! We have to figure out what it is.
- This is called “inference”.
- First step: find the joint probability of B, M, and any other variables that are necessary in order to link these two together.

\[
P(B, E, A, M) = P(B)P(E)P(A|B, E)P(M|A)
\]

| $P(B)$ | $P(E)$ | $P(A|B,E)$ | $P(M|A)$ |
|--------|--------|------------|----------|
| .01 | .002 | | |

| B | E | $P(A|B,E)$ | $P(M|A)$ |
|-----|-----|------------|----------|
| T | T | .95 | .70 |
| T | F | .94 | .70 |
| F | T | .29 | .70 |
| F | F | .01 | .70 |

<table>
<thead>
<tr>
<th>$P(\text{BEAM})$</th>
<th>$M = F, A = F$</th>
<th>$M = F, A = T$</th>
<th>$M = T, A = F$</th>
<th>$M = T, A = T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B = F, E = F$</td>
<td>0.986045</td>
<td>2.99×10^{-4}</td>
<td>9.96×10^{-3}</td>
<td>6.98×10^{-4}</td>
</tr>
<tr>
<td>$B = F, E = T$</td>
<td>1.4×10^{-3}</td>
<td>1.7×10^{-4}</td>
<td>1.4×10^{-5}</td>
<td>4.06×10^{-4}</td>
</tr>
<tr>
<td>$B = T, E = F$</td>
<td>5.93×10^{-5}</td>
<td>2.81×10^{-4}</td>
<td>5.99×10^{-7}</td>
<td>6.57×10^{-4}</td>
</tr>
<tr>
<td>$B = T, E = T$</td>
<td>9.9×10^{-8}</td>
<td>5.7×10^{-7}</td>
<td>10^{-9}</td>
<td>1.33×10^{-6}</td>
</tr>
</tbody>
</table>
Using a Bayes network to estimate a posteriori probabilities

Second step: marginalize (add) to get rid of the variables you don’t care about.

$$P(B, M) = \sum_{e \in \{F,T\}} \sum_{a \in \{F,T\}} P(B, E = e, A = a, M)$$

<table>
<thead>
<tr>
<th>$P(B, M)$</th>
<th>$M = F$</th>
<th>$M = T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B = F$</td>
<td>.987922</td>
<td>.011078</td>
</tr>
<tr>
<td>$B = T$</td>
<td>.000341</td>
<td>.000659</td>
</tr>
</tbody>
</table>
Using a Bayes network to estimate a posteriori probabilities

Third step: ignore (delete) the column that didn’t happen.

```
| B  | E  | P(A|B,E) |
|-----|-----|----------|
| T   | T   | 0.95     |
| T   | F   | 0.94     |
| F   | T   | 0.29     |
| F   | F   | 0.001    |
```

```
P(B) = 0.001
P(E) = 0.002
```

```
P(B,M)
M = T
B = F
  0.011078
B = T
  0.000659
```
Using a Bayes network to estimate a posteriori probabilities

Fourth step: use the definition of conditional probability.

\[
P(B = T | M = T) = \frac{P(B = T, M = T)}{P(B = T, M = T) + P(B = F, M = T)}
\]

| \(P(B|M)\) | \(M = T\) |
|-------------|-----------|
| \(B = F\) | 0.943883 |
| \(B = T\) | 0.056117 |
Some unexpected conclusions

• Burglary is so unlikely that, if only Mary calls or only John calls, the probability of a burglary is still only about 5%.
• If both Mary and John call, the probability is ~50%.
Belief propagation: The general algorithm

Given an arbitrary Bayes net, you want to find the joint probability of two variables, X and Y, that are connected by a chain of intermediate variables, H_1 through H_N.
Belief propagation: The general algorithm

Initialize:
Start with $P(X)$

Iterate:
1. **PRODUCT:** Multiply in the next variable
2. **SUM:** Marginalize out any variables you no longer need

Terminate:
When you have $P(X,Y)$
Belief propagation: The general algorithm

Example:

\[
P(X, H_1) = P(X)P(H_1 | X)
\]
\[
P(X, H_1, H_2) = P(X, H_1)P(H_2 | H_1)
\]
\[
P(X, H_2) = \sum_{h_1} P(X, H_1 = h_1, H_2)
\]
\[
P(X, H_2, H_3) = P(X, H_2)P(H_3 | H_2)
\]
\[
P(X, H_3) = \sum_{h_2} P(X, H_2 = h_2, H_3)
\]
\[
\vdots
\]
Belief propagation: The general algorithm

Example:

\[
P(X, H_4, H_5) = P(X, H_4)P(H_5 | H_4)
\]

\[
P(X, H_5) = \sum_{h_4} P(X, H_4 = h_4, H_5)
\]

\[
P(X, H_5, Y) = P(X, H_5)P(Y | H_5)
\]

\[
P(X, Y) = \sum_{h_5} P(X, H_5 = h_5, Y)
\]
Belief propagation: Space and time complexity

- If there is just one path from X to Y (as shown in the example), then space and time complexity of belief propagation are each K^3, where K is the maximum cardinality of any of the random variables.
 - Each product operation results in a table of 3 variables, with $K^3 - 1$ entries
 - Each summation is over K entries, for each of K^2 combinations

- If there are multiple paths from X to Y, or if there are multiple X variables (many different relevant observations), then belief propagation becomes NP-complete
 - It’s necessary to create a probability table containing all the variables in all the paths between X and Y
 - That table has $K^{2N+1} - 1$ entries, where N is the number of different paths that connect X to Y
Outline

• Why Bayes nets? The complexity of a true Bayes classifier
• Space complexity
• Time complexity
• Independence and Conditional independence
Using a Bayes network to estimate a posteriori probabilities

Fourth step: use the definition of conditional probability.

\[
P(B = T | M = T) = \frac{P(B = T, M = T)}{P(B = T, M = T) + P(B = F, M = T)}
\]

| \(P(B|M)\) | \(M = T\) |
|-----------|-----------|
| \(B = F\) | 0.943883 |
| \(B = T\) | 0.056117 |
Some unexpected conclusions

• If only Mary calls or only John calls, the probability of a burglary is about 5% or 6%.

unless ...

• If you know that there was an earthquake, then it’s very likely that the alarm was caused by the earthquake. In that case, the probability you had a burglary is vanishingly small, even if twenty of your neighbors call you.

• This is called the “explaining away” effect. The earthquake “explains away” the burglar alarm.
The “Explaining Away” Effect

Probability of a Burglary, given that Mary called, and given a known earthquake:

\[
P(B = T | M = T, E = T) = \frac{\sum_{a \in \{F,T\}} P(M = T, A = a, E = T, B = T)}{\sum_{a \in \{F,T\}, b \in \{F,T\}} P(M = T, A = a, E = T, B = b)}
\]

\[
= \frac{(0.001)(0.002)(0.95)(0.7) + (0.001)(0.002)(0.05)(0.01)}{(0.001)(0.002)(0.95)(0.7) + (0.001)(0.002)(0.05)(0.01) + (0.999)(0.002)(0.29)(0.7) + (0.999)(0.002)(0.71)(0.01)}
\]

\[
= 0.003
\]
Independence

• By saying that X_i and X_j are independent, we mean that
 $$P(X_j, X_i) = P(X_i)P(X_j)$$

• X_i and X_j are independent if and only if they have no common ancestors

• Example: *independent coin flips*

 \[X_1 \quad X_2 \quad \ldots \quad X_n \]

• Another example: Weather is independent of all other variables in this model.

\[\text{Weather} \quad \text{Cavity} \]
 \[\text{Toothache} \quad \text{Catch} \]
Conditional independence

- By saying that W_i and W_j are conditionally independent given X, we mean that
 $$P(W_i, W_j | X) = P(W_i | X)P(W_j | X)$$
- W_i and W_j are conditionally independent given X if and only if they have no common ancestors other than the ancestors of X.
- Example: *naïve Bayes model*:

![Diagram showing a directed acyclic graph with X at the top, and W_1, W_2, \ldots, W_n below it.]
Conditional Independence ≠ Independence

B and E are independent:

\[P(B|E) = P(B) \]

B and E are not conditionally independent given A:

\[P(B|E,A) \neq P(B|E) \]
Conditional Independence ≠ Independence

J and M are **conditionally independent given A:**

\[
P(J|A, M) = P(J|A)
\]

\[
P(M|A, J) = P(M|A)
\]

J and M are **not independent!**

\[
P(J|M) \neq P(J)
\]
Conditional Independence ≠ Independence

B and M are **conditionally independent given A:**

\[
P(B|A, M) = P(B|A)
\]

\[
P(M|A, B) = P(M|A)
\]

B and M are **not independent**!

\[
P(B|M) \neq P(B)
\]
Conditional Independence ≠ Independence

- B and E (no common ancestor, common descendant A):
 - Independent
 - Not conditionally independent given A

- J and M (common ancestor A, no common descendant):
 - Not independent
 - Conditionally independent given A

- B and M (B is the ancestor of M):
 - Not independent
 - Conditionally independent given A
Conditional Independence \neq Independence

- Variables in a Bayes net are **independent** if they have no common ancestors
 - If they have a common ancestor (e.g., J and M), they are not independent
 - If one is the ancestor of the other (e.g., B and M), they are not independent
- Variables in a Bayes net are **conditionally independent** given knowledge of:
 - Their common ancestors, and
 - A variable that is a descendant of one, and an ancestor of the other
Outline

• Why Bayes nets? The complexity of a true Bayes classifier
• Space complexity
• Time complexity
• Independence and Conditional independence

Understand Bayesian Networks

Easily implement minimum-error classifiers with low space complexity

Succeed in life