CS440/ECE448 Lecture 20: Bayesian Networks

Mark Hasegawa-Johnson, 3/2022
License: CC-BY 4.0: You may redistribute or remix if you cite the source.

Outline

- Why Bayes nets? The complexity of a true Bayes classifier
- Space complexity
- Time complexity
- Independence and Conditional independence

Review: Bayesian Classifier

- Class label $Y=y$, drawn from some set of labels
- Observation $X=x$, drawn from some set of features
- Bayesian classifier: choose the class label, y, that minimizes your probability of making a mistake:

$$
\hat{y}=\underset{y}{\operatorname{argmin}} P(Y \neq y \mid X=x)
$$

Minimum Probability of Error = Maximum A Posteriori

- The minimum probability of error (MPE) classifier is the one that minimizes your probability of making a mistake:

$$
\hat{y}=\underset{\sim}{\operatorname{argmin}} P(Y \neq y \mid X=x)
$$

$$
y
$$

- The maximum a posteriori (MAP) classifier is the one that maximizes your probability of being correct:

$$
\hat{y}=\underset{\operatorname{argmax}}{ } P(Y=y \mid X=x)
$$

y

- Notice: they're the same! This is called the MPE=MAP rule.

Today: What if $P(X, Y)$ is complicated?

Very, very common problem: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ is complicated because both X and Y depend on some hidden variable H

$$
P(Y=y \mid X=x)=\frac{\sum_{h} P(X=x, H=h, Y=y)}{\sum_{h, y^{\prime}} P\left(X=x, H=h, Y=y^{\prime}\right)}
$$

Why is this a problem?

1. SPACE COMPLEXITY: $P(X=x, H=h, Y=y)$ requires $|X| \cdot|H|$. $|Y|$ entries

- Example: X has cardinality $1000, \mathrm{H}$ has cardinality $1000, \mathrm{Y}$ has cardinality 1000, then $P(X=x, H=h, Y=y)$ is a probability table with 1 billion entries.

2. TIME COMPLEXITY: The summation requires a lot of time.

Outline

- Why Bayes nets? The complexity of a true Bayes classifier
- Space complexity
- Time complexity
- Independence and Conditional independence

Bayesian networks: Structure

- Nodes: random variables

- Arcs: interactions
- An arrow from one variable to another indicates direct causal influence of variable \#1 on variable \#2
- Must form a directed, acyclic graph

Conditional independence and the joint distribution

- Key property: each node is conditionally independent of its non-descendants given its parents
- Suppose the nodes X_{1}, \ldots, X_{n} are sorted in topological order
- To get the joint distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$, use chain rule:

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
\end{aligned}
$$

Example: Los Angeles Burglar Alarm

- I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
- Example inference task: suppose Mary calls and John doesn't call. What is the probability of a burglary?
- What are the random variables?
- Burglary, Earthquake, Alarm, John, Mary
- What are the direct influence relationships?
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example: Burglar Alarm

Space complexity: LA Burglar Alarm

- How much space do we need to store the model without dependencies?
- 5 variables
- Each is binary
- $P(B, E, A, J, M)$ is a table with $2^{5}=32$ entries
- Since they add up to 1 , we could store just $2^{5}-1=31$ entries
- How much space do we need to store the Bayes net parameters?
- $P(B), P(E)$: two numbers
- $P(A \mid B=b, E=e)$: one entry for each setting of $b \in\{F, T\}, e \in\{F, T\}$
- $P(J \mid A=a), P(M \mid A=a)$: two numbers for each setting of $a \in\{F, T\}$
- Total: $1+1+4+2+2=10$ entries

Huang, McMurran, Dhadyalla \& Jones, "Probability-based
Fig. 6 Bayesian diagnostic model for the symptom "no sound"

Space complexity, Huang et al. "no sound" diagnosis model

- How much space do we need to store the model without dependencies?
- 41 binary variables: table would require $2^{41}-1=2,199,023,255,551$ entries
- How much space do we need to store the Bayes net parameters?
- One binary variable with four binary parents, requires one entry for each of the $2^{4}=16$ values of its parent variables
- Two binary variable with three binary parents, each require 8 entries
- Five binary variables with two binary parents, each require 4 entries
- Twenty binary variables with one binary parent, each require 2 entries
- Thirteen binary variables with no parents, each require 1 entry
- Total: $16+2 \times 8+5 \times 4+20 \times 2+13=105$ entries

Example: Burglar Alarm

Outline

- Why Bayes nets? The complexity of a true Bayes classifier
- Space complexity
- Time complexity
- Independence and Conditional independence

Classification using probabilities

- Suppose Mary has called to tell you that you had a burglar alarm. Should you call the police?
- Make a decision that maximizes the probability of being correct. This is called a MAP (maximum a posteriori) decision. You decide that you have a burglar in your house if and only if

$$
P(\text { Burglary }=T \mid \text { Mary }=T)>P(\text { Burglary }=F \mid \text { Mary }=T)
$$

Using a Bayes network to estimate a posteriori probabilities

- Notice: we don't know $P(B \mid M)$! We have to figure out what it is.
- This is called "inference".
- First step: find the joint probability of B, M, and any other variables that are necessary in order to link these two together.
$P(B, E, A, M)=P(B) P(E) P(A \mid B, E) P(M \mid A)$

$P(B E A M)$	$M=F$, $A=F$	$M=F$, $A=T$	$M=T$, $A=F$	$M=T$, $A=T$
$B=F$, $E=F$	0.986045	2.99×10^{-4}	9.96×10^{-3}	6.98×10^{-4}
$B=F$, $E=T$	1.4×10^{-3}	1.7×10^{-4}	1.4×10^{-5}	4.06×10^{-4}
$B=T$, $E=F$	5.93×10^{-5}	2.81×10^{-4}	5.99×10^{-7}	6.57×10^{-4}
$B=T$, $E=T$	9.9×10^{-8}	5.7×10^{-7}	10^{-9}	1.33×10^{-6}

Using a Bayes network to estimate a posteriori probabilities
Second step: marginalize (add) to get rid of the variables you don't care about.

$P(B, M)=\sum_{e \in\{F, T\}} \sum_{a \in\{F, T\}} P(B, E=e, A=a, M)$

$P(B, M)$	$M=F$	$M=T$
$B=F$	0.987922	0.011078
$B=T$	0.000341	0.000659

Using a Bayes network to estimate a posteriori probabilities

Third step: ignore (delete) the column that didn't happen.

$P(B, M)$	$M=T$
$B=F$	0.011078
$B=T$	0.000659

Using a Bayes network to estimate a posteriori probabilities
Fourth step: use the definition of conditional probability.

$$
\begin{aligned}
& P(B=T \mid M=T) \\
& =\frac{P(B=T, M=T)}{P(B=T, M=T)+P(B=F, M=T)}
\end{aligned}
$$

$P(B \mid M)$	$M=T$
$B=F$	0.943883
$B=T$	0.056117

Some unexpected conclusions

- Burglary is so unlikely that, if only Mary calls or only John calls, the probability of a burglary is still only about 5\%.
- If both Mary and John call, the probability is $\sim 50 \%$.

Belief propagation: The general algorithm

Given an arbitrary Bayes net, you want to find the joint probability of two variables, X and Y, that are connected by a chain of intermediate variables, H_{1} through H_{N}.

Belief propagation: The general algorithm

Initialize:
Start with $\mathrm{P}(\mathrm{X})$

Iterate:

1. PRODUCT: Multiply in the next variable
2. SUM: Marginalize out any variables you no longer need
Terminate:
When you have $P(X, Y)$

Belief propagation: The general algorithm

Example:

$$
\begin{gathered}
P\left(X, H_{1}\right)=P(X) P\left(H_{1} \mid X\right) \\
P\left(X, H_{1}, H_{2}\right)=P\left(X, H_{1}\right) P\left(H_{2} \mid H_{1}\right) \\
P\left(X, H_{2}\right)=\sum_{h_{1}} P\left(X, H_{1}=h_{1}, H_{2}\right) \\
P\left(X, H_{2}, H_{3}\right)=P\left(X, H_{2}\right) P\left(H_{3} \mid H_{2}\right) \\
P\left(X, H_{3}\right)=\sum_{h_{2}} P\left(X, H_{2}=h_{2}, H_{3}\right) \\
\vdots
\end{gathered}
$$

Belief propagation: The general algorithm

Example:

$$
\begin{gathered}
P\left(X, H_{4}, H_{5}\right)=P\left(X, H_{4}\right) P\left(H_{5} \mid H_{4}\right) \\
P\left(X, H_{5}\right)=\sum_{h_{4}} P\left(X, H_{4}=h_{4}, H_{5}\right) \\
P\left(X, H_{5}, Y\right) \stackrel{=}{=} P\left(X, H_{5}\right) P\left(Y \mid H_{5}\right) \\
P(X, Y)=\sum_{h_{5}} P\left(X, H_{5}=h_{5}, Y\right)
\end{gathered}
$$

Belief propagation: Space and time complexity

- If there is just one path from X to Y (as shown in the example), then space and time complexity of belief propagation are each K^{3}, where K is the maximum cardinality of any of the random variables.
- Each product operation results in a table of 3 variables, with $K^{3}-1$ entries
- Each summation is over K entries, for each of K^{2} combinations
- If there are multiple paths from X to Y, or if there are multiple X variables (many different relevant observations), then belief propagation becomes NP-complete
- It's necessary to create a probability table containing all the variables in all the paths between X and Y
- That table has $K^{2 N+1}-1$ entries, where N is the number of different paths that connect X to Y

Outline

- Why Bayes nets? The complexity of a true Bayes classifier
- Space complexity
- Time complexity
- Independence and Conditional independence

Using a Bayes network to estimate a posteriori probabilities
Fourth step: use the definition of conditional probability.

$$
\begin{aligned}
& P(B=T \mid M=T) \\
& =\frac{P(B=T, M=T)}{P(B=T, M=T)+P(B=F, M=T)}
\end{aligned}
$$

$P(B \mid M)$	$M=T$
$B=F$	0.943883
$B=T$	0.056117

Some unexpected conclusions

- If only Mary calls or only John calls, the probability of a burglary is about 5\% or 6\%.
unless ...
- If you know that there was an earthquake, then it's very likely that the alarm was caused by the earthquake. In that case, the probability you had a burglary is vanishingly small, even if twenty of your neighbors call you.
- This is called the "explaining away" effect. The earthquake "explains away" the burglar alarm.

The "Explaining Away" Effect

Probability of a Burglary, given that Mary called, and given a known earthquake:	

Independence

- By saying that X_{i} and X_{j} are independent, we mean that

$$
\mathrm{P}\left(X_{j}, X_{i}\right)=\mathrm{P}\left(X_{i}\right) \mathrm{P}\left(X_{j}\right)
$$

- X_{i} and X_{j} are independent if and only if they have no common ancestors
- Example: independent coin flips

- Another example: Weather is independent of all other variables in this model.

Conditional independence

- By saying that W_{i} and W_{j} are conditionally independent given X, we mean that

$$
\mathrm{P}\left(W_{i}, W_{j} \mid X\right)=\mathrm{P}\left(W_{i} \mid X\right) \mathrm{P}\left(W_{j} \mid X\right)
$$

- W_{i} and W_{j} are conditionally independent given X if and only if they have no common ancestors other than the ancestors of X.
- Example: naïve Bayes model:

Conditional Independence \neq Independence
B and E are independent:

$$
P(B \mid E)=P(B)
$$

B and E are not conditionally independent given A :

$$
P(B \mid E, A) \neq P(B \mid E)
$$

Conditional Independence \neq Independence
J and M are conditionally independent given A :

$$
\begin{gathered}
P(J \mid A, M)=P(J \mid A) \\
P(M \mid A, J)=P(M \mid A)
\end{gathered}
$$

J and M are not independent!

$$
P(J \mid M) \neq P(J)
$$

Conditional Independence \neq Independence
B and M are conditionally independent given A :

$$
P(B \mid A, M)=P(B \mid A)
$$

$$
P(M \mid A, B)=P(M \mid A)
$$

B and M are not independent!

$$
P(B \mid M) \neq P(B)
$$

Conditional Independence \neq Independence

- B and E (no common ancestor, common descendant A):
- Independent
- Not conditionally independent given A
- J and M (common ancestor A, no common descendant):
- Not independent
- Conditionally independent given A
- B and M (B is the ancestor of M):
- Not independent
- Conditionally independent given A

Conditional Independence \neq Independence

- Variables in a Bayes net are independent if they have no common ancestors
- If they have a common ancestor (e.g., J and M), they are not independent
- If one is the ancestor of the other (e.g., B and M), they are not independent
- Variables in a Bayes net are conditionally independent given knowledge of:
- Their common ancestors, and
- A variable that is a descendant of one, and an ancestor of the other

Outline

- Why Bayes nets? The complexity of a true Bayes classifier
- Space complexity
- Time complexity
- Independence and Conditional independence

