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Outline

• Why Bayes nets?  The complexity of a true Bayes classifier
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• Time complexity
• Independence and Conditional independence



Review: Bayesian Classifier

• Class label 𝑌 = 𝑦, drawn from some set of labels
• Observation 𝑋 = 𝑥, drawn from some set of features
• Bayesian classifier: choose the class label, 𝑦, that minimizes your 

probability of making a mistake:

&𝑦 = argmin
!

𝑃(𝑌 ≠ 𝑦|𝑋 = 𝑥)



Minimum Probability of Error = Maximum A Posteriori

• The minimum probability of error (MPE) classifier is the one that 
minimizes your probability of making a mistake:

&𝑦 = argmin
!

𝑃(𝑌 ≠ 𝑦|𝑋 = 𝑥)

• The maximum a posteriori (MAP) classifier is the one that maximizes 
your probability of being correct:

&𝑦 = argmax
!

𝑃(𝑌 = 𝑦|𝑋 = 𝑥)

• Notice: they’re the same!  This is called the MPE=MAP rule.



Today: What if P(X,Y) is complicated?
Very, very common problem: P(X,Y) is complicated because both X and 
Y depend on some hidden variable H

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
∑"𝑃(𝑋 = 𝑥,𝐻 = ℎ, 𝑌 = 𝑦)
∑",!$𝑃(𝑋 = 𝑥,𝐻 = ℎ, 𝑌 = 𝑦′)

Why is this a problem?
1. SPACE COMPLEXITY: 𝑃(𝑋 = 𝑥,𝐻 = ℎ, 𝑌 = 𝑦) requires |𝑋| 8 |𝐻| 8

|𝑌| entries
• Example: X has cardinality 1000, H has cardinality 1000, Y has cardinality 

1000, then 𝑃(𝑋 = 𝑥, 𝐻 = ℎ, 𝑌 = 𝑦) is a probability table with 1 billion 
entries. 

2. TIME COMPLEXITY: The summation requires a lot of time.
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Bayesian networks: Structure

• Nodes: random variables

• Arcs: interactions
• An arrow from one variable to another indicates 

direct causal influence of variable #1 on variable #2
• Must form a directed, acyclic graph



Conditional independence and the 
joint distribution

• Key property: each node is conditionally independent of its 
non-descendants given its parents
• Suppose the nodes X1, …, Xn are sorted in topological order
• To get the joint distribution P(X1, …, Xn), 

use chain rule:
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Example: Los Angeles Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor earthquakes. My two 
neighbors, John and Mary, promised to call me at work if they hear the alarm
• Example inference task: suppose Mary calls and John doesn’t call. What is the probability of a 

burglary?

• What are the random variables? 
• Burglary, Earthquake, Alarm, John, Mary

• What are the direct influence relationships?
• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call



Example: Burglar Alarm



Space complexity: LA Burglar Alarm

• How much space do we need to store the model without 
dependencies?
• 5 variables
• Each is binary
• 𝑃(𝐵, 𝐸, 𝐴, 𝐽, 𝑀) is a table with 2! = 32 entries
• Since they add up to 1, we could store just  2! − 1 = 31 entries

• How much space do we need to store the Bayes net parameters?
• 𝑃(𝐵), 𝑃(𝐸): two numbers
• 𝑃(𝐴|𝐵 = 𝑏, 𝐸 = 𝑒): one entry for each setting of 𝑏 ∈ 𝐹, 𝑇 , 𝑒 ∈ 𝐹, 𝑇
• 𝑃(𝐽|𝐴 = 𝑎), 𝑃(𝑀|𝐴 = 𝑎):  two numbers for each setting of 𝑎 ∈ 𝐹, 𝑇
• Total: 1 + 1 + 4 + 2 + 2 = 10 entries



Huang, McMurran, Dhadyalla & Jones, ”Probability-based 
vehicle fault diagnosis: Bayesian network method,” 2008



Space complexity, Huang et al. “no sound” 
diagnosis model
• How much space do we need to store the model without 

dependencies?
• 41 binary variables: table would require 2"# − 1 = 2,199,023,255,551 entries

• How much space do we need to store the Bayes net parameters?
• One binary variable with four binary parents, requires one entry for each of 

the 2" = 16 values of its parent variables
• Two binary variable with three binary parents, each require 8 entries 
• Five binary variables with two binary parents, each require 4 entries
• Twenty binary variables with one binary parent, each require 2 entries
• Thirteen binary variables with no parents, each require 1 entry
• Total: 16 + 2×8 + 5×4 + 20×2 + 13 = 105 entries



Example: Burglar Alarm

𝑃(𝐵) 𝑃(𝐸)

𝑃(𝐴|𝐵, 𝐸)

𝑃(𝑀|𝐴)𝑃(𝐽|𝐴)

• A “model” is a complete 
specification of the 
dependencies.

• The conditional 
probability tables are 
the model parameters.
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Classification using probabilities

• Suppose Mary has called to tell you that you had a burglar alarm.  
Should you call the police?
• Make a decision that maximizes the probability of being correct.  This is 

called a MAP (maximum a posteriori) decision.  You decide that you have a 
burglar in your house if and only if

𝑃 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 = 𝑇 𝑀𝑎𝑟𝑦 = 𝑇 > 𝑃(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 = 𝐹|𝑀𝑎𝑟𝑦 = 𝑇)



Using a Bayes network to estimate a posteriori probabilities
• Notice: we don’t know 𝑃 𝐵 𝑀 !  We have to

figure out what it is.
• This is called “inference”.
• First step: find the joint probability of 𝐵, 𝑀, 

and any other variables that are necessary in 
order to link these two together.
𝑃 𝐵, 𝐸, 𝐴,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝑃 𝐴 𝐵, 𝐸 𝑃 𝑀 𝐴
𝑃 𝐵𝐸𝐴𝑀 𝑀 = 𝐹,

𝐴 = 𝐹
𝑀 = 𝐹,
𝐴 = 𝑇

𝑀 = 𝑇,
𝐴 = 𝐹

𝑀 = 𝑇,
𝐴 = 𝑇

𝐵 = 𝐹,
𝐸 = 𝐹

0.986045 2.99×10!" 9.96×10!# 6.98×10!"

𝐵 = 𝐹,
𝐸 = 𝑇

1.4×10!# 1.7×10!" 1.4×10!$ 4.06×10!"

𝐵 = 𝑇,
𝐸 = 𝐹

5.93×10!$ 2.81×10!" 5.99×10!% 6.57×10!"

𝐵 = 𝑇,
𝐸 = 𝑇

9.9×10!& 5.7×10!% 10!' 1.33×10!(



Using a Bayes network to estimate a posteriori probabilities

Second step: marginalize (add) to get rid of the 
variables you don’t care about.

𝑃 𝐵,𝑀 = C
%∈{(,)}

C
+∈{(,)}

𝑃(𝐵, 𝐸 = 𝑒, 𝐴 = 𝑎,𝑀)

𝑃 𝐵,𝑀 𝑀 = 𝐹 𝑴 = 𝑻

𝐵 = 𝐹 0.987922 0.011078

𝐵 = 𝑇 0.000341 0.000659



Using a Bayes network to estimate a posteriori probabilities

Third step: ignore (delete) the column that 
didn’t happen.

𝑃 𝐵,𝑀 𝑴 = 𝑻

𝐵 = 𝐹 0.011078

𝐵 = 𝑇 0.000659



Using a Bayes network to estimate a posteriori probabilities
Fourth step: use the definition of conditional 
probability.
𝑃 𝐵 = 𝑇 𝑀 = 𝑇

=
𝑃(𝐵 = 𝑇,𝑀 = 𝑇)

𝑃 𝐵 = 𝑇,𝑀 = 𝑇 + 𝑃(𝐵 = 𝐹,𝑀 = 𝑇)

𝑃 𝐵|𝑀 𝑴 = 𝑻

𝐵 = 𝐹 0.943883

𝐵 = 𝑇 0.056117



Some unexpected conclusions

• Burglary is so unlikely that, if only Mary calls or only John calls, the 
probability of a burglary is still only about 5%.
• If both Mary and John call, the probability is ~50%.  



Belief propagation: The general algorithm

Given an arbitrary Bayes net, you 
want to find the joint probability 
of two variables, 𝑋 and 𝑌, that are 
connected by a chain of 
intermediate variables, 𝐻,
through 𝐻-.

𝑋

𝑌

𝐻,
𝐻.

𝐻/

𝐻0
𝐻1



Belief propagation: The general algorithm
Initialize:

Start with P(X)
Iterate:
1. PRODUCT: Multiply in the next 

variable
2. SUM: Marginalize out any 

variables you no longer need
Terminate:

When you have P(X,Y)

𝑋

𝑌

𝐻,
𝐻.

𝐻/

𝐻0
𝐻1



Belief propagation: The general algorithm
Example:

𝑃 𝑋,𝐻, = 𝑃 𝑋 𝑃(𝐻,|𝑋)
𝑃 𝑋,𝐻,, 𝐻. = 𝑃 𝑋,𝐻, 𝑃(𝐻.|𝐻,)
𝑃 𝑋,𝐻. =C

"$

𝑃 𝑋,𝐻, = ℎ,, 𝐻.

𝑃 𝑋,𝐻., 𝐻/ = 𝑃 𝑋,𝐻. 𝑃(𝐻/|𝐻.)
𝑃 𝑋,𝐻/ =C

"%

𝑃 𝑋,𝐻. = ℎ., 𝐻/

⋮

𝑋

𝑌

𝐻,
𝐻.

𝐻/

𝐻0
𝐻1



Belief propagation: The general algorithm
Example:

⋮

𝑃 𝑋,𝐻0, 𝐻1 = 𝑃 𝑋,𝐻0 𝑃(𝐻1|𝐻0)
𝑃 𝑋,𝐻1 =C

"&

𝑃 𝑋,𝐻0 = ℎ0, 𝐻1

𝑃 𝑋,𝐻1, 𝑌 = 𝑃 𝑋,𝐻1 𝑃(𝑌|𝐻1)
𝑃 𝑋, 𝑌 =C

"'

𝑃 𝑋,𝐻1 = ℎ1, 𝑌

𝑋

𝑌

𝐻,
𝐻.

𝐻/

𝐻0
𝐻1



Belief propagation: Space and time complexity

• If there is just one path from 𝑋 to 𝑌 (as shown in the example), then space 
and time complexity of belief propagation are each 𝐾9, where 𝐾 is the 
maximum cardinality of any of the random variables.
• Each product operation results in a table of 3 variables, with 𝐾! − 1 entries
• Each summation is over 𝐾 entries, for each of 𝐾" combinations

• If there are multiple paths from 𝑋 to 𝑌, or if there are multiple 𝑋 variables 
(many different relevant observations), then belief propagation becomes 
NP-complete
• It’s necessary to create a probability table containing all the variables in all the paths 

between 𝑋 and 𝑌
• That table has 𝐾"#$% − 1 entries, where 𝑁 is the number of different paths that 

connect X to Y
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Using a Bayes network to estimate a posteriori probabilities
Fourth step: use the definition of conditional 
probability.
𝑃 𝐵 = 𝑇 𝑀 = 𝑇

=
𝑃(𝐵 = 𝑇,𝑀 = 𝑇)

𝑃 𝐵 = 𝑇,𝑀 = 𝑇 + 𝑃(𝐵 = 𝐹,𝑀 = 𝑇)

𝑃 𝐵|𝑀 𝑴 = 𝑻

𝐵 = 𝐹 0.943883

𝐵 = 𝑇 0.056117



Some unexpected conclusions

• If only Mary calls or only John calls, the probability of a burglary is 
about 5% or 6%.

unless …

• If you know that there was an earthquake, then it’s very likely that 
the alarm was caused by the earthquake.  In that case, the probability 
you had a burglary is vanishingly small, even if twenty of your 
neighbors call you.
• This is called the “explaining away” effect.  The earthquake “explains 

away” the burglar alarm.



The “Explaining Away” Effect
Probability of a Burglary, given that Mary called, 
and given a known earthquake:

𝑃 𝐵 = 𝑇 𝑀 = 𝑇, 𝐸 = 𝑇

=
∑+∈{(,)}𝑃(𝑀 = 𝑇, 𝐴 = 𝑎, 𝐸 = 𝑇, 𝐵 = 𝑇)

∑+∈ (,) ,2∈{(,)}𝑃(𝑀 = 𝑇, 𝐴 = 𝑎, 𝐸 = 𝑇, 𝐵 = 𝑏)

=
0.001 (0.002) 0.95 0.7 + (0.001)(0.002)(0.05)(0.01)
0.001 (0.002) 0.95 0.7 + 0.001 (0.002) 0.05 0.01

+ 0.999 (0.002) 0.29 0.7 + (0.999)(0.002)(0.71)(0.01)

= 0.003



Independence
• By saying that 𝑋: and 𝑋; are independent, we mean that 

P(𝑋; , 𝑋:) = P(𝑋:)P(𝑋;)
• 𝑋: and 𝑋; are independent if and only if they have no common 

ancestors
• Example: independent coin flips

• Another example: Weather is independent of all other variables in this 
model.

X1 X2 Xn
…



Conditional independence
• By saying that 𝑊: and 𝑊; are conditionally independent given 𝑋, we 

mean that 
P 𝑊: ,𝑊; 𝑋 = P(𝑊:|𝑋)P(𝑊;|𝑋)

• 𝑊: and 𝑊; are conditionally independent given 𝑋 if and only if they 
have no common ancestors other than the ancestors of 𝑋. 
• Example: naïve Bayes model:

W1 W2 Wn
…

X



Conditional Independence ≠ Independence

B and E are independent:

𝑃 𝐵 𝐸 = 𝑃(𝐵)

B and E are not conditionally independent 
given A:

𝑃 𝐵 𝐸, 𝐴 ≠ 𝑃 𝐵 𝐸



Conditional Independence ≠ Independence

J and M are conditionally independent 
given A:

𝑃 𝐽 𝐴,𝑀 = 𝑃 𝐽 𝐴

𝑃 𝑀 𝐴, 𝐽 = 𝑃(𝑀|𝐴)

J and M are not independent!

𝑃 𝐽 𝑀 ≠ 𝑃 𝐽



Conditional Independence ≠ Independence

B and M are conditionally independent 
given A:

𝑃 𝐵 𝐴,𝑀 = 𝑃 𝐵 𝐴

𝑃 𝑀 𝐴,𝐵 = 𝑃(𝑀|𝐴)

B and M are not independent!

𝑃 𝐵 𝑀 ≠ 𝑃 𝐵



Conditional Independence ≠ Independence

• B and E (no common ancestor, common 
descendant A):
• Independent
• Not conditionally independent given A

• J and M (common ancestor A, no common 
descendant):
• Not independent
• Conditionally independent given A

• B and M (B is the ancestor of M):
• Not independent
• Conditionally independent given A



Conditional Independence ≠ Independence

• Variables in a Bayes net are independent if they have no common 
ancestors
• If they have a common ancestor (e.g., J and M), they are not independent
• If one is the ancestor of the other (e.g., B and M), they are not independent

• Variables in a Bayes net are conditionally independent given 
knowledge of:
• Their common ancestors, and
• A variable that is a descendant of one, and an ancestor of the other
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Understand Bayesian Networks

Easily implement minimum-error 
classifiers with low space complexity

Succeed in life


