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Content

• Unobservable environments: belief states
• Partially observable environments: predict and update
• Stochastic partially observable environments



Unobservable environments
Consider an environment that’s 
relatively simple:
• Deterministic
• Discrete
• Known
• Single-agent
• Static
• Sequential

As we’ve learned, it should be possible 
to solve this problem using A* search, 
right?



Unobservable environments
But suppose this environment is 
unobservable.

We know the layout of the map (it’s 
a known environment), but we don’t 
know which square we’re starting 
from.  Once we move, we can’t tell 
whether we moved successfully, or 
ran into a wall.

Isn’t that a hopeless problem?

??



Unobservable environments
Let’s use pink to color in all the 
squares where we might be.

At the beginning of the search, we 
might be in any square, so all squares 
are pink.

??



Unobservable environments
Now take 1 step to the right.  

If the environment is deterministic, 
then we can now guarantee that we 
are in one of the pink squares shown 
here.  We know we’re not in any of 
the white squares.

??



Unobservable environments
Take 4 steps right, then 4 steps down, 
then 4 steps right, then 4 steps down, 
then 2 steps right. 

Now we know that we are in one of 
these five squares.

??



Belief state

• A belief state is a set of physical states (by “physical state,” we mean a 
state of the environment).
• In a maze, a physical state might be 𝑠! = (𝑥!, 𝑦!), the agent position.
• The belief state is a set of physical states: 𝑏 = {𝑠!, 𝑠", 𝑠#, … }

• If the environment is unobservable, then we can’t perform search 
using physical states.
• Instead, we create a search tree using belief states.



Belief states

Suppose that we have a maze with 
only three physical states:

• At the beginning of search, the 
belief state is 𝑏 = {𝑠!, 𝑠", 𝑠#}.
• After one step to the right, the 

belief state is 𝑏 = {𝑠", 𝑠#}
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Belief states

A full breadth-first search on this 
maze can reach any desired 
physical state in just 2 steps, even 
if we have no idea where we 
started from.

(Shown here: the tree without any 
repeated states).

𝒔𝟏 𝒔𝟐
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Computational Complexity

Remember that the time-complexity of BFS for an observable state 
space is 𝑂{min(𝑏$, 𝑁)}, where 𝑏=branching factor, 𝑑=length of best 
path, 𝑁=# distinct states (exhaustive search).  But…
• If 𝑁 is the # distinct physical states, then 2% is the number of distinct 

belief states.  Exhaustive search is much more exhausting!!!
• The shortest path is also longer: call it 𝑑’.
Total: 

𝑂{min(𝑏$&, 2%)}
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Partially observable environments

• Observable environment: the agent knows its state.
• Unobservable environment: the agent doesn’t know its state.
• Partially observable environment: the agent can observe something, 

but not everything. 



Partially observable environment

𝒔𝟏𝟐

𝒔𝟑𝟕
𝒔𝟒𝟐

𝒔𝟓𝟒
𝒔𝟔𝟐 𝒔𝟔𝟕

𝒔𝟖𝟕

Suppose we begin by sensing the bit 
vector �⃗� = 0,1,0,1 '.

Then we know that our initial 
position must be one of these 
squares.

??



Partially observable environment

𝒔𝟏𝟑

𝒔𝟑𝟖
𝒔𝟒𝟑

𝒔𝟓𝟓
𝒔𝟔𝟑 𝒔𝟔𝟖

𝒔𝟖𝟖

Move one step to the right.

Now we know that our position must 
be one of these squares.

??



Partially observable environment

𝒔𝟑𝟖
𝒔𝟒𝟑

𝒔𝟔𝟑

Now suppose we sense again, and 
measure the bit vector �⃗� =
1,0,0,0 '.

Then we know that our new position 
must be one of these squares.

??



The predict-update cycle

Notice that our algorithm 
is now the repetition of 
two steps:
1. Take an action
2. Take a new 

measurement of the 
environment
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The predict-update cycle

Given an initial belief state, e.g., 𝑏 = {𝑠!", 𝑠#(, 𝑠)", 𝑠*), 𝑠+", 𝑠+(, 𝑠,(}, we 
repeat the following two steps:
1. ACT (action 𝑎), and then predict what will be the result of our 

action.  For example, if our action is 𝑎 = 𝑅, then our predicted 
outcome is 𝑏 = {𝑠!#, 𝑠#,, 𝑠)#, 𝑠**, 𝑠+#, 𝑠+,, 𝑠,,}

2. MEASURE the environment again (observation �⃗�), and then update
our belief state (by deleting any physical states that are 
incompatible with the new measurement).  For example, if our 
measurement is �⃗� = 1,0,0,0 ', then our new belief state is 𝑏 =
{𝑠#,, 𝑠)#, 𝑠+#}



The predict-update cycle

Given an initial belief state, e.g., 𝑏 = {𝑠!", 𝑠#(, 𝑠)", 𝑠*), 𝑠+", 𝑠+(, 𝑠,(}, we 
repeat the following two steps:
1. ACT (action 𝑎), and then predict what will be the result of our 

action. 
𝑏 ← PREDICT(𝑏, 𝑎)

2. MEASURE the environment again (observation �⃗�), and then update
our belief state (by deleting any physical states that are 
incompatible with the new measurement). 

𝑏 ← UPDATE(𝑏, �⃗�)



Controllability of the outcome
Notice something:
• How we ACT is under the 

agent’s control
• What we MEASURE is not 

under the agent’s 
control!

{𝑠!", 𝑠#$, 𝑠%", 𝑠&%, 𝑠'", 𝑠'$, 𝑠($}
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Controllability of the outcome
For BFS:
• We can only finish the

search if we find a node 
whose state is GOAL 
regardless of the 
measurement.

{𝑠!", 𝑠#$, 𝑠%", 𝑠&%, 𝑠'", 𝑠'$, 𝑠($}
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0
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1
0
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1
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…



Controllability
For DFS, A*, and most 
other algorithms:
• In order to expand the 

action a=R, you need to 
expand all of the 
resulting measurement 
states.
• This may affect how you 

calculate the heuristic for 
A*. 
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R L U 
D 

MEASURE

{𝑠#(, 𝑠%#, 𝑠'#} {𝑠!#}
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Stochastic partially observable environments

• Observable environment: the agent knows its state.
• Unobservable environment: the agent doesn’t know its state.
• Partially observable environment: the agent can observe something, 

but not everything. 

• Deterministic environment: action a, in state s, always leads to the 
same successor state:  𝑠’ = TRANSITION(𝑠, 𝑎)
• Stochastic environment: action a, in state s, leads to a probability 

distribution over possible successor states
𝑃 𝑠&|𝑠, 𝑎 = TRANSITION(𝑠, 𝑎)



Stochastic partially observable environments

1. Predict: given the current belief state 𝑏 = {𝑠!, 𝑠", 𝑠#, … }, and the 
action 𝑎, expand the belief state to 𝑏′ = {𝑠!′, 𝑠"′, 𝑠#′, … } that have 
nonzero probability 𝑃(𝑠-′|𝑠., 𝑎) for any 𝑠. ∈ 𝑏.

𝑏′ ← PREDICT(𝑏, 𝑎)
2. Update: contract the belief state by deleting any physical states 

that are incompatible with the new measurement. 

𝑏 ← UPDATE(𝑏, �⃗�)

The randomness is dealt with here.



Stochastic partially observable environment

𝒔𝟏𝟐

𝒔𝟑𝟕
𝒔𝟒𝟐

𝒔𝟓𝟒
𝒔𝟔𝟐 𝒔𝟔𝟕

𝒔𝟖𝟕

Suppose we begin by sensing the bit 
vector �⃗� = 0,1,0,1 ', so we know 
that the initial state is one of these 
squares.

However, this is a stochastic 
environment.  If we try to move right, 
we might accidentally move 
diagonally (right+up or right+down).

??



Stochastic partially observable environment

𝒔𝟏𝟑

𝒔𝟑𝟖
𝒔𝟒𝟑

𝒔𝟓𝟓
𝒔𝟔𝟑 𝒔𝟔𝟖

𝒔𝟖𝟖

… so when we try to move one step 
to the right, our new belief state 
includes not only the original belief 
state (darker) but also the physical 
states that result from a random mis-
step (lighter).

𝑏& ← PREDICT 𝑏, 𝑎
is the list of all physical states shown 
here.

The belief state has expanded, from 
7 to 14 physical states.

??



Stochastic partially observable environment

𝒔𝟑𝟖
𝒔𝟒𝟑

𝒔𝟔𝟑

Now suppose we sense again, and 
measure the bit vector �⃗� =
1,0,0,0 '.

𝑏&& ← UPDATE 𝑏′, �⃗�
includes only the three states shown 
here.  All others have been 
eliminated by the measurement.

The belief state has contracted, from 
14 to 3 physical states.

??



Content

• Unobservable environments
• A belief state is a set of physical states: all the physical states that are possible
• If there are 𝑁 physical states, there are 2) belief states

• Partially observable environments
• 𝑏* ← PREDICT 𝑏, 𝑎 : usually 𝑏’ and 𝑏 have the same size
• 𝑏** ← UPDATE 𝑏′, �⃗� : usually 𝑏’’ is smaller than 𝑏’

• Stochastic partially observable environments
• 𝑏* ← PREDICT 𝑏, 𝑎 : usually 𝑏’ is larger than 𝑏
• 𝑏** ← UPDATE 𝑏′, �⃗� : usually 𝑏’’ is smaller than 𝑏’


