
CS440/ECE 448, Lecture 18:
Constraint Satisfaction Problems

8

1

8

5 1

8

4 1

8

3 1

8 5

1

8 4

1

8 3

1

8

2

5 1

8

5 1 9

Slides by Mark Hasegawa-Johnson, 2/2022
Including some slides written by Svetlana Lazebnik, 9/2016
CC-BY 4.0: You are free to: copy and redistribute the material in any medium or
format, remix, transform, and build upon the material for any purpose, even
commercially, if you give appropriate credit.

https://creativecommons.org/licenses/by/4.0/

Content

• What is a CSP? Why is it search? Why is it special?
• Backtracking Search
• 𝑂{1} heuristics to improve backtracking search
• 𝑂{𝑁} and 𝑂{𝑁!} heuristics: early detection of failure

What is search for?
• Assumptions: single agent,

deterministic, fully observable,
discrete environment
• Search for planning

• The path to the goal is the important
thing

• Paths have various costs, depths

• Search for assignment
• Assign values to variables while

respecting certain constraints
• The goal (complete, consistent

assignment) is the important thing

Why are Constraint satisfaction problems (CSPs)
just a special case of generic search problems?

• State is defined by N variables, each takes one of D
possible values
• Action = assign a value to a variable
• Transition Model = if you have n variables assigned,

then assign one more, now you have n+1 variables
assigned.
• Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables.
• Solution is a complete, consistent assignment

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: {red, green, blue}
• Constraints: adjacent regions must have different colors

• Logical representation: WA ≠ NT
• Set representation: (WA, NT) in {(red, green), (red, blue),

(green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

• Solutions are complete and consistent assignments, e.g.,
WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

• Because every path has N steps! So the
computational cost of DFS, is the SAME as the cost of
BFS, 𝑶 𝒃𝒎 = 𝑶{𝒃𝒅} = 𝑶{𝑫𝑵}
• Path length is N, because there are N variables to assign
• Branching factor is D, because there are D possible values.

• Meanwhile, space is still a problem. DFS allows us to
delete the part of the tree corresponding to an
unsuccessful path. So DFS is more useful than BFS.
• Topic of today: how do we use heuristics with DFS?
• Hint: it’s not as elegant as A*. There is no provable

optimality. In fact…

Why are Constraint satisfaction problems (CSPs)
different from generic search problems?

Computational complexity of CSPs
• The satisfiability (SAT) problem:

• Given a Boolean formula, is there an assignment of the variables
that makes it evaluate to true?

• SAT and CSP are NP-complete
• NP: a class of decision problems for which

• the “yes” answer can be verified in polynomial time
• no known algorithm can find a “yes” answer, from scratch, in polynomial

time
• An NP-complete problem is in NP and every other problem in NP

can be efficiently reduced to it (Cook, 1971)
• Other NP-complete problems: graph coloring,

n-puzzle, generalized sudoku
• It is not known whether P = NP, i.e., no efficient algorithms for

solving SAT in general are known

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Np_completeness
http://en.wikipedia.org/wiki/P_versus_NP_problem

Content

• What is a CSP? Why is it search? Why is it special?
• Backtracking Search
• 𝑂{1} heuristics to improve backtracking search
• 𝑂{𝑁} and 𝑂{𝑁!} heuristics: early detection of failure

Backtracking search
• In CSP’s, variable assignments are commutative

• For example, [WA = red then NT = green] is the same as [NT = green then WA
= red]

• We only need to consider assignments to a single variable at each level (i.e., we
fix the order of assignments)
• There are N! different orderings of the variables. If we choose a particular

ordering, and then never change it, we reduce computational complexity by a
factor of N!

• With a fixed order, there are still DN possible paths.
• At each level, choose one of the D possible assignments, and explore to see if

it gives you a solution. If not, backtrack: delete the whole sub-tree (that’s
why we’re using DFS!), and try something different.

• Depth-first search for CSPs with single-variable assignments is called backtracking
search

Example

Example

Example

Example

Backtracking search algorithm

• Making backtracking search efficient:
• Which variable should be assigned next?
• In what order should its values be tried?
• Can we detect inevitable failure early?

Content

• What is a CSP? Why is it search? Why is it special?
• Backtracking Search
• 𝑂{1} heuristics to improve backtracking search
• 𝑂{𝑁} and 𝑂{𝑁!} heuristics: early detection of failure

Content

• What is a CSP? Why is it search? Why is it special?
• Backtracking Search
• 𝑂{1} heuristics to improve backtracking search

1. Given a particular variable, which value should you assign?
2. Which variable should you consider next?

• 𝑂{𝑁} and 𝑂{𝑁!} heuristics: early detection of failure

Given a variable, in which order should its
values be tried?

• Making backtracking search efficient:
• Which variable should be assigned next?
• In what order should its values be tried?
• Can we detect inevitable failure early?

Given a variable, in which order should its
values be tried?

• Least Constraining Value (LCV) Heurstic:
• First assignment to try: the value that rules out the fewest

future possibilities

• Key intuition: maximize the probability of success.

Given a variable, in which order should its
values be tried?

• Least Constraining Value (LCV) Heurstic:
• Try the following assignment first: to the variable you’re

studying, the value that rules out the fewest values in the
remaining variables

Which assignment
for Q should we

choose?

Which variable should be assigned next?

• Making backtracking search efficient:
• Which variable should be assigned next?
• In what order should its values be tried?
• Can we detect inevitable failure early?

Which variable should be assigned next?

• Key intuitions:
• If there is a solution possible, it will still be possible, regardless of the order in

which you study the variables.
• So choosing a VARIABLE is easier than choosing a VALUE. Just minimize the

branching factor.

• Least Remaining Values (LRV) Heuristic:
• Choose the variable with the fewest legal values

• Most Constraining Variable (MCV) Heuristic:
• Choose the variable that imposes the most constraints on the remaining

variables

Which variable should be assigned next?

??

• Least Remaining Values (LRV) Heuristic:
• Choose the variable with the fewest legal values.
• At this stage, we should have chosen SA, not Q, because SA

has only one legal value.

Which variable should be assigned next?

• Most Constraining Variable (MCV) Heuristic:
• Choose the variable that imposes the most constraints on the remaining

variables
• Tie-breaker among variables that have equal numbers of LRV

Which variable should be assigned next?
• Most Constraining Variable (MCV) Heuristic:

• Choose the variable that imposes the most constraints on the remaining
variables

• The very first assignment should have been SA (not WA), because it
imposes constraints on 5 other variables (WA constrains only 2).

Content

• What is a CSP? Why is it search? Why is it special?
• Backtracking Search
• 𝑂{1} heuristics to improve backtracking search
• 𝑂{𝑁} and 𝑂{𝑁!} heuristics: early detection of failure

Early detection of failure: O{N} checking

• Forward Checking:
• Check to make sure that every variable still has at least one possible

assignment

Early detection of failure: O{N} checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Early detection of failure: O{N} checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Early detection of failure: O{N} checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Early detection of failure: O{N} checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Early detection of failure: O{N^2} checking

• Arc consistency:
• Check to make sure that every PAIR of variables (every “arc”) still has a pair-

wise assignment that satisfies all constraints

Arc consistency

Pair of
variables

remaining
assignments

NT, Q 4

NT, SA 2

SA, Q 4

SA, NSW 4

Q, NSW 6

NSW, V 6

SA, V 6

Pair of
variables

remaining
assignments

SA, Q 1

SA, NSW 2

Q, NSW 4

NSW, V 6

SA, V 2

Early detection of failure: O{N^2} checking

• Arc consistency:
• If we try an assignment and discover that it leaves any pair of variables with 0

valid assignments, then STOP, and backtrack.
• Allows us to quit the search process 2 levels earlier than otherwise

Does arc consistency always detect the lack of
a solution?

• There exist stronger notions of consistency (path consistency,
k-consistency) that trade off complexity of the heuristic versus
depth of the search.

A
B

C
D

A

B

C

D

Summary
• CSPs are a special kind of search problem:

• States defined by values of a fixed set of variables
• Goal test defined by constraints on variable values

• Backtracking = depth-first search where successor states are
generated by considering assignments to a single variable
• Variable ordering (LRV, MCV) and value selection (LCV) heuristics can

help significantly
• Forward checking says: don’t consider an assignment if it leaves any

variable with no remaining possible values
• Arc consistency says: don’t consider an assignment if it leaves any pair

of variables with no remaining mutually compatible pair of values

• Complexity of CSPs
• NP-complete in general (exponential worst-case running time)
• Typical run-time can be reduced substantially using polynomial-

complexity forward-checking and arc-consistency heuristics

