
Lecture 17: The “animal
kingdom” of heuristics:
Admissible, Consistent,
Zero, Relaxed,
Dominant

Mark Hasegawa-Johnson, February 2022

Distributed under CC-BY 4.0

Title image: Peaceable Kingdom by Edward Hicks,
National Gallery of Art, Washington, DC

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Uniform Cost Search
4. Relaxed heuristics
5. Dominant heuristics

A* Search

Definition: A* SEARCH
• If ℎ 𝑛 is admissible (𝑑(𝑛) ≥ ℎ 𝑛), and
• if the frontier is a priority queue sorted according to 𝑔 𝑛 + ℎ(𝑛),

then
• the FIRST path to goal uncovered by the tree search, path 𝑚, is

guaranteed to be the SHORTEST path to goal
(ℎ 𝑛 + 𝑔 𝑛 ≥ 𝑐(𝑚) for every node 𝑛 that is not on path 𝑚)

S
n

m
G

𝑐 𝑚

≥ ℎ 𝑛𝑔 𝑛

Bad interaction between A* and the explored set

Explored Set:
empty

Frontier
S: g(S)+h(S)=2, g(S)=0, parent=none

Expand: S, put its children A and B on
the frontier.

Bad interaction between A* and the explored set

Explored Set:
S

Frontier
A: g(A)+h(A)=5, g(A)=1, parent=S
B: g(B)+h(B)=2, g(B)=1, parent=S

Expand: B, put its child C on the
frontier.

Bad interaction between A* and the explored set

Explored Set:
S, B

Frontier
A: g(A)+h(A)=5, g(A)=1, parent=S
C: g(C)+h(C)=4, g(C)=3, parent=B

Expand: C, put its child G on the
frontier.

Bad interaction between A* and the explored set

Explored Set:
S, B, C

Frontier
A: g(A)+h(A)=5, g(A)=1, parent=S
G: g(G)+h(G)=6, g(G)=6, parent=C

Expand: A. But we can’t put its child,
C, on the frontier, because C is
already in the explored set!

Bad interaction between A* and the explored set

Explored Set:
S, B, C

Frontier
G: g(G)+h(G)=6, g(G)=6, parent=C

Expand: G. Return the path SBCG,
with cost 6. OOPS!

Why did this happen?

• Well, because we used an explored set instead of an explored dict.
• explored dict lists the h(n)+g(n) for each explored state
• If the same state shows up later, with lower h(n)+g(n), then put it back on the

frontier.
• An explored set undermines A*, but an explored dict works just fine.

• But actually, why did the higher-cost path SBC get explored before the
lower-cost path SAC?
• That never happens for goal. An admissible heuristic guarantees that the first

time you pop Goal from the frontier, it will have its lowest cost.
• Can we make the same idea true for every state, not just the goal state?

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Uniform Cost Search
4. Relaxed heuristics
5. Dominant heuristics

Consistent (monotonic) heuristic

Definition: A consistent heuristic is one for which, for every pair of nodesn
and p such that 𝑑(𝑛) ≥ 𝑑(𝑝), 𝑑 𝑛 − 𝑑(𝑝) ≥ ℎ 𝑛 − ℎ 𝑝 .

In words: the distance between any pair of nodes is greater than or equal
to the difference in their heuristics.

S
n

m
p

g 𝑚

𝑑 𝑛 − 𝑑(𝑝)
≥ ℎ 𝑛 − ℎ(𝑝)

𝑔 𝑛

𝑑 𝑚 − 𝑑(𝑝)

A* with an inconsistent heuristic

Inconsistent because:
𝑑(𝐴) − 𝑑(𝐶) = 1

but
ℎ(𝐴) − ℎ(𝐶) = 3

To fix this, we need to reduce
ℎ(𝐴) so that ℎ(𝐴) − ℎ(𝐶) ≤ 1.

A* with a consistent heuristic

Consistent because:
𝑑(𝐴) − 𝑑(𝐶) = 1

and
ℎ(𝐴) − ℎ(𝐶) = 0

Similarly
ℎ 𝑛 − ℎ 𝑝 ≤ 𝑑 𝑛 − 𝑑 𝑝

…for every pair of nodes n and p
such that 𝑑(𝑛) ≥ 𝑑(𝑝).

h=1

A* with an inconsistent heuristic

Explored Set
S, B

Frontier
A: g(A)+h(A)=5, g(A)=1, parent=S
C: g(C)+h(C)=4, g(C)=3, parent=B

Expand: C

A* with a consistent heuristic

Explored Set
S, B

Frontier
A: g(A)+h(A)=2, g(A)=1, parent=S
C: g(C)+h(C)=4, g(C)=3, parent=B

Expand: A

h=1

A* with a consistent heuristic

Explored Set
S, B, A

Frontier
C: g(C)+h(C)=4, g(C)=3, parent=B
C: g(C)+h(C)=3, g(C)=2, parent=A

Expand: the copy of C that has A
as its parent.

h=1

A* with a consistent heuristic

Explored Set
S, B, A, C

Frontier
C: g(C)+h(C)=4, g(C)=3, parent=B
G: g(G)+h(G)=5, parent=C

Expand: The copy of C that has B as its
parent. But C is already in the explored set,
and since our heuristic is consistent, we
know that the new path (with B as parent)
has a higher cost than the old path (with A
as parent), so we can safely ignore the new
path.

h=1

?

A* with a consistent heuristic

Explored Set
S, B, A, C

Frontier
G: g(G)+h(G)=5, parent=C

Expand: G

h=1

Admissible heuristic example: Romania

Admissible:
ℎ(𝑛) ≤ 𝑑(𝑛)

Example:
𝑑(Sibiu) = 278
ℎ(Sibiu) ≤ 278

Consistent heuristic example: Romania

Consistent:
ℎ 𝑛 − ℎ 𝑝 ≤ 𝑑 𝑛 − 𝑑(𝑝)

Example:
𝑑 Arad − 𝑑(Sibiu) = 140
ℎ Arad − ℎ(Sibiu) ≤ 140

The heuristic difference is always
less than or equal to the cost of
the action.

Can you use this in the MP?

• Maybe.
• In the MP, every action has a cost of exactly 1!
• …so a consistent heuristic would be one such that, for every pair of

neighboring states n and p, ℎ 𝑛 − ℎ 𝑝 ≤ 1.
• Manhattan distance satisfies this condition.
• There are good heuristics for parts 3 and 4 that don’t satisfy this

condition. If your heuristic is not consistent, just make sure that you
use an explored dict, instead of an explored set.

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Uniform Cost Search
4. Relaxed heuristics
5. Dominant heuristics

The trivial case: h(n)=0

• A heuristic is admissible if and only if 𝑑(𝑛) ≥
ℎ 𝑛 for every 𝑛.
• A heuristic is consistent if and only if 𝑑 𝑛, 𝑝 ≥
ℎ 𝑛 − ℎ 𝑝 for every 𝑛 and 𝑝.

• Both criteria are satisfied by ℎ 𝑛 = 0.

UCS = A* with h(n)=0

• Suppose we choose ℎ 𝑛 = 0
• Then the frontier is a priority queue sorted by

𝑔 𝑛 + ℎ 𝑛 = 𝑔(𝑛)
• In other words, the first node we pull from the queue is the

one that’s closest to START!! (The one with minimum 𝑔 𝑛).
• Uniform Cost Search is A* Search with the heuristic ℎ 𝑛 =
0 for all states.

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Uniform Cost Search
4. Relaxed heuristics
5. Dominant heuristics

Heuristics from relaxed problems

• A problem with fewer restrictions on the actions is
called a relaxed problem

• In most problems, having fewer restrictions on your
action means that you can reach the goal faster.

• So designing a heuristic is usually the same as finding
a relaxed problem that makes it easy to calculate the
distance to goal.

Relaxed heuristic example: Manhattan distance

If there were no walls in the maze,
then the number of steps from
position (𝑥!, 𝑦!) to the goal
position (𝑥", 𝑦") would be

ℎ(𝑛) = |𝑥! − 𝑥"| + |𝑦! − 𝑦"|

Start state

Goal state

𝑥
𝑥! 𝑥"

𝑦"

𝑦!

If there were no walls, this would
be the path to goal: straight down,
then straight right.

Relaxed heuristic example: Euclidean distance

If there were no walls in the maze,
and we could move diagonally,
then the number of steps from
position (𝑥!, 𝑦!) to the goal
position (𝑥", 𝑦") would be

ℎ(𝑛) = |𝑥! − 𝑥"|# + |𝑦! − 𝑦"|#

Start state

Goal state

𝑥
𝑥! 𝑥"

𝑦"

𝑦!

If there were no walls and we could
move diagonally

Relaxed heuristic example: Corner dots

Suppose that, instead of touching
ALL of the waypoints, you only had
to touch the most extreme
waypoints?

Relaxed heuristic example: Many dots

Suppose that, after you reached a
waypoint, you could magically fly
back to the nearest branch in the
minimum spanning tree?

In other words, you only have to go
one-way from where you are to the
waypoint – you don’t have to come
back again.

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Uniform Cost Search
4. Relaxed heuristics
5. Dominant heuristics

Which heuristic is better

• If Euclidean distance and Manhattan distance are both admissible
heuristics for the single-waypoint maze problem, which one is better?

• Computational complexity of A*: If 𝑐(𝐺) is true cost of the best path
to goal, then A* evaluates every 𝑛 for which 𝑔(𝑛) + ℎ(𝑛) ≤ 𝑐(𝐺)

• How to minimize computational complexity: make ℎ(𝑛) as large as
possible, subject to the constraint that ℎ(𝑛) ≤ 𝑑(𝑛).

Euclidean distance

ℎ#(𝑛) = |𝑥! − 𝑥"|# + |𝑦! − 𝑦"|# Start state

Goal state

𝑥
𝑥! 𝑥"

𝑦"

𝑦!

Manhattan distance

ℎ$(𝑛) = |𝑥! − 𝑥"| + |𝑦! − 𝑦"|

ℎ$(𝑛) ≥ ℎ#(𝑛)

Using ℎ$(𝑛), there will be fewer
nodes with 𝑔(𝑛) + ℎ(𝑛) ≤ 𝑐(𝐺).
Therefore, computational complexity
is lower. Therefore ℎ$(𝑛) is better.

Start state

Goal state

𝑥
𝑥! 𝑥"

𝑦"

𝑦!

Dominance
• Ifh2(n) ≥ h1(n) for all n, (both admissible) then
h2 dominates h1

• As long as they’re both admissible, they will both
find the optimum path.
• But h2(n) will require less computation to find it.

Example: the 8-puzzle
• Problem statement: given a shuffled set of numbers (left), re-arrange them

in order (right).
• State: ordering of the numbers and of the space.
• Possible actions: swap the space with any of its neighbors.
• Like traveling salesman, this is an NP-complete problem.

8-puzzle: Heuristic ℎ/(𝑛)
• Suppose that, on each step, we could move any tile, anywhere on the

board, regardless of where other tiles were.
• Then ℎ$(𝑛) = # tiles that need to be moved.
• Example below: ℎ$ 𝑛 = 8

8-puzzle: Heuristic ℎ0(𝑛)
• Suppose that, on each step, we could move any tile by just one step

horizontally or vertically, regardless of whether there are other tiles in the
way.
• Then ℎ#(𝑛) = sum of Manhattan distances from the current positions of

each tile to their target positions (notice: ℎ#(𝑛) ≥ ℎ$(𝑛))
• Example below: ℎ# 𝑛 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

Dominance
Experiment results reported by Svetlana Lazebnik

Typical search costs for the 8-puzzle (average number of nodes expanded for
different solution depths):

• d=12 BFS expands 3,644,035 nodes
A*(h1) expands 227 nodes
A*(h2) expands 73 nodes

• d=24 BFS expands 54,000,000,000 nodes
A*(h1) expands 39,135 nodes
A*(h2) expands 1,641 nodes

Combining heuristics

• Suppose we have a collection of admissible heuristics h1(n), h2(n), …,
hm(n), but none of them dominates the others
• How can we combine them?

h(n) = max{h1(n), h2(n), …, hm(n)}

Outline of lecture

1. Admissible heuristics: ℎ(𝑛) ≤ 𝑑(𝑛)
2. Consistent heuristics: ℎ(𝑛) − ℎ(𝑝) ≤ 𝑑(𝑛) − 𝑑(𝑝)
3. The zero heuristic: Uniform Cost Search: ℎ(𝑛) = 0
4. Relaxed heuristics: ℎ(𝑛) is the 𝑑(𝑛) from a problem with fewer

rules.
5. Dominant heuristics: if ℎ#(𝑛) ≤ ℎ$(𝑛) and both are admissible,

then ℎ$(𝑛) has lower computational complexity

Five search strategies

Algorithm Complete? Optimal? Time
complexity Space complexity

Implement
the Frontier

as a…

BFS Yes If all step
costs equal 𝑂{𝑏#} 𝑂{𝑏#} Queue

DFS No No 𝑂{𝑏$} 𝑂{𝑏𝑚} Stack

UCS Yes Yes #nodes s.t.
𝑔(𝑛) ≤ 𝑐(𝐺)

#nodes s.t.
𝑔(𝑛) ≤ 𝑐(𝐺)

Priority
Queue: 𝑔(𝑛)

Greedy No No 𝑂{𝑏$} 𝑂{𝑏$} Priority
Queue: ℎ(𝑛)

A* Yes Yes
#nodes s.t.
𝑔(𝑛) + ℎ(𝑛)
≤ 𝑐(𝐺)

#nodes s.t.
𝑔(𝑛) + ℎ(𝑛)
≤ 𝑐(𝐺)

Priority
Queue:

ℎ(𝑛) + 𝑔(𝑛)

