
Lecture 16: Uniform
Cost Search and A*

Mark Hasegawa-Johnson, February 2022
With some slides by Svetlana Lazebnik, 9/2016
Distributed under CC-BY 3.0
Title image: By Harrison Weir - From reuseableart.com,
Public Domain,
https://commons.wikimedia.org/w/index.php?curid=47
879234

Review: DFS and BFS
• Breadth-first search

• Frontier is a queue: expand the shallowest node
• Complete: always finds a solution, if one exists
• Optimal (finds the best solution) if all actions have the same cost.
• Time complexity: 𝑂{𝑏!}
• Space complexity: 𝑂{𝑏!}.

• Depth-first search – utility depends on relationship between m and d
• Frontier is a stack: expand the deepest node
• Not complete (might never find a solution, if m is infinite)
• Not optimal (returned solution is rarely the best one)
• Time complexity: 𝑂{𝑏"}
• Space complexity: 𝑂{𝑏𝑚}.

Outline of today’s lecture

1. Uniform Cost Search (UCS): like BFS, but for actions that have different
costs
• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost < goal
• Space complexity = # nodes that have cost < goal

2. Heuristics, e.g., Manhattan distance
3. Greedy Best-first search
4. A*: Like UCS but adds an estimate of the remaining path length

• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost+heuristic < goal
• Space complexity = # nodes that have cost+heuristic < goal

Arad

Timisoara Sibiu

An example for which BFS is not optimal: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

BucharestPC

BFS returns this path,
because it requires
only 3 actions.
Cost = 450 km

Arad

Timisoara Sibiu

An example for which BFS is not optimal: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

BucharestPC

It would have been
better to find this
path!
Cost = 418 km

Bucharest

The solution: Uniform Cost Search

• Breadth-first search (BFS): Next node expanded is the one with the
fewest required actions
• Frontier is a queue
• First node into the queue is the first one expanded (FIFO)

• Uniform cost search (UCS): Next node expanded is the one with the
lowest accumulated path cost
• Frontier is a priority queue
• Lowest-cost node is the first one expanded

Arad

Example of UCS: Romania

Arad:0

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Zerind:75, Timisoara:118, Sibiu:140

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Oradea

Timisoara:118, Sibiu:140, Oradea:146

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj Oradea

Sibiu:140, Oradea:146, Lugoj:239

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj OradeaFagarasRV

Oradea:146, Ramnicu Valcea:220, Lugoj:239, Fagaras:239

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj OradeaFagarasRV

Ramnicu Valcea:220, Lugoj:239, Fagaras:239

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj OradeaFagarasRV

Lugoj:239, Fagaras:239, Pitesti:317, Craiova:366

PC

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

PC

Fagaras:239, Mehadia:309, Pitesti:317, Craiova:366

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

BucharestPC

Mehadia:309, Pitesti:317, Craiova:366, Bucharest:450

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

BucharestPC

Pitesti:317, Craiova:366, Dobreta:384, Bucharest:450

Dobreta

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

Bucharest

PC

Craiova:366, Dobreta:384, Bucharest:418

Dobreta

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

Bucharest

PC

Dobreta

Dobreta:384, Bucharest:418

Arad

Timisoara Sibiu

Example of UCS: Romania

Zerind

Lugoj

Mehadia

OradeaFagarasRV

Bucharest

PC

Dobreta

Bucharest:418

GOAL!!!! GOL!!!!!

Image by Rick Dikeman, GFDL 1996, https://commons.wikimedia.org/wiki/File:Football_iu_1996.jpg

Outline of today’s lecture

1. Uniform Cost Search (UCS): like BFS, but for actions that have different
costs
• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost < goal
• Space complexity = # nodes that have cost < goal

2. Heuristics, e.g., Manhattan distance
3. Greedy Best-first search
4. A*: Like UCS but adds an estimate of the remaining path length

• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost+heuristic < goal
• Space complexity = # nodes that have cost+heuristic < goal

Heuristics main idea

Instead of choosing the node with the smallest total cost so far (UCS),

why not choose the node that’s CLOSEST TO GOAL,
and expand that one first?

Why not choose the node CLOSEST TO GOAL?

• Answer: because we don’t know
which node that is!!

• Example: which of these two is
closest to goal?

Start state

Goal state

We don’t know which state is closest to goal

• Finding the shortest path is the
whole point of the search
• If we already knew which state

was closest to goal, there would
be no reason to do the search
• Figuring out which one is closest,

in general, is a complexity 𝑂 𝑏!
problem.

Start state

Goal state

Search heuristics: estimates of distance-to-goal
• Often, even if we don’t know the

distance to the goal, we can
estimate it.
• This estimate is called a

heuristic.
• A heuristic is useful if:

1. Accurate: ℎ(𝑛) ≈ 𝑑(𝑛), where
ℎ(𝑛) is the heuristic estimate,
and 𝑑(𝑛) is the true distance to
the goal

2. Cheap: It can be computed in
complexity less than 𝑂 𝑏!

Start state

Goal state

Example heuristic: Manhattan distance

If there were no walls in the maze,
then the number of steps from
position (𝑥", 𝑦") to the goal
position (𝑥#, 𝑦#) would be

ℎ(𝑛) = |𝑥" − 𝑥#| + |𝑦" − 𝑦#|

Start state

Goal state

𝑥
𝑥# 𝑥$

𝑦$

𝑦#

If there were no walls, this would
be the path to goal: straight down,
then straight right.

Outline of today’s lecture

1. Uniform Cost Search (UCS): like BFS, but for actions that have different
costs
• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost < goal
• Space complexity = # nodes that have cost < goal

2. Heuristics, e.g., Manhattan distance
3. Greedy Best-first search
4. A*: Like UCS but adds an estimate of the remaining path length

• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost+heuristic < goal
• Space complexity = # nodes that have cost+heuristic < goal

Greedy Best-First Search

Instead of choosing the node with the smallest total cost so far (UCS),

why not choose the node whose
HEURISTIC ESTIMATE

indicates that it might be
CLOSEST TO GOAL?

Greedy Search Example

According to the Manhattan
distance heuristic, these two
nodes are equally far from the
goal, so we have to choose one at
random.

Start state

Goal state

Greedy Search Example

If our random choice goes badly,
we might end up very far from the
goal.

= states in the explored set

= states on the frontier

Start state

Goal state

The problem with Greedy Search

Having gone down a bad path, it’s
very hard to recover, because
now, the frontier node closest to
goal (according to the Manhattan
distance heuristic) is this one:

Start state

Goal state

The problem with Greedy Search

That’s not a useful path… Start state

Goal state

The problem with Greedy Search

Neither is that one… Start state

Goal state

What went wrong?

Outline of today’s lecture

1. Uniform Cost Search (UCS): like BFS, but for actions that have different
costs
• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost < goal
• Space complexity = # nodes that have cost < goal

2. Heuristics, e.g., Manhattan distance
3. Greedy Best-first search
4. A*: Like UCS but adds an estimate of the remaining path length

• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost+heuristic < goal
• Space complexity = # nodes that have cost+heuristic < goal

The problem with Greedy Search
Among nodes on the frontier, this
one seems closest to goal (smallest
ℎ(𝑛), where ℎ(𝑛) ≤ 𝑑(𝑛)).

But it’s also farthest from the start.
Let’s say 𝑔(𝑛) = total path cost so far.

So the total distance from start to
goal, going through node 𝑛, is

𝑐(𝑛) = 𝑔 𝑛 + 𝑑 𝑛 ≥ 𝑔 𝑛 + ℎ(𝑛)

Start state

Goal state

The problem with Greedy Search
Of these three nodes, this one has
the smallest 𝑔 𝑛 + ℎ 𝑛

(𝑔(𝑛) + ℎ(𝑛) = 4 + 28 = 32)

So if we want to find the lowest-
cost path, then it would be better
to try that node, instead of this
one, which has

𝑔 𝑛 + ℎ 𝑛 = 21 + 14 = 35 12

13

15

2

A* search

In an A* search, we keep track of TWO things about each path:
1. The cost from START to NODE n. Let’s call this 𝑔(𝑛).
2. The cost from NODE n to GOAL.
• The true cost is 𝑑(𝑛). But it’s unknown.
• The heuristic estimate is ℎ(𝑛), and 𝑑 𝑛 ≥ ℎ(𝑛).

The total cost of the best path that goes START→NODE n→GOAL is:
• 𝑐(𝑛) = 𝑔(𝑛) + 𝑑(𝑛). But it’s unknown.
• Known to be greater than or equal to 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛).

S
n

p
G

ℎ(𝑛) ≤ 𝑑 𝑛𝑔 𝑛

A* search

The total cost of the best path that goes START→NODE n→GOAL is:
• 𝑐(𝑛) = 𝑔(𝑛) + 𝑑(𝑛). But it’s unknown.
• Known to be greater than or equal to 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛).

An A* search is a search in which the frontier is a priority queue, sorted in order
of increasing f(n):

𝑚, 𝑓 𝑚 , 𝑛, 𝑓 𝑛 , 𝑝, 𝑓 𝑝 , 𝑞, 𝑓 𝑞 ,…
…where “priority queue” means that 𝑓(𝑚) ≤ 𝑓(𝑛) ≤ 𝑓(𝑝) ≤ 𝑓(𝑞) ≤ ⋯

Thus, the next node we expand, n, is always the one that seems to be part of
the shortest path between START and GOAL.

S
n

p
G

ℎ(𝑛) ≤ 𝑑 𝑛𝑔 𝑛

Optimality of A*

• Suppose that the frontier is a priority queue of tuples:
𝑚, 𝑓 𝑚 , 𝑛, 𝑓 𝑛 , 𝑝, 𝑓 𝑝 , 𝑞, 𝑓 𝑞 ,…

…where “priority queue” means that 𝑓(𝑚) ≤ 𝑓(𝑛) ≤ 𝑓(𝑝) ≤ 𝑓(𝑞) ≤ ⋯

• Suppose we expand the first node, and discover that it’s the goal:
State(𝑚) = GOAL!

• Does that mean that the path from START to GOAL specified by
back-tracking Parent(𝑚) is the SHORTEST path to the goal?

S
n

Parent(m)
m

𝑐 𝑚

𝑐 𝑛 ≥ 𝑓 𝑛

Optimality of A*

Suppose that the frontier is a priority queue of tuples:
𝑚, 𝑓 𝑚 , 𝑛, 𝑓 𝑛 , 𝑝, 𝑓 𝑝 , 𝑞, 𝑓 𝑞 ,…

1. 𝑓 𝑚 = 𝑔 𝑚 + ℎ 𝑚 ≤ 𝑔 𝑚 + 𝑑 𝑚 = 𝑔 𝑚 + 0 = 𝑐 𝑚
So 𝑓(𝑚) is the cost to reach GOAL along the path through Parent(𝑚).

1. 𝑓 𝑚 ≤ 𝑓(𝑛) = 𝑔 𝑛 + ℎ 𝑛 ≤ 𝑔 𝑛 + 𝑑 𝑛 = 𝑐 𝑛
So every other node has a higher cost than node m.

S
n

Parent(m)
m

𝑐 𝑚

𝑐 𝑛 ≥ 𝑓 𝑛 ≥ 𝑐 𝑚

Optimality of A* Search

• Definition: An admissible heuristic is a heuristic that satisfies the
condition 𝑑 𝑛 ≥ ℎ 𝑛 .
• If ℎ(𝑛) is admissible, and if the frontier is a priority queue sorted

according to 𝑔 𝑛 + ℎ(𝑛), then
• the FIRST path to goal discovered by the tree search, path 𝑚, is

guaranteed to be the SHORTEST path to goal.

S
n

Parent(m)
m

𝑓 𝑚 = 𝑐 𝑚

𝑔 𝑛 ℎ(𝑛) ≤ 𝑑 𝑛
𝑐 𝑛 = 𝑔 𝑛 + 𝑑 𝑛 ≥ 𝑔 𝑛 + ℎ 𝑛 = 𝑓 𝑛 ≥ 𝑓 𝑚

Example of A*: Romania Suppose we don’t know the distance
from Sibiu to Bucharest on highways,
but we DO know the distance “as the
crow flies.”
ℎ(𝑛) = Euclidean distance (as the

crow flies)

• Sibiu: h(n) = 260km
• Timisoara: h(n) = 410km
• Zerind: h(n) = 422km

Arad

Timisoara Sibiu

Romania using UCS

Zerind

Zerind:75, Timisoara:118, Sibiu:140

Pick this one first?

Arad

Timisoara Sibiu

Romania using A*

Zerind

Sibiu:140+260=400, Zerind:75+422=495, Timisoara:118+410=528

No, pick this one first!!!

BFS vs. A* Search Example
The heuristic h(n)=Euclidean distance favors nodes on the main diagonal.
Those nodes all have the same g(n)+h(n), so A* evaluates them first.

CC-BY 3.0 by Subh83, 2011, https://en.wikipedia.org/wiki/File:Astar_progress_animation.gif

Outline of today’s lecture

1. Uniform Cost Search (UCS): like BFS, but for actions that have different
costs
• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost < goal
• Space complexity = # nodes that have cost < goal

2. Heuristics, e.g., Manhattan distance
3. Greedy Best-first search
4. A*: Like UCS but adds a lower bound of the remaining path length

• Complete: always finds a solution, if one exists
• Optimal: finds the best solution
• Time complexity = # nodes that have cost+heuristic < goal
• Space complexity = # nodes that have cost+heuristic < goal

