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Outline of today’s lecture

1. Initial state, goal state, transition model
2. General algorithm for solving search problems

1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: explored set
4. Fourth data structure: explored dict

3. Breadth-first search (BFS) and Depth-first search (DFS)
1. Completeness
2. Optimality
3. Time Complexity
4. Space Complexity



Search
• We will consider the problem of designing goal-based agents in fully 

observable, deterministic, discrete, static, known environments
• Environment is sequential: agent’s action changes its state
• Agent must plan the best sequence of actions to achieve a goal

Start state

Goal state



Search problem components
• Initial state
• Actions
• Transition model

• What successor state results from
performing a given action
in a given predecessor state?

• Goal state
• Path cost

• Assume that it is a sum of 
nonnegative step costs

• The optimal solution is the sequence of actions that gives the 
lowest path cost for reaching the goal

Initial
state

Goal 
state



Knowledge Representation: State

• State = description of the world
• Must have enough detail to decide whether or not you’re currently in the 

initial state
• Must have enough detail to decide whether or not you’ve reached the goal 

state
• Often but not always: “defining the state” and “defining the transition model” 

are the same thing



Example of state definition: Romania
• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

• state = name of the city
• Path cost

• Sum of edge costs (total distance 
traveled)



Example of state definition: Maze solving

• State = (x,y), current position of the 
agent
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• Goal: visit every city in 
the United States
• Path cost: total miles 

traveled
• Initial state: 

Champaign, IL
• Action: travel from one 

city to another
• Transition model: 

when you visit a city, 
mark it as “visited.” 

Example of state definition: Traveling 
salesman problem



Example of state definition: Traveling 
salesman problem

• state = (agent, goals)
• agent = (agent_x,agent_y) is 

current position of the agent
• goals = [goal[0], goal[1], …]

lists the  goals that have not 
yet been reached
• goal[i] = (goal_x, goal_y)

tells the location  of the 
i’th remaining goal Solving TSP using a branch-and-bound algorithm.  CC-BY-SA 3.0, Saurabh 

Harsh, 2012, https://commons.wikimedia.org/wiki/File:Branchbound.gif
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How does this problem differ from every 
problem you’ve ever seen before?
• Search differs from most Computer Science problems in that the state 

space might be infinite.  We don’t assume, in advance, that we can 
enumerate every possible configuration of the world.
• Traditional definition of Dijkstra’s algorithm:

• First, list all of the possible states in the “not explored” list
• Then, move them to the “explored” list after we visit them

• Modifying Dijkstra’s algorithm for the infinite-world assumption:
• Instead of a list of all possible states, we have a method 

(next_state,cost)=Transition_Model( current_state, action)
• Instead of an infinite “not explored” list, we have a finite “frontier.”



First data structure: Frontier
• Frontier = set of nodes that you know how to reach, but you haven’t yet tested to 

see what comes next after those states
• node = ( state, parent_node, path_cost )
• Initialize: frontier = { (initial_state, None, 0) }
• Iterate, until goal is reached:

• Set current_state to some node from the frontier, remove it from the frontier.
• Expand current_state:

• If it’s the goal, then you’re done!  Return the corresponding path.
• If not, then find its children, and transition costs, using 

(next_state,cost)=Transition_Model( current_state, action), and add 
them to the frontier.



Example: Romania
• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

• Initial state
• Arad

• Actions
• Go from one city to another

• Transition model
• If you go from city A to 

city B, you end up in city B

• Goal state
• Bucharest

• Path cost
• Sum of edge costs (total distance 

traveled)



Search step 0
Frontier: { Arad }

Tree: Arad, 0



Search step 1
Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75



Tree Search: Basic idea
1. SEARCH for an optimal solution

• Maintain a frontier of unexpanded states
• At each step, pick a state from the frontier to expand:

• Check to see whether or not this state is the goal state.  If so, DONE!
• If not, then list all of the states you can reach from this state, add them to the frontier, and add 

them to the tree

2. BACK-TRACE: go back up the tree; list, in reverse order, all of the actions 
you need to perform in order to reach the goal state.

3. ACT: the agent reads off the sequence of necessary actions, in order, 
and does them.



Nodes vs. States
• State = description of the world

• Must have enough detail to decide 
whether or not you’re currently in the 
initial state

• Must have enough detail to decide 
whether or not you’ve reached the goal 
state

• Often but not always: “defining the 
state” and “defining the transition 
model” are the same thing

• Node = a point in the search tree
• Knows the ID of its STATE
• Knows the ID of its PARENT NODE
• Knows the COST of the path

… … …
…
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Search step 1
Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75



Search step 2
Expand Sibiu

Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75



Search step 2
Expanded Sibiu Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Arad, 280 Ramnicu Valcea, 220 Fagaras, 239

Frontier: { Zerind, Timisoara, Oradea, Arad, 
Rimnicu Vilcea, Fagaras }

Tree:



Tree Search: Computational Complexity
• b = “branching factor” = max # states you can reach from any given state
• d = “depth” = # layers in the tree (# moves that you have made)
• Complexity of Tree Search = 𝑂{𝑏!}

If the world is infinite (there are an infinite number of possible states), then 
𝑂{𝑏!} is a reasonable cost to pay.

But what if (as in the Romania example) the world is finite?  What if there 
are only N cities, where 𝑂{𝑁} < 𝑂{𝑏!}?  … it’s foolish to suffer 𝑂{𝑏!}
complexity for a tree search, when an exhaustive search would be only 
𝑂{𝑁}.



Third data structure: Explored set
How to limit complexity to 𝑂{min 𝑁, 𝑏! }: use an explored set

When you expand a state, do the following for each child state.
• Check to see whether it’s already been explored.
• If so:

• Skip it.

• If not:
• Add it to the frontier
• Add it to the tree
• Add it to the explored set



Search step 0
Frontier: { Arad }
Explored: { Arad }

Tree: Arad, 0



Search step 1: expand 
Arad

Frontier: { Sibiu, Zerind, Timisoara }
Explored: { Arad, Sibiu, Zerind, Timisoara }

Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75



Search step 2: 
expand Sibiu

Frontier: { Zerind, Timisoara, Oradea,  
Ramnicu Valcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara, 
Oradea, Ramnicu Valcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Ramnicu Valcea, 220 Fagaras, 239



Search step 3:
expand Zerind

Frontier: { Timisoara, Oradea,  Ramnicu
Valcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara, 
Oradea, Ramnicu Valcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Ramnicu Valcea, 220 Fagaras, 239



Frontier: { Timisoara, 
Oradea,  Ramnicu
Valcea, Fagaras }
Explored: { Arad, Sibiu, 
Zerind, Timisoara, 
Oradea, Ramnicu
Valcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Ramnicu Valcea, 220 Fagaras, 239

• We don’t add Oradea to the frontier again, 
b/c already in explored set

• But our new path to Oradea is shorter –
only 146km, instead of 291km!

• Can we go back and fix our mistake?



Fourth data structure: Explored Dictionary

Explored = dictionary mapping from state ID to path cost

• If a child state is in the explored dict, and our new path has HIGHER 
COST, then 
• Skip it.

• If a child state is in the explored dict, but our new path has LOWER 
COST, then:
• Update the dict: explored[state] = new_cost
• Put the new (state, parent, cost) tuple into the frontier and the tree



Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

Frontier: { Timisoara, Oradea,  Rimnicu Vilcea, 
Fagaras }
Explored: { Arad:0, Sibiu:140, Zerind:75, 
Timisoara:118, Oradea:291, Rimnicu
Vilcea:220, Fagaras:239 }

Search step 3:
expanded Zerind



Arad, 0

Timisoara, 118Sibiu, 140

Ramnicu Valcea, 220 Fagaras, 239

Frontier: { Timisoara, Oradea,  Ramnicu Valcea, 
Fagaras }
Explored: { Arad:0, Sibiu:140, Zerind:75, 
Timisoara:118, Oradea:146, Rimnicu
Vilcea:220, Fagaras:239 }

Oradea, 146

Zerind, 75

Oradea, 291
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In which order should you pick nodes from 
the frontier?

•LIFO (last-in, first-out) = Depth-First Search (DFS):
• the next node you expand will always be the one 

most recently added to the frontier.
•FIFO (first-in, first-out) = Breadth-First Search (BFS): 
• the next node you expand will always be the one 

least recently added to the frontier.



Depth-first  search (DFS)

Expand frontier in LIFO order (last in, 
first out).
Result: most recently discovered path 
is pursued, all the way to the end.

Depth-first-search.  CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif



Analysis of search strategies

• Strategies are evaluated along the following criteria:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: number of nodes generated
• Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of 
• b: maximum branching factor of the search tree
• d: depth of the optimal solution
• m: maximum length of any path in the state space (may be 

infinite)



Depth-first  search (DFS)
Incomplete:  If there are an infinite 
number of states, DFS might go down 
a path of infinite length, and might 
never find a solution.
Suboptimal: DFS returns the first 
path it finds, which might not be the 
shortest path.
Time Complexity: 𝑂{𝑏"}, where m is 
the longest possible path length.
Space Complexity: only 𝑂{𝑚}! Once 
you’ve finished a path, you can 
delete it from the tree!

Depth-first-search.  CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif



Expand the frontier in FIFO order 
(first-in, first-out).

Result: all paths of length d are 
explored, then all paths of length 
d+1, and so on.

Animated-BFS.  CC-SA 3.0, Blake Matheny, 2007
https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Breadth-first  search (BFS)



Complete: if a finite-length path 
exists, BFS will find it.
Optimal: BFS returns the first solution 
it finds, which is always the shortest 
path.
Time Complexity: 𝑂{𝑏!}, where d is 
the length of the best path.  This is 
usually much less than 𝑂{𝑏"}, 
because 𝑑 < 𝑚.
Space Complexity: 𝑂{𝑏!}.  No part of 
the tree can be deleted until you’ve 
found the solution. Animated-BFS.  CC-SA 3.0, Blake Matheny, 2007

https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Breadth-first  search (BFS)



BFS: How to do it

• Notice that BFS searches in 
exactly the same order as 
Dijkstra’s algorithm. 

• BFS is the normal way you would 
implement Dijkstra’s algorithm for 
a possibly-infinite search space.

Dijkstra’s progress, CC-BY 3.0, Subh83, 2011
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif
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