
CS440/ECE 448 Lecture 15:
Search

CC-SA 4.0, Mark Hasegawa-Johnson, 2/2022

Outline of today’s lecture

1. Initial state, goal state, transition model
2. General algorithm for solving search problems

1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: explored set
4. Fourth data structure: explored dict

3. Breadth-first search (BFS) and Depth-first search (DFS)
1. Completeness
2. Optimality
3. Time Complexity
4. Space Complexity

Search
• We will consider the problem of designing goal-based agents in fully

observable, deterministic, discrete, static, known environments
• Environment is sequential: agent’s action changes its state
• Agent must plan the best sequence of actions to achieve a goal

Start state

Goal state

Search problem components
• Initial state
• Actions
• Transition model

• What successor state results from
performing a given action
in a given predecessor state?

• Goal state
• Path cost

• Assume that it is a sum of
nonnegative step costs

• The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal

Initial
state

Goal
state

Knowledge Representation: State

• State = description of the world
• Must have enough detail to decide whether or not you’re currently in the

initial state
• Must have enough detail to decide whether or not you’ve reached the goal

state
• Often but not always: “defining the state” and “defining the transition model”

are the same thing

Example of state definition: Romania
• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

• state = name of the city
• Path cost

• Sum of edge costs (total distance
traveled)

Example of state definition: Maze solving

• State = (x,y), current position of the
agent

Initial
state

Goal
state

• Goal: visit every city in
the United States
• Path cost: total miles

traveled
• Initial state:

Champaign, IL
• Action: travel from one

city to another
• Transition model:

when you visit a city,
mark it as “visited.”

Example of state definition: Traveling
salesman problem

Example of state definition: Traveling
salesman problem

• state = (agent, goals)
• agent = (agent_x,agent_y) is

current position of the agent
• goals = [goal[0], goal[1], …]

lists the goals that have not
yet been reached
• goal[i] = (goal_x, goal_y)

tells the location of the
i’th remaining goal Solving TSP using a branch-and-bound algorithm. CC-BY-SA 3.0, Saurabh

Harsh, 2012, https://commons.wikimedia.org/wiki/File:Branchbound.gif

Outline of today’s lecture

1. Initial state, goal state, transition model
2. General algorithm for solving search problems

1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: explored set
4. Fourth data structure: explored dict

3. Breadth-first search (BFS) and Depth-first search (DFS)
1. Completeness
2. Optimality
3. Time Complexity
4. Space Complexity

How does this problem differ from every
problem you’ve ever seen before?
• Search differs from most Computer Science problems in that the state

space might be infinite. We don’t assume, in advance, that we can
enumerate every possible configuration of the world.
• Traditional definition of Dijkstra’s algorithm:

• First, list all of the possible states in the “not explored” list
• Then, move them to the “explored” list after we visit them

• Modifying Dijkstra’s algorithm for the infinite-world assumption:
• Instead of a list of all possible states, we have a method

(next_state,cost)=Transition_Model(current_state, action)
• Instead of an infinite “not explored” list, we have a finite “frontier.”

First data structure: Frontier
• Frontier = set of nodes that you know how to reach, but you haven’t yet tested to

see what comes next after those states
• node = (state, parent_node, path_cost)
• Initialize: frontier = { (initial_state, None, 0) }
• Iterate, until goal is reached:

• Set current_state to some node from the frontier, remove it from the frontier.
• Expand current_state:

• If it’s the goal, then you’re done! Return the corresponding path.
• If not, then find its children, and transition costs, using

(next_state,cost)=Transition_Model(current_state, action), and add
them to the frontier.

Example: Romania
• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

• Initial state
• Arad

• Actions
• Go from one city to another

• Transition model
• If you go from city A to

city B, you end up in city B

• Goal state
• Bucharest

• Path cost
• Sum of edge costs (total distance

traveled)

Search step 0
Frontier: { Arad }

Tree: Arad, 0

Search step 1
Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Tree Search: Basic idea
1. SEARCH for an optimal solution

• Maintain a frontier of unexpanded states
• At each step, pick a state from the frontier to expand:

• Check to see whether or not this state is the goal state. If so, DONE!
• If not, then list all of the states you can reach from this state, add them to the frontier, and add

them to the tree

2. BACK-TRACE: go back up the tree; list, in reverse order, all of the actions
you need to perform in order to reach the goal state.

3. ACT: the agent reads off the sequence of necessary actions, in order,
and does them.

Nodes vs. States
• State = description of the world

• Must have enough detail to decide
whether or not you’re currently in the
initial state

• Must have enough detail to decide
whether or not you’ve reached the goal
state

• Often but not always: “defining the
state” and “defining the transition
model” are the same thing

• Node = a point in the search tree
• Knows the ID of its STATE
• Knows the ID of its PARENT NODE
• Knows the COST of the path

… … …
…

Starting
state

Successor
state

Action

Goal state

Search step 1
Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Search step 2
Expand Sibiu

Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Search step 2
Expanded Sibiu Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Arad, 280 Ramnicu Valcea, 220 Fagaras, 239

Frontier: { Zerind, Timisoara, Oradea, Arad,
Rimnicu Vilcea, Fagaras }

Tree:

Tree Search: Computational Complexity
• b = “branching factor” = max # states you can reach from any given state
• d = “depth” = # layers in the tree (# moves that you have made)
• Complexity of Tree Search = 𝑂{𝑏!}

If the world is infinite (there are an infinite number of possible states), then
𝑂{𝑏!} is a reasonable cost to pay.

But what if (as in the Romania example) the world is finite? What if there
are only N cities, where 𝑂{𝑁} < 𝑂{𝑏!}? … it’s foolish to suffer 𝑂{𝑏!}
complexity for a tree search, when an exhaustive search would be only
𝑂{𝑁}.

Third data structure: Explored set
How to limit complexity to 𝑂{min 𝑁, 𝑏! }: use an explored set

When you expand a state, do the following for each child state.
• Check to see whether it’s already been explored.
• If so:

• Skip it.

• If not:
• Add it to the frontier
• Add it to the tree
• Add it to the explored set

Search step 0
Frontier: { Arad }
Explored: { Arad }

Tree: Arad, 0

Search step 1: expand
Arad

Frontier: { Sibiu, Zerind, Timisoara }
Explored: { Arad, Sibiu, Zerind, Timisoara }

Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Search step 2:
expand Sibiu

Frontier: { Zerind, Timisoara, Oradea,
Ramnicu Valcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara,
Oradea, Ramnicu Valcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Ramnicu Valcea, 220 Fagaras, 239

Search step 3:
expand Zerind

Frontier: { Timisoara, Oradea, Ramnicu
Valcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara,
Oradea, Ramnicu Valcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Ramnicu Valcea, 220 Fagaras, 239

Frontier: { Timisoara,
Oradea, Ramnicu
Valcea, Fagaras }
Explored: { Arad, Sibiu,
Zerind, Timisoara,
Oradea, Ramnicu
Valcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Ramnicu Valcea, 220 Fagaras, 239

• We don’t add Oradea to the frontier again,
b/c already in explored set

• But our new path to Oradea is shorter –
only 146km, instead of 291km!

• Can we go back and fix our mistake?

Fourth data structure: Explored Dictionary

Explored = dictionary mapping from state ID to path cost

• If a child state is in the explored dict, and our new path has HIGHER
COST, then
• Skip it.

• If a child state is in the explored dict, but our new path has LOWER
COST, then:
• Update the dict: explored[state] = new_cost
• Put the new (state, parent, cost) tuple into the frontier and the tree

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

Frontier: { Timisoara, Oradea, Rimnicu Vilcea,
Fagaras }
Explored: { Arad:0, Sibiu:140, Zerind:75,
Timisoara:118, Oradea:291, Rimnicu
Vilcea:220, Fagaras:239 }

Search step 3:
expanded Zerind

Arad, 0

Timisoara, 118Sibiu, 140

Ramnicu Valcea, 220 Fagaras, 239

Frontier: { Timisoara, Oradea, Ramnicu Valcea,
Fagaras }
Explored: { Arad:0, Sibiu:140, Zerind:75,
Timisoara:118, Oradea:146, Rimnicu
Vilcea:220, Fagaras:239 }

Oradea, 146

Zerind, 75

Oradea, 291

Outline of today’s lecture

1. Initial state, goal state, transition model
2. General algorithm for solving search problems

1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: a “visited states” dict

3. Breadth-first search (BFS) and Depth-first search (DFS)
1. Completeness
2. Optimality
3. Time Complexity
4. Space Complexity

In which order should you pick nodes from
the frontier?

•LIFO (last-in, first-out) = Depth-First Search (DFS):
• the next node you expand will always be the one

most recently added to the frontier.
•FIFO (first-in, first-out) = Breadth-First Search (BFS):
• the next node you expand will always be the one

least recently added to the frontier.

Depth-first search (DFS)

Expand frontier in LIFO order (last in,
first out).
Result: most recently discovered path
is pursued, all the way to the end.

Depth-first-search. CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Analysis of search strategies

• Strategies are evaluated along the following criteria:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: number of nodes generated
• Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of
• b: maximum branching factor of the search tree
• d: depth of the optimal solution
• m: maximum length of any path in the state space (may be

infinite)

Depth-first search (DFS)
Incomplete: If there are an infinite
number of states, DFS might go down
a path of infinite length, and might
never find a solution.
Suboptimal: DFS returns the first
path it finds, which might not be the
shortest path.
Time Complexity: 𝑂{𝑏"}, where m is
the longest possible path length.
Space Complexity: only 𝑂{𝑚}! Once
you’ve finished a path, you can
delete it from the tree!

Depth-first-search. CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Expand the frontier in FIFO order
(first-in, first-out).

Result: all paths of length d are
explored, then all paths of length
d+1, and so on.

Animated-BFS. CC-SA 3.0, Blake Matheny, 2007
https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Breadth-first search (BFS)

Complete: if a finite-length path
exists, BFS will find it.
Optimal: BFS returns the first solution
it finds, which is always the shortest
path.
Time Complexity: 𝑂{𝑏!}, where d is
the length of the best path. This is
usually much less than 𝑂{𝑏"},
because 𝑑 < 𝑚.
Space Complexity: 𝑂{𝑏!}. No part of
the tree can be deleted until you’ve
found the solution. Animated-BFS. CC-SA 3.0, Blake Matheny, 2007

https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Breadth-first search (BFS)

BFS: How to do it

• Notice that BFS searches in
exactly the same order as
Dijkstra’s algorithm.

• BFS is the normal way you would
implement Dijkstra’s algorithm for
a possibly-infinite search space.

Dijkstra’s progress, CC-BY 3.0, Subh83, 2011
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Outline of today’s lecture

1. Initial state, goal state, transition model
2. General algorithm for solving search problems

1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: a “visited states” dict

3. Breadth-first search (BFS) and Depth-first search (DFS)

