CS440/ECE 448 Lecture 15:
Search

CC-SA 4.0, Mark Hasegawa-Johnson, 2/2022

Outline of today’s lecture

1. Initial state, goal state, transition model

2. General algorithm for solving search problems
1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: explored set
4. Fourth data structure: explored dict

3. Breadth-first search (BFS) and Depth-first search (DFS)

1. Completeness

2. Optimality

3. Time Complexity
4. Space Complexity

Search

* We will consider the problem of designing goal-based agents in fully
observable, deterministic, discrete, static, known environments

* Environment is sequential: agent’s action changes its state
* Agent must plan the best sequence of actions to achieve a goal

Start state

 /

€= Goal state

Search problem components

e |nitial state Initial
. state
* Actions ‘

 Transition model

* What successor state results from
performing a given action
in a given predecessor state?

e Goal state

 Path cost
* Assume that it is a sum of
) Goal
nonnegative step costs « ctate

* The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal

Knowledge Representation: State

* State = description of the world
* Must have enough detail to decide whether or not you’re currently in the

initial state
* Must have enough detail to decide whether or not you’ve reached the goal
state

e Often but not always: “defining the state” and “defining the transition model”
are the same thing

Example of state definition: Romania

On vacation in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

state = name of the city
Path cost

* Sum of edge costs (total distance
traveled)

HCraiova

Example of state definition: Maze solving

Initial
state

 State = (x,y), current position of the [l
agent

<;] Goal
state

Example of state definition: Traveling
salesman problem

* Goal: visit every city in ,f&_,___,_,\)

. N\ \
the United States J~ [N R @
/ ! " | /
* Path cost: total miles / G Sl N
traveled | N I
i . ,"' QYN \‘. P -—\ ((-
* |nitial state: (i’ — b N !
. ﬁ/ / | //"7___ J.
Champaign, IL /MM,.\,{; i (
* Action: travel fromone \ ~ | (=
city to another \ (N~ P2
N 7 L e
* Transition model: *““*~~--—‘-T-*-\ / (b /*
« . . o~ N A _—
when you visit a city, (=\ PSS] —
. o oo ” M '\ AN
mark it as “visited. > /NS N
f— T
{\
| N\

Example of state definition: Traveling

salesman problem

* state = (agent, goals)
 agent = (agent_x,agent_y) is
current position of the agent
* goals = [goal[0], goal[1], ...]
lists the goals that have not
yet been reached
* goal[i] = (goal_x, goal_y)
tells the location of the
i"th remaining goal

100

80

60m

401

20F

0

0

20

40

60

80

100

100

80

60m

40

20

0

0

20

40

60

80

100

Solving TSP using a branch-and-bound algorithm. CC-BY-SA 3.0, Saurabh

Harsh, 2012, https://commons.wikimedia.org/wiki/File:Branchbound.gif

Outline of today’s lecture

2. General algorithm for solving search problems
1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: explored set
4. Fourth data structure: explored dict

3. Breadth-first search (BFS) and Depth-first search (DFS)

1. Completeness

2. Optimality

3. Time Complexity
4. Space Complexity

How does this problem differ from every
problem you’ve ever seen before?

* Search differs from most Computer Science problems in that the state
space might be infinite. We don’t assume, in advance, that we can
enumerate every possible configuration of the world.

* Traditional definition of Dijkstra’s algorithm:
* First, list all of the possible states in the “not explored” list
* Then, move them to the “explored” list after we visit them

* Modifying Dijkstra’s algorithm for the infinite-world assumption:
* Instead of a list of all possible states, we have a method

* Instead of an infinite “not explored” list, we have a finite “frontier.”

First data structure: Frontier

* Frontier = set of nodes that you know how to reach, but you haven’t yet tested to
see what comes next after those states

* Initialize:
* |terate, until goal is reached:
* Set to some node from the frontier, remove it from the frontier.
* Expand
* If it’s the goal, then you’re done! Return the corresponding path.

* If not, then find its children, and transition costs, using
, and add
them to the frontier.

Example: Romania

On vacation in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

Initial state
e Arad

] Oradea

Actions 75
* Go from one city to another Aradf}

Transition model

* If you go from city A to
city B, you end up in city B

113

Goal state
e Bucharest

Path cost

* Sum of edge costs (total distance
traveled)

HCraiova

Frontier: { Arad }

Search step O

"] Oradea
Neamt
- 7
75
M lasi
Aradl}
T & Q2
Sibiu o Fagams
113 20 MVaslui
Timisoara Himnicu Vilcea
142
: : 211
111 - Lugoj Pitesti
Lo - o % M Hirsova
qMehadia 101 _ & Iziceni
") %
75 138 =
Dobreta 120 i
(5] . % —-
Craiova Eforie

M Giurgiu

Frontier: { Sibiu, Zerind, Timisoara }

Search step 1

Tree: Arad, 0

" Oradea
Nea m

Sibiu, 140 Timisoara, 118

92

Slbil.l Q9 FBQBIBS

113 MVaslui

20

Rimnicu Vilcea

JTimisoara
o]

. 142
: : 211
11! - Lugoj Pitesti
70 - 08
a5 - 7 Hirsova
M Mehadia . Urziceni
L 25
B _— 138 Bucharest
Dobreta = %0 -
~ICraiova Efo rie

= Giurgiu

Tree Search: Basic idea

1. SEARCH for an optimal solution
* Maintain a frontier of unexpanded states

» At each step, pick a state from the frontier to expand:

* Check to see whether or not this state is the goal state. If so, DONE!
* If not, then list all of the states you can reach from this state, add them to the frontier, and add

them to the tree

2. BACK-TRACE: go back up the tree; list, in reverse order, all of the actions
you need to perform in order to reach the goal state.

3. ACT: the agent reads off the sequence of necessary actions, in order,
and does them.

Nodes vs. States

* State = description of the world Starting

* Must have enough detail to decide e
whether or not you’re currently in the Action
initial state

Successor

* Must have enough detail to decide state
whether or not you’ve reached the goal
state

e Often but not always: “defining the () ()
state” and “defining the transition
model” are the same thing cee oses sse

o

* Node = a point in the search tree
« Knows the ID of its STATE @ Goalstate
 Knows the ID of its PARENT NODE
* Knows the COST of the path

Frontier: { Sibiu, Zerind, Timisoara }

Search step 1

Tree: Arad, 0

" Oradea
Nea m

Sibiu, 140 Timisoara, 118

92

Slbil.l Q9 FBQBIBS

113 MVaslui

20

Rimnicu Vilcea

JTimisoara
o]

. 142
: : 211
11! - Lugoj Pitesti
70 - 08
a5 - 7 Hirsova
M Mehadia . Urziceni
L 25
B _— 138 Bucharest
Dobreta = %0 -
~ICraiova Efo rie

= Giurgiu

Sea rCh Step 2 Frontier: { Sibiu, Zerind, Timisoara }
Expand Sibiu Tree o

=] Oradea
Nea m

Sibiu, 140 Timisoara, 118 Zerind, 75

92

Sibiu o Fagams

113 MVaslui

0
Timisoere Fllmmcu Vilcea
v 142
: : 211
11! - Lugoj Pitesti
70 - o % Hirsova
a
M Mehadia 101 . Jrziceni
L 25
75 138 y
Dobreta 5 120 i
(5] . % —-
Craiova Eforie

M Giurgiu

Frontier: { Zerind, Timisoara, Oradea, Arad,

Sea rCh Step 2 Rimnicu Vilcea, Fagaras }
Expanded Sibiu . o

" Oradea
Nea m

Timisoara, 118

Fagaras, 239

Bucharest
Q0
= Giurgiu

Tree Search: Computational Complexity

* b = “branching factor” = max # states you can reach from any given state
* d = “depth” = # layers in the tree (# moves that you have made)
* Complexity of Tree Search = 0{b%}

If the world is infinite (there are an infinite number of possible states), then
0{b%} is a reasonable cost to pay.

But what if (as in the Romania example) the world is finite? What if there
are only N cities, where O{N} < 0{b%}? ... it’s foolish to suffer 0{b%}
complexity for a tree search, when an exhaustive search would be only
O{N}.

Third data structure: Explored set

How to limit complexity to O{min(N, bd)}: use an explored set

When you expand a state, do the following for each child state.
* Check to see whether it’s already been explored.
* If so:

 Skip it.

* If not:
* Add it to the frontier
* Add it to the tree
e Add it to the explored set

Frontier: { Arad }
Explored: { Arad }

Search step O

7] Oradea

Neamt
- 7
75
M lasi
Aradl}
T & Q2
Sibiu o Fagams
113 20 MVaslui
Timisoara Himnicu Vilcea
142
: : 211
Lt - Lugoj Pitesti
Lo - o % M Hirsova
qMehadia 101 _ & Iziceni
) %
75 138 =
Dobreta 120 i
[5] . % —-
Craiova Eforie

M Giurgiu

Frontier: { Sibiu, Zerind, Timisoara }

Sea rCh Step 1: expa nd Explored: { Arad, Sibiu, Zerind, Timisoara }
Arad Arad, O

=] Oradea
Nea m

Sibiu, 140 Timisoara, 118 Zerind, 75

92

Sibiu oy Fagams

113 MVaslui

0
Timisoera Fllmmcu Vilcea
. 142
: : 211
11! - Lugoj Pitesti
70 - o % Hirsova
MMehadia 101 : Urziceni
L 25
75 138 y
Dobreta 5 120 o
(5] . % -
Craiova Eforie

= Giurgiu

Frontier: { Zerind, Timisoara, Oradea,

Search Step) Ramnicu Valcea, Fagaras }
L. Explored: { Arad, Sibiu, Zerind, Timisoara,
eXpa nd Sl b| u Oradea, Ramnicu Valcea, Fagaras }
"] Oradea

Arad, 0]

;.-_‘_; 140
us Tlmlsoara 118

Oradea, 291 . Fagaras, 239

% 7 Hirsova

[}
UJrziceni

- 25
B Bucharest
Dobreta = 90 -
Eforie

= Giurgiu

Search step 3:
expand Zerind

" Oradea

Frontier: { Timisoara, Oradea, Ramnicu
Valcea, Fagaras }

Explored: { Arad, Sibiu, Zerind, Timisoara,
Oradea, Ramnicu Valcea, Fagaras }

Neamt Arad, 0
- 87

Fagaras, 239

)
[}
UJrziceni

7 Hirsova

*Bucharest
Q0 =]
= Giurgiu

* We don’t add Oradea to the frontier again, Frontier: { Timisoara,

b/c already in explored set Oradea, Ramnicu
* But our new path to Oradea is shorter — Valcea, Fagaras }
only 146km, instead of 291km! Explored: { Arad, Sibiu,
o Can we go back and fix our mistake? Zerind, Timisoara,
Neamt Oradea, Ramnicu
37 Valcea, Fagaras }

] lasi

Sibiu oy Fagams

118 Arad, O

0
Rimnicu Vilcea

JTimisoara
o

LLL 211

3 Lugoj

70 Zerind, 75
|
Oradea, 291 Ramnicu Valcea, 220 Fagaras, 239

~ICraiova Efarle
M Giurgiu

Fourth data structure: Explored Dictionary
Explored = dictionary mapping from state ID to path cost

* If a child state is in the explored dict, and our new path has HIGHER
COST, then
 Skip it.
* If a child state is in the explored dict, but our new path has LOWER
COST, then:

* Update the dict: explored[state] = new_cost
* Put the new (state, parent, cost) tuple into the frontier and the tree

Frontier: { Timisoara, Oradea, Rimnicu Vilcea,

Search step 3: Fagaras }
. Explored: { Arad:0, Sibiu:140, Zerind:75,
expa nded Zerl nd Timisoara:118, Oradea:291, Rimnicu
Vilcea:220, Fagaras:239 }

Neamt Arad, 0
- a7

" Oradea

75

:

:--_i_; 140

g Sibiu, 140 Timisoara, 118 Zerind, 75
118 _ 4 ’ ’

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

ja .
Zerind 151
[}

3
=]
. Urziceni
I_-_l %
Bucharest

Q0 =}
= Giurgiu

7 Hirsova

138
Dobreta =

Craiova

Frontier: { Timisoara, Oradea, Ramnicu Valcea,
Fagaras }

Explored: { Arad:0, Sibiu:1404=Tind:75,
Timisoara:118, Oradea:146, Rimnicu
Vilcea:220, Fagaras:239 }

Neamt Arad, O
- 87

" Oradea

Oradea, 291 Fagaras, 239 Oradea, 146

o 7 Hirsova

. Urziceni

I_._' %
Bucharest

Q0 b

= Giurgiu

Craiova

Outline of today’s lecture

3. Breadth-first search (BFS) and Depth-first search (DFS)

1. Completeness

2. Optimality

3. Time Complexity
4. Space Complexity

In which order should you pick nodes from
the frontier?

*LIFO (last-in, first-out) = Depth-First Search (DFS):
*the next node you expand will always be the one
most recently added to the frontier.

*FIFO (first-in, first-out) = Breadth-First Search (BFS):

*the next node you expand will always be the one
least recently added to the frontier.

Depth-first search (DFS)

Expand frontier in LIFO order (last in,
first out).

Result: most recently discovered path
is pursued, all the way to the end.

O O

Depth-first-search. CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Analysis of search strategies

e Strategies are evaluated along the following criteria:
* Completeness: does it always find a solution if one exists?
* Optimality: does it always find a least-cost solution?
* Time complexity: number of nodes generated
* Space complexity: maximum number of nodes in memory

* Time and space complexity are measured in terms of
* b: maximum branching factor of the search tree
* d: depth of the optimal solution

* m: maximum length of any path in the state space (may be
infinite)

Depth-first search (DFS)

Incomplete: If there are an infinite
number of states, DFS might go down
a path of infinite length, and might
never find a solution.

Suboptimal: DFS returns the first
path it finds, which might not be the

shortest path.

Time Complexity: 0{b™}, where m is
the longest possible path length.

Space Complexity: only O{m}! Once
you’ve finished a path, you can Depth-first-search. CC-BY-SA 3.0, Mre, 2009
delete |t from the treel https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Breadth-first search (BFS) 2

Expand the frontier in FIFO order P S e K
(first-in, first-out). L B 3oy €

Result: all paths of length d are s
explored, then all paths of length &
d+1, and so on. ’ ;

Animated-BFS. CC-SA 3.0, Blake Matheny, 2007
https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Breadth-first search (BFS)

Complete: if a finite-length path
exists, BFS will find it.

Optimal: BFS returns the first solution , ST SR T
it finds, which is always the shortest

path.
Time Complexity: 0{b%}, wheredis { a) (¢) (¢) (¢
the length of the best path. This is ‘ T N it Nl

usually much less than 0{b™},
because d < m.

Space Complexity: 0{b%}. No part of k-7
the tree can be deleted until you've

. Animated-BFS. CC-SA 3.0, Blake Matheny, 2007
found the SOIUtlon' https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

BFS: How to do it

* Notice that BFS searches in
exactly the same order as
Dijkstra’s algorithm.

* BFS is the normal way you would
implement Dijkstra’s algorithm for
a possibly-infinite search space.

Dijkstra’s progress, CC-BY 3.0, Subh83, 2011
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Outline of today’s lecture

1. Initial state, goal state, transition model

2. General algorithm for solving search problems

1. First data structure: a frontier queue
2. Second data structure: a search tree
3. Third data structure: a “visited states” dict

3. Breadth-first search (BFS) and Depth-first search (DFS)

