CS440/ECE448 Lecture 12
Computer Vision

Mark Hasegawa-Johnson, 2/2022

Slides may be redistributed under CC-BY 4.0. Most images are from other
published sources; citations are provided inline.

https://creativecommons.org/licenses/by/4.0/

Outline

* Cameras
* Pinhole camera equations
* Vanishing point

* Convolutions
* Blur
* Edge detection
e Convolutional neural net
* Imagenet

Lenses and focus

* The lens in your eye collects light.

* Light that passes directly through
the center of the lens is not bent. A
v

* Light that passes above center is
bent back toward center, and vice
versa, so that it can all be
collected in the same point on
the image plane.

Object

By Rhcastilhos. And Jmarchn. - —
Schematic_diagram_of the_human_eye_with_English_annotations.svg, CC

BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1597930

The “pinhole camera” approximation

* A “pinhole camera” is a camera

that only allows light through a
very small hole. |

* Disadvantage: A pinhole camera
gets much less light than a lens |
(because the hole is smaller). Jlame Pinhole

* Advantage: A pinhole camera
focuses on all objects, at every Object
distance, simultaneously.

Converting a 3D world to a 2D picture

* Different spots in the real world
are projected onto different
points in the image plane.

FAY

* Light that passes through the é
center of the lens is not bent.

* Therefore, we can use the Image |

pinhole camera approximation to plane
analyze the relationship between

real world position (x,y,z) and

position on the image plane

(X7y’).

The pinhole camera equations

 Define the origin (0,0,0) to be the

pinhole. y

 Define (x,y,z) as position of the |
object: x is horizontal (into the
slide), y is vertical (upward), z is ‘
away from the camera. Image

* Define (x’,y’) as the position on plane Pinhole
the image plane where the light f

strikes (upside down).

e Define f as the distance from the
pinhole to the image plane.

The pinhole camera equations

* These are similar triangles! So

! !/

y =y X =X

f z’ f z

e Solving for (x,y’), we get the
pinhole camera equations:

,_ —fx ,_ 1Y
z Z

X

Image ‘
plane Pinhole

f

Outline

* Vanishing point

* Convolutions
* Blur
* Edge detection
e Convolutional neural net
* Imagenet

Vanishing point

* When you take a picture, lines

that are parallel in the real world
appear to converge.

* The point toward which they
converge is called the vanishing
point. It lies on the horizon.

* The “horizon” is a line in the
image, where a plane parallel to
the ground passes through the
pinhole.

Vanishing point

* Suppose we are imaging a couple of
parallel lines, for which x and y
depend on z:

Linel: x =az+by,y=cz+d,
Line2: x =az+b,,y=cz+d,

* These are parallel lines, so they
have the same slopes, a, c. For
example, if the line are both
horizontal, thenc = 0.

* They are slightly offset from one
another, so they have different
offsets by, b,,d4,d,

Y

Vanishing point

Linel: x =az+ b,y =cz+d,

Line2: x =az+ by, y =cz+d,

* Remember the pinhole camera
equatlons - = —x and 2 . In the
(x’,y) pIane therefore, the lines are

Line 1:
X2 +b I+ d
= az 1, — = CZ 1
f f

Line 2:
—x'z —y'z
= az + b,, T=cz+d2

!/

!/

i

v

Vanishing point

Line 1:
—x'z —y'z
7 = az + by, 7 =cz+d,
Line 2:
—x'z —y'
7 = az + by, 7 =cz+d,

Now notice that, as z — oo, the first two terms
become infinitely larger than the third term. If
we divide through by z, and allow z = oo, we find
that both lines converge to the same point:

Vanishing Point of Line 1:

x'=-af, y =—cf
Vanishing Point of Line 2:

x' = —af, y'=—cf

i

Image
plane

Pinhole

v

Vanishing point

Vanishing Point of Line 1:

!

x'=—af, ¥y =-—cf
Vanishing Point of Line 2:

!

xX'=—af, y'=-—cf

For example, if the lines in the real
world are horizontal (¢ = 0) and
parallel to the z axis (a = 0), then
in the image, they converge to the

point (x’,y") = (0,0).

Outline

* Convolutions
* Blur
* Edge detection
e Convolutional neural net
* Imagenet

@ An RGB image is a signal in three dimensions: f|[i,j, k] =
intensity of the signal in the /™ row, j*™* column, and k™" color.

o f|i,J, k|, for each (i,/, k), is either stored as an integer or a
floating point number:

o Floating point: usually x € [0, 1], so x = 0 means dark, x =1
means bright.

o Integer: usually x € {0,...,255}, so x = 0 means dark,
x = 255 means bright.

@ The three color planes are usually:
e kK =0: Red
e k=1: Blue
o k=2: Green

@ “Local averaging” means that we create an output image,

yli,J, k|, each of whose pixels is an average of nearby pixels
in f[i,J, k|.

@ For example, if we average along the rows:

1 Jj+M
vl K =g 2. flij K
j'=j—M

@ If we average along the columns:

1 i+M

iI'=i—M

@ Suppose we don't want the edges quite so abrupt. We could
do that using “weighted local averaging:” each pixel of
yli,Jj, k] is a weighted average of nearby pixels in f[i, J, k],
with some averaging weights g|[n].

@ For example, if we average along the rows:
j+M

Y[iaja k] = Z gU_ m]f[iv mvk]

m=j—M

@ If we average along the columns:

The top row are the averaging weights, g[n]. The middle row
shows the input, f[n]. The bottom row shows the output, y[n].

Gaussian smoothing filter

0.4 - =
0.2~ T)

0.0 1 , %gﬁ . .
1.0 - e e R e A
0.5 -

0.0 Lttt gt othea onitstep
1.0 - TIPS TOTT e |
05 - I T
0.0 WT , ' .

. The Gaussian blur filter h(m, n) results in
G aussian bl ur different degrees of smoothness of
g(x’,y"), depending on how we set the

_ o _ hyperparameter o (the StDev):
Weighted averaging is a little better ‘ “Va

than unweighted averaging. We
just need to make sure that the
weights add up to one. For
example:

;. By IkamusumeFan - Own
y [l’]J 5 work, CC BY-SA 4.0,
https://commons.wikime
_ . . dia.org/w/index.php?curi
= E E g [m, n]f[l m,] nj d=41790217
m=—-5n=-5

1 ()

2102

glm,n] =

StDev = 10

@ A convolution is exactly the same thing as a weighted local
average. We give it a special name, because we will use it
very often. It's defined as:

yln] =) glmlf[n—m] = g[n— m]f[m]

@ We use the symbol % to mean “convolution:”

y[n] = gln] * fln] = glm]f[n—m] =) gln— m]f[m]

Outline

* Edge detection
e Convolutional neural net
* Imagenet

Things that loo

2. Orientation
discontinuities

gl Depth
discontinuities

w/index.php?curid=7647000

ommons.wikimedia.org/

Edge detection by subtraction

Subtract neighboring pixels, to compute an

“: 3 W)
image gradient: Image 0 Gx Image 0 Gy

X gradient:

V. fli,jl = flij+1]—fli,j—1] 100

2

Y gradient: P - f1 : 100
. i+ 1j—fli—1,j
Vyf[l:]] ~ 5

100

0 100 200 0 100 200

A problem with “edge detection by
subtraction”

It tends to exaggerate noise.
Image 0 Gx Image 0 Gy

0 100 200 0 100 200

Solving the noise problem

>

smoothing the image first, then B CEDIMRgEI0, ,_Image 0 row diff image 0 row ave
taking the difference. — | i e

Smoothing is done by taking a local ™

We can solve the noise problem by

average, e.g.,

slojl
-3 S ()

m=-5n=-5

oo sl j+1] =l j—1]
vxf[l:]] ~ 2 0 100 200

0 100 200 0 100 200

v, fli,j] ~ sli+1,/] ;s[i —1,7]

Gaussian blur

Weighted averaging is a little better than
unweighted averaging. We just need to

make sure that the weights add up to one.

For example:

5 5
slijl=)) hlmnlfli—m,j—nl

m=-5n=-5

2o 2

sli,j+1] =sli,j = 1]
2

fo[i,j] ~

sli+1,j] —sli—1,j]
2

vyf[l:]] ~

The Gaussian blur filter h(m, n) results in
different degrees of smoothness of
S(x',y"), depending on how we set the
hyperparameter o (the StDev):

By lkamusumeFan - Own
work, CC BY-SA 4.0,
https://commons.wikime
dia.org/w/index.php?curi
d=41790217

StDev = 10

Difference of Gaussians

A “difference-of-Gaussians” filter is created by
subtracting two Gaussian-blur filters, like this:

IR (GRO)

Alm,n] = 2102

him,n+ 1] — hfm,n — 1]
2

hx,[m» Tl] -

hlm + 1,n] — hfm — 1,n]
2

hy’[m, n| =

A “difference-of-Gaussians”
filter looks kind of like this:

hx’(x,; O)

Difference of Gaussians

If we pre-compute the difference-of-
Gaussians filters, then we can combine the
weighted-average and the subtraction into
just one operation, to save computation:

Vi flijl

I
[
=
%‘
E
S,
=
|
E
~—~
|
S,

The difference-of-Gaussians filters, h,.'[m, n] and
h,'[m, n], detect more or less edges, depending
on how we set the hyperparameter g. Here is

V. fli,j1> + V,, f1i, j]%, thresholded to make it

black and white:

ZQ s el
DRI . -
R AR NP

By Overremorto - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=10581259

Example Convolutions: Weighted Average, Edge Detector

h'(x,0) Edge
Detector

StDev = 10

By lkamusumeFan - Own work, CC BY-SA 4.0, v X
https://commons.wikimedia.org/w/index.php?curid= 43&9%&30% CC-SA 3.0,https://commons.wikimedia. org/W|k|/F|Ie %C3%84%C3%A4retuvastuse_n%C3%A4ide.png

https://commons.wikimedia.org/wiki/

Outline

e Convolutional neural net
* Imagenet

Convolutional Neural Networks

* Neural network with specialized
connectivity structure

iy

e Stack multiple stages of feature
extractors (trainable convolutions!!)

L4
1

 Higher stages compute more global,
more invariant features

B

=

- 4

: |
Ea
%
il

,'!{.
B3
B

-1

e |

e Classification layer at the end

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5
INPUT
6@28x28
S2: f. maps

32x32
6@14x14

|
| Full comlection Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278-2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolutional Neural Networks

Slide by Svetlana Lazebnik, 9/2017

AN
[]

[Feature maps J

i

‘ Normalization ’

i

[Spatial pooling J

e

Convolution
(Learned)
a1
Input Image

D(x',y") =h(x",y)*Y(x',y")

One layer of a convolutional neural network

Input Feature Map

Convolutional Neural Networks

Slide by Svetlana Lazebnik, 9/2017

AN

L]
‘ Feature maps ’

i

L Normalization }

i

‘ Spatial pooling ’

{}

[Non-linearity]

{}

Convolution
(Learned)

One layer of a convolutional neural network

ame

A = ReLU(D)

‘ Input Image ’

Convolutional Neural Networks

Slide by Svetlana Lazebnik, 9/2017

AN
[]

[Feature maps J max A(x',y"), within some local region.
X,y

i

‘ Normalization ’

{}

[Spatial pooling]

Convolution
(Learned)

a1
Input Image]

One layer of a convolutional neural network

Convolutional Neural Networks

Slide by Svetlana Lazebnik, 9/2017

AN

L |
[Feature maps]

{}

i

[Spatial pooling]

{}

Convolution
(Learned)

One layer of a convolutional neural network

[Normalization]

i
Input Image

Feature Maps Feature Maps
After Contrast

Normalization

LeNet, 1998

* (Convolution, Nonlinearity, Max-Pooling, Normalization) X 2 layers
» After the second max-pooling, the resulting features are concatenated to
form a vector, which is then classified.

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5
INPUT 6@28x28
32x32 S2: f. maps
6@14x14

I
| | Fullcomlection I Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278-2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Outline

* Imagenet

ImageNet Challenge
IMAGENE |

* ~14 million labeled images, 20k classes

* Images gathered from Internet
* Human labels via Amazon MTurk

| | A * Challenge: 1.2 million training images,
= 1.0 1000 classes
[Deng et al. CVPR 2009]

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

AlexNet

Similar framework to LeCun’98 but:
Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

Strid
“of 4
3

- "ff?SS

More data (10° vs. 103 images)

GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week

Max
pooling

48

\ i 4,:“ B e,
e : 3 e
3 192 192 128 2048 7048 \dense
1330, 13 13
4 ;:“Ijﬁ& 13 dense dense
1000
192 192 128 Max ... ==
58 Max pooling 2948 2048
pooling

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional

Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Layer 1 Filters

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
arXiv preprint, 2013

http://arxiv.org/pdf/1311.2901v3.pdf

Layer 1: Top-9 Patches

=
mEw
e
Sl
I
E N

HEE a2
e -
B s
EN FRY
¥E KFF

g Laer 2: op.

:-# ‘ r‘ :

" T == I LUl L

2 H”’H’_fﬂ_@”””mlk

ﬂﬂ hﬂ'“— S

AN VLI 7 ' ! /) @ |
= I\\‘u? ‘Fr‘!- i] Iil!/" I**
' ""]1”“[4‘ oy | jll?fi-..l J 4 SN
=) _= 1 PR) T I
Z TN e Y~ A RE . A
2 mnse W -eml,ruw A5

N Y2 € rnE e

\!
||"

"ii'”
' W
E | | .

b

from validation images that
4 b B | 3 v

Conclusions

* Pinhole camera equations tell you the relationship between the position on
the image, (x,y’), and the position in the real world, (x,y,z). In particular,
they tell you why parallel lines seem to converge at the vanishing point.

* Weighted averaginF (e.g., Gaussian blur) and edge detection are two
examples of convolution.

* Edges are caused by discontinuities of depth, orientation, illumination, and
color. It’s useful to detect where such things happen! Subtracting pixels is
noisy, so convolve with a difference-of-gaussians filter instead.

* A convolutional neural network is a series of layers, each of which contains
a convolution, followed by a nonlinearity, followed by a local maximum.

. Imagel_let is a database with millions of images, showing examples of over
1000 different objects. It has permitted people to train extremely
complicated and highly accurate neural nets.

