
Lecture 11: Back-
Propagation

Mark Hasegawa-Johnson
2/2022

License: CC-BY 4.0. You may remix or redistribute
if you cite the source.

ℎ!
(#)

ℎ!
(%) ℎ&

(!) ℎ'
(%) 1…

ℎ&
(#) ℎ(

(#)

1

1

Outline

• Review: flow diagrams
• Gradient descent
• The chain rule of calculus
• Back-propagation

Flow diagrams

A flow diagram is a way to represent the
computations performed by a neural
network.
• Circles, a.k.a. “nodes,” a.k.a. “neurons,”

represent scalar operations.
• The circles above 𝑥! and 𝑥" represent the

scalar operation of “read this datum in from
the dataset.”

• The circles labeled ℎ! and ℎ! represent the
scalar operation of “unit step function.”

• Lines represent multiplication by a scalar.
• Where arrowheads come together, the

corresponding variables are added.
𝑥! 𝑥& 1

−1
−1

1
1

0.5

−1.5

ℎ! ℎ&

−1 −1 0.5

𝑓

Flow diagrams

Usually, a flow diagram shows only the
activations (including inputs).
Excitations, weights, biases, and
nonlinearities are implicit. For example,
this flow diagram means that there are
some nonlinearities 𝑔("), and some
weights 𝑤$,&

(") and biases 𝑏$
(") such that:

ℎ' = 𝑔(') 𝑏'
(') +𝑤','

(')𝑥' +𝑤',(
(')𝑥(

ℎ(= 𝑔(') 𝑏(
(') +𝑤(,'

(')𝑥' +𝑤(,(
(')𝑥(

𝑓 = 𝑔(() 𝑏'
(() +𝑤'

(()ℎ' +𝑤(
(()ℎ(

ℎ! ℎ&

𝑓

𝑥! 𝑥&

Flow diagrams

The important piece of information
shown in a flow diagram is the order of
computation. This flow diagram shows
that, given 𝑥' and 𝑥(,
• First, you calculate ℎ' and ℎ(,
• then you can calculate 𝑓. ℎ! ℎ&

𝑓

𝑥! 𝑥&

Outline

• Review: flow diagrams
• Gradient descent
• The chain rule of calculus
• Back-propagation

Gradient descent: basic idea
• Suppose we have a training token, 𝑥.
• Its target label is 𝑦.
• The neural net produces output 𝑓(𝑥), which is not 𝑦.
• The difference between 𝑦 and 𝑓(𝑥) is summarized by some loss

function, ℒ(𝑦, 𝑓(𝑥)).
• The output of the neural net is determined by some parameters, 𝑤$,&

(").
• Then we can improve the network by setting:

𝑤$,&
(") ← 𝑤$,&

(") − 𝜂
𝑑ℒ
𝑑𝑤$,&

(")

Gradient descent in a multi-layer neural net

Just like in linear regression, the MSE
loss is still a quadratic function of
𝑓(𝑥⃗) :

ℒ =
1
𝑛5
)*'

+

𝑓(𝑥⃗)) − 𝑦) (

… but now, 𝑓(𝑥⃗) is a complicated
nonlinear function of the weights.
Therefore, if we draw ℒ(𝑤), it’s no
longer a simple parabola.

𝑤

ℒ

Gradient descent in a multi-layer neural net
Even though ℒ(𝑤) is complicated, we
can still minimize it using gradient
descent:

𝑤 ← 𝑤 − 𝜂∇,ℒ

𝑤

ℒ

Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

• Review: flow diagrams
• Gradient descent
• The chain rule of calculus
• Back-propagation

Definition of gradient

The gradient is the vector of partial
derivatives:

∇,ℒ =

𝜕ℒ 𝑤
𝜕𝑤','

(')

⋮
𝜕ℒ 𝑤
𝜕𝑤',(

(')

⋮
𝜕ℒ 𝑤
𝜕𝑤',(

(-)

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Definition of partial derivative

The partial derivative of ℒ 𝑤 with
respect to 𝑤',(

(') is what we get if we
change 𝑤',(

(') to 𝑤',(
(') + 𝛿, while keeping

all of the other weights the same. If we
define ̂𝚤',(

' to be a vector that has a 1 in
the 𝑤',(

(') place, and zeros everywhere
else, then:

𝜕ℒ 𝑤
𝜕𝑤',(

(') = lim
.→0

ℒ 𝑤 + 𝛿 ̂𝚤',(
' − ℒ 𝑤
𝛿

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Lots of different partial derivatives

There are a lot of useful partial
derivatives we could compute. For
example:

• 1ℒ 3(")

13$
(") is the partial derivative of ℒ with

respect to ℎ'
((), while keeping all other

elements of the vector ℎ(() =
ℎ'
(()

ℎ(
(()

constant.

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

The chain rule of calculus

• ℒ depends on 𝑓, which depends on
𝑤',(
(').

• We can calculate 1ℒ ,
1,$,"

($) by “chaining”

(multiplying) the two partial derivatives
along the flow path:

𝜕ℒ 𝑤
𝜕𝑤',(

(') =
𝑑ℒ
𝜕𝑓 ?

𝜕𝑓 𝑤
𝜕𝑤',(

(')

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

More chain rule

• 𝑓 depends on ℎ'
('), which depends on

𝑤',(
(').

• We can calculate 14 ,
1,$,"

($) by chaining:

𝜕ℒ 𝑤
𝜕𝑤',(

(') =
𝑑ℒ
𝜕𝑓

?
𝜕𝑓 ℎ(')

𝜕ℎ'
(') ?

𝜕ℎ'
(') 𝑤
𝜕𝑤',(

(')

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

More chain rule

• 𝑓 depends on ℎ"
($) and ℎ$

($). Both ℎ"
($) and ℎ$

($)

depend on ℎ"
(").

• To apply the chain rule here, we need to sum
over both of the flow paths:

𝜕ℒ 𝑤

𝜕𝑤",$
(") =

𝑑ℒ
𝜕𝑓

(
𝜕𝑓 ℎ $

𝜕ℎ"
$ (

𝜕ℎ"
$ ℎ "

𝜕ℎ"
" (

𝜕ℎ"
" 𝑤

𝜕𝑤",$
"

+
𝑑ℒ
𝜕𝑓

(
𝜕𝑓 ℎ($)

𝜕ℎ$
($) (

𝜕ℎ$
($) ℎ(")

𝜕ℎ"
(") (

𝜕ℎ"
(") 𝑤

𝜕𝑤",$
(")

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Outline

• Review: flow diagrams
• Gradient descent
• The chain rule of calculus
• Back-propagation

Back-propagation

The key idea of back-propagation is to
calculate 1ℒ ,

1,&,'
(() , for every layer l, for every

pair of nodes j and k, as follows:
• Start at the output node.
• Apply the chain rule of calculus backward,

layer-by-layer, from the output node
backward toward the input.

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Back-propagation

• First, calculate 5ℒ
14

.

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Back-propagation

• First, calculate 5ℒ
14

.

• Second, calculate
𝜕ℒ ℎ (

𝜕ℎ'
(() =

𝑑ℒ
𝜕𝑓 ?

𝜕𝑓 ℎ (

𝜕ℎ'
(

… and …
𝜕ℒ ℎ (

𝜕ℎ(
(() =

𝑑ℒ
𝜕𝑓

?
𝜕𝑓 ℎ (

𝜕ℎ(
(

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Back-propagation

• Third, calculate

𝜕ℒ ℎ '

𝜕ℎ'
(') =5

$

𝜕ℒ ℎ (

𝜕ℎ$
(() ?

𝜕ℎ$
(() ℎ '

𝜕ℎ'
'

… and …
𝜕ℒ ℎ '

𝜕ℎ(
(') =5

$

𝜕ℒ ℎ (

𝜕ℎ$
(() ?

𝜕ℎ$
(() ℎ '

𝜕ℎ(
'

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Back-propagation

• Fourth, calculate

𝜕ℒ 𝑤
𝜕𝑤',(

(') =5
$

𝜕ℒ ℎ '

𝜕ℎ$
(') ?

𝜕ℎ$
(') 𝑤

𝜕𝑤',(
(')

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)

Back-propagation: splitting it up into excitation and
activation

• Activation to excitation: here, the derivative is pre-computed. For
example, if g=ReLU, then g’=unit step:

ℎ'
(() = ReLU 𝜉'

(() ⟹
𝜕ℎ'

(

𝜕𝜉'
(= 𝑢 𝜉'

(()

• Excitation to activation: here, the derivative is just the network weight!

𝜉'
(() = 𝑏'

(() +2
)

𝑤',)
(()ℎ)

((*") ⟹
𝜕𝜉'

(

𝜕ℎ)
((*") = 𝑤',)

(()

Back-propagation: splitting it up into excitation and
activation

• Excitation to network weight: here, the derivative is the previous
layer’s activation:

𝜉$
(") = 𝑏$

(") +5
&

𝑤$,&
(")ℎ&

("6') ⟹
𝜕𝜉$

"

𝜕𝑤$,&
(") = ℎ&

("6')

Finding the derivative

• Forward propagate, from 𝑥, to find
ℎ&
("6') in each layer

• Back-propagate, from 𝑦, to find 5ℒ
53&

(()

in each layer
• Multiply them to get 5ℒ

5,&'
((), then

𝑤$&
(") ← 𝑤$&

(") − 𝜂
𝑑ℒ
𝑑𝑤$&

(")
Layer 1

Layer 2

𝑥

ℎ&
(')

Layer 3

ℎ&
(()

ℎ&
(-)

𝑦

Loss 𝑑ℒ
𝑑ℎ!

(#)

𝑑ℒ
𝑑ℎ!

(%)

𝑑ℒ
𝑑ℎ!

(&)

Outline

• Review: flow diagrams
• Gradient descent

𝑤 ← 𝑤 − 𝜂∇,ℒ
• The chain rule of calculus

𝜕ℒ ℎ '

𝜕ℎ(
(') =5

$

𝜕ℒ ℎ (

𝜕ℎ$
(() ?

𝜕ℎ$
(() ℎ '

𝜕ℎ(
'

• Back-propagation
• Apply the chain rule of calculus backward, layer-by-layer, from the output

node backward toward the input.

