Lecture 11: Back-

 PropagationMark Hasegawa-Johnson

$$
2 / 2022
$$

License: CC-BY 4.0. You may remix or redistribute if you cite the source.

Outline

- Review: flow diagrams
- Gradient descent
- The chain rule of calculus
- Back-propagation

Flow diagrams

A flow diagram is a way to represent the computations performed by a neural network.

- Circles, a.k.a. "nodes," a.k.a. "neurons," represent scalar operations.
- The circles above x_{1} and x_{2} represent the scalar operation of "read this datum in from the dataset."
- The circles labeled h_{1} and h_{1} represent the scalar operation of "unit step function."
- Lines represent multiplication by a scalar.
- Where arrowheads come together, the corresponding variables are added.

Flow diagrams

Usually, a flow diagram shows only the activations (including inputs).
Excitations, weights, biases, and nonlinearities are implicit. For example, this flow diagram means that there are some nonlinearities $g^{(l)}$, and some weights $w_{j, k}^{(l)}$ and biases $b_{j}^{(l)}$ such that:

$$
\begin{aligned}
& h_{1}=g^{(1)}\left(b_{1}^{(1)}+w_{1,1}^{(1)} x_{1}+w_{1,2}^{(1)} x_{2}\right) \\
& h_{2}=g^{(1)}\left(b_{2}^{(1)}+w_{2,1}^{(1)} x_{1}+w_{2,2}^{(1)} x_{2}\right) \\
& f=g^{(2)}\left(b_{1}^{(2)}+w_{1}^{(2)} h_{1}+w_{2}^{(2)} h_{2}\right)
\end{aligned}
$$

Flow diagrams

The important piece of information shown in a flow diagram is the order of computation. This flow diagram shows that, given x_{1} and x_{2},

- First, you calculate h_{1} and h_{2},
- then you can calculate f.

Outline

- Review: flow diagrams
- Gradient descent
- The chain rule of calculus
- Back-propagation

Gradient descent: basic idea

- Suppose we have a training token, x.
- Its target label is y.
- The neural net produces output $f(x)$, which is not y.
- The difference between y and $f(x)$ is summarized by some loss function, $\mathcal{L}(y, f(x))$.
- The output of the neural net is determined by some parameters, $w_{j, k}^{(l)}$.
- Then we can improve the network by setting:

$$
w_{j, k}^{(l)} \leftarrow w_{j, k}^{(l)}-\eta \frac{d \mathcal{L}}{d w_{j, k}^{(l)}}
$$

Gradient descent in a multi-layer neural net

Just like in linear regression, the MSE loss is still a quadratic function of $f(\vec{x})$:

$$
\mathcal{L}=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\vec{x}_{i}\right)-y_{i}\right)^{2}
$$

... but now, $f(\vec{x})$ is a complicated nonlinear function of the weights. Therefore, if we draw $\mathcal{L}(w)$, it's no longer a simple parabola.

Gradient descent in a multi-layer neural net

Even though $\mathcal{L}(w)$ is complicated, we can still minimize it using gradient descent:

$$
\vec{w} \leftarrow \vec{w}-\eta \nabla_{\vec{w}} \mathcal{L}
$$

Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

- Review: flow diagrams
- Gradient descent
- The chain rule of calculus
- Back-propagation

Definition of gradient

The gradient is the vector of partial derivatives:

$$
\nabla_{\vec{w}} \mathcal{L}=\left[\begin{array}{c}
\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,1}^{(1)}} \\
\vdots \\
\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(1)}} \\
\vdots \\
\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(3)}}
\end{array}\right]
$$

Definition of partial derivative

 The partial derivative of $\mathcal{L}(\vec{w})$ with respect to $w_{1,2}^{(1)}$ is what we get if we change $w_{1,2}^{(1)}$ to $w_{1,2}^{(1)}+\delta$, while keeping all of the other weights the same. If we define $\hat{l}_{1,2}^{(1)}$ to be a vector that has a 1 in the $w_{1,2}^{(1)}$ place, and zeros everywhere else, then:$$
\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(1)}}=\lim _{\delta \rightarrow 0} \frac{\mathcal{L}\left(\vec{w}+\delta \hat{\imath}_{1,2}^{(1)}\right)-\mathcal{L}(\vec{w})}{\delta}
$$

Lots of different partial derivatives f

There are a lot of useful partial derivatives we could compute. For example:

- $\frac{\partial \mathcal{L}\left(\vec{h}^{(2)}\right)}{\partial h_{1}^{(2)}}$ is the partial derivative of \mathcal{L} with respect to $h_{1}^{(2)}$, while keeping all other elements of the vector $\vec{h}^{(2)}=\left[\begin{array}{l}h_{1}^{(2)} \\ h_{2}^{(2)}\end{array}\right]$ constant.

The chain rule of calculus

- \mathcal{L} depends on f, which depends on $w_{1,2}^{(1)}$.
- We can calculate $\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(1)}}$ by "chaining" (multiplying) the two partial derivatives along the flow path:

$$
\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(1)}}=\frac{d \mathcal{L}}{\partial f} \cdot \frac{\partial f(\vec{w})}{\partial w_{1,2}^{(1)}}
$$

More chain rule

- f depends on $h_{1}^{(1)}$, which depends on $w_{1,2}^{(1)}$.
- We can calculate $\frac{\partial f(\vec{w})}{\partial w_{1,2}^{(1)}}$ by chaining:

$$
\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(1)}}=\frac{d \mathcal{L}}{\partial f} \cdot \frac{\partial f\left(\vec{h}^{(1)}\right)}{\partial h_{1}^{(1)}} \cdot \frac{\partial h_{1}^{(1)}(\vec{w})}{\partial w_{1,2}^{(1)}}
$$

More chain rule

- f depends on $h_{1}^{(2)}$ and $h_{2}^{(2)}$. Both $h_{1}^{(2)}$ and $h_{2}^{(2)}$ depend on $h_{1}^{(1)}$.
- To apply the chain rule here, we need to sum over both of the flow paths:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(1)}}=\frac{d \mathcal{L}}{\partial f} \cdot \frac{\partial f\left(\vec{h}^{(2)}\right)}{\partial h_{1}^{(2)}} \cdot \frac{\partial h_{1}^{(2)}\left(\vec{h}^{(1)}\right)}{\partial h_{1}^{(1)}} \cdot \frac{\partial h_{1}^{(1)}(\vec{w})}{\partial w_{1,2}^{(1)}} \\
& \quad+\frac{\partial \mathcal{L}}{\partial f} \cdot \frac{\partial f\left(\vec{h}^{(2)}\right)}{\partial h_{2}^{(2)}} \cdot \frac{\partial h_{2}^{(2)}\left(\vec{h}^{(1)}\right)}{\partial h_{1}^{(1)}} \cdot \frac{\partial h_{1}^{(1)}(\vec{w})}{\partial w_{1,2}^{(1)}}
\end{aligned}
$$

Outline

- Review: flow diagrams
- Gradient descent
- The chain rule of calculus
- Back-propagation

Back-propagation

The key idea of back-propagation is to calculate $\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{j, k}^{(l)}}$, for every layer I, for every pair of nodes j and k , as follows:

- Start at the output node.
- Apply the chain rule of calculus backward, layer-by-layer, from the output node backward toward the input.

Back-propagation

- First, calculate $\frac{d \mathcal{L}}{\partial f}$.

Back-propagation

- First, calculate $\frac{d \mathcal{L}}{\partial f}$.
- Second, calculate

$$
\frac{\partial \mathcal{L}\left(\vec{h}^{(2)}\right)}{\partial h_{1}^{(2)}}=\frac{d \mathcal{L}}{\partial f} \cdot \frac{\partial f\left(\vec{h}^{(2)}\right)}{\partial h_{1}^{(2)}}
$$

... and ...

$$
\frac{\partial \mathcal{L}\left(\vec{h}^{(2)}\right)}{\partial h_{2}^{(2)}}=\frac{d \mathcal{L}}{\partial f} \cdot \frac{\partial f\left(\vec{h}^{(2)}\right)}{\partial h_{2}^{(2)}}
$$

Back-propagation

- Third, calculate

$$
\frac{\partial \mathcal{L}\left(\vec{h}^{(1)}\right)}{\partial h_{1}^{(1)}}=\sum_{j} \frac{\partial \mathcal{L}\left(\vec{h}^{(2)}\right)}{\partial h_{j}^{(2)}} \cdot \frac{\partial h_{j}^{(2)}\left(\vec{h}^{(1)}\right)}{\partial h_{1}^{(1)}}
$$

... and ...

$$
\frac{\partial \mathcal{L}\left(\vec{h}^{(1)}\right)}{\partial h_{2}^{(1)}}=\sum_{j} \frac{\partial \mathcal{L}\left(\vec{h}^{(2)}\right)}{\partial h_{j}^{(2)}} \cdot \frac{\partial h_{j}^{(2)}\left(\vec{h}^{(1)}\right)}{\partial h_{2}^{(1)}}
$$

Back-propagation

- Fourth, calculate

$$
\frac{\partial \mathcal{L}(\vec{w})}{\partial w_{1,2}^{(1)}}=\sum_{j} \frac{\partial \mathcal{L}\left(\vec{h}^{(1)}\right)}{\partial h_{j}^{(1)}} \cdot \frac{\partial h_{j}^{(1)}(\vec{w})}{\partial w_{1,2}^{(1)}}
$$

Back-propagation: splitting it up into excitation and activation

- Activation to excitation: here, the derivative is pre-computed. For example, if $g=R e L U$, then $g^{\prime}=u n i t ~ s t e p:$

$$
h_{j}^{(l)}=\operatorname{ReLU}\left(\xi_{j}^{(l)}\right) \Rightarrow \frac{\partial h_{j}^{(l)}}{\partial \xi_{j}^{(l)}}=u\left(\xi_{j}^{(l)}\right)
$$

- Excitation to activation: here, the derivative is just the network weight!

$$
\xi_{j}^{(l)}=b_{j}^{(l)}+\sum_{k} w_{j, k}^{(l)} h_{k}^{(l-1)} \Rightarrow \frac{\partial \xi_{j}^{(l)}}{\partial h_{k}^{(l-1)}}=w_{j, k}^{(l)}
$$

Back-propagation: splitting it up into excitation and activation

- Excitation to network weight: here, the derivative is the previous layer's activation:

$$
\xi_{j}^{(l)}=b_{j}^{(l)}+\sum_{k} w_{j, k}^{(l)} h_{k}^{(l-1)} \Rightarrow \frac{\partial \xi_{j}^{(l)}}{\partial w_{j, k}^{(l)}}=h_{k}^{(l-1)}
$$

Finding the derivative

- Forward propagate, from x, to find $h_{k}^{(l-1)}$ in each layer
- Back-propagate, from y, to find $\frac{d \mathcal{L}}{d h_{j}^{(l)}}$ in each layer
- Multiply them to get $\frac{d \mathcal{L}}{d w_{j k}^{(l)}}$, then

$$
w_{j k}^{(l)} \leftarrow w_{j k}^{(l)}-\eta \frac{d \mathcal{L}}{d w_{j k}^{(l)}}
$$

Outline

- Review: flow diagrams
- Gradient descent

$$
\vec{w} \leftarrow \vec{w}-\eta \nabla_{\vec{w}} \mathcal{L}
$$

- The chain rule of calculus

$$
\frac{\partial \mathcal{L}\left(\vec{h}^{(1)}\right)}{\partial h_{2}^{(1)}}=\sum_{j} \frac{\partial \mathcal{L}\left(\vec{h}^{(2)}\right)}{\partial h_{j}^{(2)}} \cdot \frac{\partial h_{j}^{(2)}\left(\vec{h}^{(1)}\right)}{\partial h_{2}^{(1)}}
$$

- Back-propagation
- Apply the chain rule of calculus backward, layer-by-layer, from the output node backward toward the input.

