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Outline

• Review: flow diagrams
• Gradient descent
• The chain rule of calculus
• Back-propagation



Flow diagrams

A flow diagram is a way to represent the 
computations performed by a neural 
network.
• Circles, a.k.a. “nodes,” a.k.a. “neurons,” 

represent scalar operations.
• The circles above 𝑥! and 𝑥" represent the 

scalar operation of “read this datum in from 
the dataset.”

• The circles labeled ℎ! and ℎ! represent the 
scalar operation of “unit step function.”

• Lines represent multiplication by a scalar.
• Where arrowheads come together, the 

corresponding variables are added.
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Flow diagrams

Usually, a flow diagram shows only the 
activations (including inputs).   
Excitations, weights, biases, and 
nonlinearities are implicit.  For example,  
this flow diagram means that there are 
some nonlinearities 𝑔("), and some 
weights 𝑤$,&

(") and biases 𝑏$
(") such that:
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Flow diagrams

The important piece of information 
shown in a flow diagram is the order of 
computation.  This flow diagram shows 
that, given 𝑥' and 𝑥(,
• First, you calculate ℎ' and ℎ(,
• then you can calculate 𝑓. ℎ! ℎ&
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Gradient descent: basic idea
• Suppose we have a training token, 𝑥.  
• Its target label is 𝑦.
• The neural net produces output 𝑓(𝑥), which is not 𝑦.
• The difference between 𝑦 and 𝑓(𝑥) is summarized by some loss 

function, ℒ(𝑦, 𝑓(𝑥)).
• The output of the neural net is determined by some parameters, 𝑤$,&

(").
• Then we can improve the network by setting:
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Gradient descent in a multi-layer neural net

Just like in linear regression, the MSE 
loss is still a quadratic function of 
𝑓(𝑥⃗) : 

ℒ =
1
𝑛5
)*'

+

𝑓(𝑥⃗)) − 𝑦) (

… but now, 𝑓(𝑥⃗) is a complicated 
nonlinear function of the weights.  
Therefore, if we draw ℒ(𝑤), it’s no 
longer a simple parabola.
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Gradient descent in a multi-layer neural net
Even though ℒ(𝑤) is complicated, we 
can still minimize it using gradient 
descent:

𝑤 ← 𝑤 − 𝜂∇,ℒ

𝑤

ℒ



Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Definition of gradient

The gradient is the vector of partial 
derivatives:
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Definition of partial derivative

The partial derivative of ℒ 𝑤 with 
respect to 𝑤',(

(') is what we get if we 
change 𝑤',(

(') to 𝑤',(
(') + 𝛿, while keeping 

all of the other weights the same.  If we 
define ̂𝚤',(

' to be a vector that has a 1 in 
the 𝑤',(

(') place, and zeros everywhere 
else, then:
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Lots of different partial derivatives

There are a lot of useful partial 
derivatives we could compute.  For 
example:

• 1ℒ 3(")

13$
(") is the partial derivative of ℒ with 

respect to ℎ'
((), while keeping all other 

elements of the vector ℎ(() =
ℎ'
(()

ℎ(
(()

constant.
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The chain rule of calculus

• ℒ depends on 𝑓, which depends on 
𝑤',(
(').  

• We can calculate 1ℒ ,
1,$,"

($) by “chaining” 

(multiplying) the two partial derivatives 
along the flow path:

𝜕ℒ 𝑤
𝜕𝑤',(

(') =
𝑑ℒ
𝜕𝑓 ?

𝜕𝑓 𝑤
𝜕𝑤',(

(')

𝑓

𝑥! 𝑥&

ℎ!
(!) ℎ&

(!)

ℎ!
(&) ℎ&

(&)

𝑤!,&
(!)



More chain rule

• 𝑓 depends on ℎ'
('), which depends on

𝑤',(
(').

• We can calculate 14 ,
1,$,"

($) by chaining:
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More chain rule

• 𝑓 depends on ℎ"
($) and ℎ$

($).  Both ℎ"
($) and ℎ$

($)

depend on  ℎ"
(").

• To apply the chain rule here, we need to sum 
over both of the flow paths:
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Back-propagation

The key idea of back-propagation is to 
calculate 1ℒ ,

1,&,'
(() , for every layer l, for every 

pair of nodes j and k, as follows:
• Start at the output node.
• Apply the chain rule of calculus backward, 

layer-by-layer, from the output node 
backward toward the input.
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Back-propagation

• First, calculate 5ℒ
14

. 
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Back-propagation

• First, calculate 5ℒ
14

.

• Second, calculate
𝜕ℒ ℎ (
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Back-propagation

• Third, calculate
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Back-propagation

• Fourth, calculate
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Back-propagation: splitting it up into excitation and 
activation

• Activation to excitation: here, the derivative is pre-computed.  For 
example, if g=ReLU, then g’=unit step:
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• Excitation to activation: here, the derivative is just the network weight!
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Back-propagation: splitting it up into excitation and 
activation

• Excitation to network weight: here, the derivative is the previous 
layer’s activation:
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Finding the derivative

• Forward propagate, from 𝑥, to find 
ℎ&
("6') in each layer

• Back-propagate, from 𝑦, to find 5ℒ
53&
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in each layer
• Multiply them to get 5ℒ
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• Back-propagation
• Apply the chain rule of calculus backward, layer-by-layer, from the output 

node backward toward the input.


