Lecture 11: Back-
Propagation

Mark Hasegawa-Johnson
2/2022

License: CC-BY 4.0. You may remix or redistribute
if you cite the source.

Outline

* Review: flow diagrams

e Gradient descent
* The chain rule of calculus

* Back-propagation

Flow diagrams

A flow diagram is a way to represent the
computations performed by a neural
network.

* Circles, a.k.a. “nodes,” a.k.a. “neurons,”
represent scalar operations.

* The circles above x; and x, represent the

scalar operation of “read this datum in from
the dataset.”

* The circles labeled h; and h; represent the
scalar operation of “unit step function.”

* Lines represent multiplication by a scalar.

* Where arrowheads come together, the
corresponding variables are added.

v

Flow diagrams

Usually, a flow diagram shows only the
activations (including inputs).
Excitations, weights, biases, and
nonlinearities are implicit. For example,
this flow diagram means that there are

some nonlinearities gV, and some

weights W](Q and biases bj(l) such that:
hy = g (bfl) + Wl(’ll)xl + W1(’12)X2)
hy = g (bél) twyy o + Wz(,lz)xz)

£ = 9@ (52 + wPhy + W,

L/

[

Flow diagrams

The important piece of information
shown in a flow diagram is the order of
computation. This flow diagram shows
that, given x1 and x5,

* First, you calculate h; and h,,

* then you can calculate f.

Outline

e Gradient descent
* The chain rule of calculus

* Back-propagation

Gradient descent: basic idea

* Suppose we have a training token, x.

* |ts target label is y.

* The neural net produces output f(x), which is not y.

* The difference between y and f (x) is summarized by some loss
function, L(y, f (x)).

* The output of the neural net is determined by some parameters, W](Q

* Then we can improve the network by setting:

dr
O)
W, — Wy —N——x
ik ik 0
de,k

Gradient descent in a multi-layer neural net

L
Just like in linear regression, the MSE !
loss is still a quadratic function of

Fo:
1
L= E;(f(fi) ~)2

.. but now, f(x) is a complicated
nonlinear function of the weights.
Therefore, if we draw L(w), it’s no
longer a simple parabola.

Gradient descent in a multi-layer neural net
Even though L(w) is complicated, we L
can still minimize it using gradient
descent:
Wew—nVpL

Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

* The chain rule of calculus
* Back-propagation

Definition of gradient

The gradient is the vector of partial
derivatives:

[AL(W)

(1)
0W1,1

ILGW)

(1)
6‘W1,2

ILGW)

(3)
_GWLZ |

Definition of partial derivative

The partial derivative of L(W) with

respect to Wl(lz) is what we get if we

change W(,lz) to Wl(’lz) + 6, while keeping

all of the other weights the same. If we

define 2512) to be a vector that hasa 1lin

1
the Wl(2) place, and zeros everywhere

else, then:
oc@w) L (v—v’ + 5282)) — L(W)
D = lim
an,Z 0-0 o)

Lots of different partial derivatives a

There are a lot of useful partial
derivatives we could compute. For
example: @ @
h(2)
. % is the partial derivative of L with > 4
1
respect to h(z), while keeping all other
R L Y s
elements of the vector h(?) = %2)
h, > 4

constant.

The chain rule of calculus

* L depends on f, which depends on

(1)
W1’2 .
0L % “ R ”
* We can caIcuIate% by “chaining
6w1’2

(multiplying) the two partial derivatives
along the flow path:

oL(w) B dL of(w)
6W1(,12) of awl(’lz)

More chain rule

* f depends on h(l), which depends on

(1)
Wiy

of W)

(1)
6w1’2

* We can calculate by chaining:

oLw) dL af(h™) an{w)
awl(}; af 6‘h§1) awl(’lz)

>
A/

S
EAS

More chain rule

* f depends on h§2) and hgz). Both h§2) and hgz)
depend on hgl).

* To apply the chain rule here, we need to sum
over both of the flow paths:

oLw) dL af(A®) anP(h®) anl” W)

ows) of 9n® P aw®
L 4L of(R) on? (h®) an"w)
of on® onlY owly

v@
./

Dw .
Al

Outline

* Back-propagation

Back-propagation

The key idea of back-propagation is to

oL(w
calculate ﬁ, for every layer |, for every
w

Jk
pair of nodes j and k, as follows:
e Start at the output node.

* Apply the chain rule of calculus backward,
layer-by-layer, from the output node
backward toward the input.

&
X/

Dw .
Al

Back-propagation

. dL
First, calculate TR

Back-propagation
. dL
* First, calculate FTR
» Second, calculate
oL(h®) dr of(h®)

on® of gp®
..and ...
oL(h®) dr of(h®)

on® of anl?

&
X/

Dw .
Al

Back-propagation

* Third, calculate

0L(RY) _ 5 2L(R®) oh® (RW)
J

(1) (2) (1)
...and ...
oL(hW) z oL(A@) 9P (RW)
O @ 1)

&
X/

Dw .
Al

Back-propagation a

* Fourth, calculate
OL(W) z aL(hM) ohtV (W)

P o B
@&@

Back-propagation: splitting it up into excitation and
activation

 Activation to excitation: here, the derivative is pre-computed. For
example, if g=RelLU, then g’=unit step:

10 = Rt () = 25 < u 1)
]

 Excitation to activation: here, the derivative is just the network weight!

O () OGS 6‘5@ ()

— - J

fj — bj + z Wik My, — gp—D ~ Wik
K k

Back-propagation: splitting it up into excitation and
activation

* Excitation to network weight: here, the derivative is the previous
layer’s activation:

O _ O Wy 95"

— - N J

§j” = b +sz,khk =
k Wj,k

_ h}({l—l)

Finding the derivative

. Folrward propagate, from x, to find ! :
h},(c U in each layer
dL

* Back-propagate, from y, to find —z; 2) dL
dh; hk dh®
in each layer
* Multiply them to get - (z): then
]k

adr
(l) O
Wi < Wy =1 PO

Outline

* Review: flow diagrams

e Gradient descent
Wew—nVyL
e The chain rule of calculus
aL(RD) Z aL(h<2>) 0h(2) (R™)
h(l) h(z) h(l)

* Back-propagation
* Apply the chain rule of calculus backward, layer-by-layer, from the output
node backward toward the input.

