
Lecture 9: Two-Layer
Neural Nets

Mark Hasegawa-Johnson
2/2022

License: CC-BY 4.0. You may remix or redistribute
if you cite the source.

ℎ!
(#)

ℎ!
(%) ℎ&

(!) ℎ'
(%) 1…

ℎ&
(#) ℎ(

(#)

1

1

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• Forward-propagation example

Biological Inspiration: McCulloch-Pitts
Artificial Neuron, 1943

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: u(w×x)

• In 1943, McCulloch & Pitts
proposed that biological neurons
have a nonlinear activation
function (a step function) whose
input is a weighted linear
combination of the currents
generated by other neurons.
• They showed lots of examples of

mathematical and logical
functions that could be computed
using networks of simple neurons
like this.

Biological Inspiration: Neuronal Circuits

• Even the simplest actions
involve more than one neuron,
acting in sequence in a neuronal
circuit.
• One of the simplest neuronal

circuits is a reflex arc, which may
contain just two neurons:
• The sensor neuron detects a

stimulus, and communicates an
electrical signal to …

• The motor neuron, which
activates the muscle.

Illustration of a reflex arc: sensor neuron sends a voltage spike to the
spinal column, where the resulting current causes a spike in a motor

neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

A McCulloch-Pitts Neuron can compute some logical functions…
When the features are binary (𝑥! ∈
{0,1}), many (but not all!) binary
functions can be re-written as linear
functions. For example, the function

𝑓 �⃗� = (𝑥" ∨ 𝑥#)
can be re-written as

𝑓 �⃗� = 𝑢 𝑥" + 𝑥# − 0.5

𝑥!

𝑥&

Similarly, the function
𝑓 �⃗� = (𝑥" ∧ 𝑥#)

can be re-written as
𝑓 �⃗� = 𝑢 𝑥" + 𝑥# − 1.5

𝑥!

𝑥&

… but not all.
“A linear classifier cannot learn an

XOR function.”
- Minsky & Papert, 1969

• …but a two-layer neural net can
compute an XOR function!

𝑥!

𝑥&

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• Forward-propagation example

Example: one way (of many possible ways) to represent
the XOR function using a two-layer neural network

For example, consider the XOR problem.

Suppose we create two hidden nodes:

ℎ" �⃗� = 𝑢 0.5 − 𝑥" − 𝑥#
ℎ# �⃗� = 𝑢 𝑥" + 𝑥# − 1.5

Then the XOR function 𝑓 �⃗� = (𝑥"⊕

𝑥#) is given by 𝑓 �⃗� = ¬(𝑥" ∨ 𝑥#). For

example, we could write this as:

𝑓 �⃗� = 𝑢 0.5 − ℎ" 𝑥 − ℎ# 𝑥

𝑥!

𝑥& ℎ! �⃗� = 1 up
in this region

ℎ" �⃗� = 1 down
in this region

Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥!

𝑥&

Flow diagrams

Suppose we create two hidden nodes:

ℎ& �⃗� = 𝑢 0.5 − 𝑥& − 𝑥'
ℎ' �⃗� = 𝑢 𝑥& + 𝑥' − 1.5

Here is a flow diagram for this computation:
𝑥!

𝑥& ℎ! �⃗� = 1 up
in this region

ℎ" �⃗� = 1 down
in this region

Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1
1 0.5

−1.5

ℎ!(�⃗�) ℎ&(�⃗�)

Flow diagrams

A flow diagram is a way to represent the
computations performed by a neural
network.
• Circles, a.k.a. “nodes,” a.k.a. “neurons,”

represent scalar operations.
• The circles above 𝑥! and 𝑥" represent the

scalar operation of “read this datum in from
the dataset.”

• The circles labeled ℎ! and ℎ! represent the
scalar operation of “unit step function.”

• Lines represent multiplication by a scalar.
• Where arrowheads come together, the

corresponding variables are added.

𝑥!

𝑥& ℎ# = 1

ℎ" = 1
Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&

Flow diagrams

It’s often useful to distinguish two types
of hidden variables at each neuron:
• The neural excitation, 𝜉!, is the result of

adding together all of the inputs to the
neuron.
• The neural activation, ℎ!, is the result of

passing 𝜉! through a scalar nonlinearity.

𝑥!

𝑥& ℎ# = 1

ℎ" = 1
Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&

Flow diagrams

So in this flow diagram, for example, we
can see that:

𝜉" = 0.5 − 1 8 𝑥" − 1 8 𝑥#
𝜉# = −1.5 + 1 8 𝑥" + 1 8 𝑥#

… and then …
ℎ" = 𝑢 𝜉"
ℎ# = 𝑢 𝜉#

… where 𝑢 8 is the unit step function.

𝑥!

𝑥& ℎ# = 1

ℎ" = 1
Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&

Flow diagrams

Now suppose that we want to compute

𝑓 �⃗� = (𝑥"⊕𝑥#). We could write this

as:

𝑓 �⃗� = 𝑢 0.5 − ℎ" − ℎ#
𝑥!

𝑥&

Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥!

𝑥&

ℎ" = 1

ℎ# = 1

Flow diagrams

We can write the XOR function as:
𝜉$ = 0.5 − 1 8 ℎ" − 1 8 ℎ#

𝑓 �⃗� = 𝑢 𝜉$

𝑥! 𝑥& 1

−1
−1

1
1

0.5

−1.5

ℎ! ℎ&
1−1 −1 0.5

𝑓

Flow diagrams

Putting it all together:
𝜉" = 0.5 − 1 8 𝑥" − 1 8 𝑥#
𝜉# = −1.5 + 1 8 𝑥" + 1 8 𝑥#

ℎ" = 𝑢 𝜉"
ℎ# = 𝑢 𝜉#

𝜉$ = 0.5 − 1 8 ℎ" − 1 8 ℎ#

𝑓 �⃗� = 𝑢 𝜉$

𝑥! 𝑥& 1

−1
−1

1
1

0.5

−1.5

ℎ! ℎ&
1−1 −1 0.5

𝑓

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• Forward-propagation example

Multi-layer neural net

• 𝜉!
(&) = excitation of the jth neuron (a.k.a. “node”) in the lth layer
• Computed by adding together inputs from many other neurons, each

weighted by a corresponding connection strength or connection weight, 𝑤!,#
(%)

• ℎ!
(&) = activation of the jth node in the lth layer
• This is computed by just passing the excitation through a scalar nonlinear

activation function, thus ℎ!
(%) = 𝑔(𝜉!

%). The activation functions in different
layers differ, so to be pedantic, sometimes we’ll write ℎ!

(%) = 𝑔(%) 𝜉!
(%) .

Multi-layer neural net

Given: some training token �⃗� = [𝑥", … , 𝑥(, 1]) and its target label 𝑦
1. Initialize: ℎ*

(+) = 𝑥*
2. Forward propagate: for 𝑙 ∈ 1,… , 𝐿 :

a. Compute the excitations as weighted sums of the previous-layer activations:

𝜉!
(%) = 𝑏!

(%) +5
#

𝑤!,#
(%)ℎ#

(%'()

b. Compute the activations by applying scalar nonlinearities:
ℎ!
(%) = 𝑔(%) 𝜉!

(%)

3. Output: 𝑃(𝑌 = 𝑘|𝑥) = ℎ*
(,)

Forward propagation

• From activation to excitation is a
matrix multiply:

𝜉!
(&) = 𝑏!

(&) +D
*

𝑤!,*
(&)ℎ*

(&.")

• From excitation to activation is a scalar
nonlinearity:

ℎ!
(&) = 𝑔(&) 𝜉!

(&)

1
ℎ"
(&.") ℎ#

(&.") ℎ/
(&.")…

𝜉"
(&) 𝜉#

(&) 𝜉0
(&)…

ℎ"
(&) ℎ#

(&) ℎ0
(&)…

𝑔(&) 𝑔(&) 𝑔(&)

Forward propagation: Matrix multiply
From activation to excitation is a matrix
multiply:

𝜉()) = 𝑊())ℎ()+&)

…where…

𝜉()) =
𝜉&
())

⋮
𝜉,
())

, ℎ()+&) =

ℎ&
()+&)

⋮
ℎ-
()+&)

1

,

𝑊()) =
𝑤&,&
()) ⋯ 𝑤&,-

())

⋮ ⋱ ⋮
𝑤,,&
()) ⋯ 𝑤,,-

())

𝑏&
())

⋮
𝑏,
())

1
ℎ"
(&.") ℎ#

(&.") ℎ/
(&.")…

𝜉"
(&) 𝜉#

(&) 𝜉0
(&)…

ℎ"
(&) ℎ#

(&) ℎ0
(&)…

𝑔(&) 𝑔(&) 𝑔(&)

Forward propagation

From excitation to activation is a scalar
nonlinearity:

ℎ!
(&) = 𝑔(&) 𝜉!

(&)

What type of nonlinearity?
Answer: it depends on what task you
want your neural net to learn.

1
ℎ"
(&.") ℎ#

(&.") ℎ/
(&.")…

𝜉"
(&) 𝜉#

(&) 𝜉0
(&)…

ℎ"
(&) ℎ#

(&) ℎ0
(&)…

𝑔(&) 𝑔(&) 𝑔(&)

Activation functions
The “activation function,” 𝑔(&) 8 , can be any scalar
nonlinearity. Common ones that you should know
include the unit step and signum functions, and:
Logistic Sigmoid:

𝜎 𝛽 =
1

1 + 𝑒.1
Hyperbolic Tangent (tanh):

tanh 𝛽 =
𝑒1 − 𝑒.1

𝑒1 + 𝑒.1

Rectified Linear Unit (ReLU):
ReLU 𝛽 = max 0, 𝛽

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• Forward-propagation example

Example: Square smiley

• Input: �⃗� = [𝑥&, 𝑥', 1]/

• Output: 𝑓 �⃗� = [𝑅, 𝐺, 𝐵]/

Remember that yellow = red + green,
so we just need to compute 𝑅, 𝐺, 𝐵
as functions of 𝑥& and 𝑥'.

This could be done using a two-layer
network, but I it’s easier using a
three-layer network, so let’s do it
that way.

𝑥!

𝑥&

Layer 1

In layer 1, let’s find all the
different ways in which we need
to bisect the image plane:

ℎ"
(") = sign 𝑥" − 0.5

⋮
ℎ"$
(") = sign 𝑥# − 1.5

ℎ!
ℎ&

ℎ6

ℎ7

ℎ8

ℎ9

ℎ:
ℎ;ℎ<

ℎ!%
ℎ!!ℎ!&

ℎ!6

Layer 1

In layer 1, let’s find all the
different ways in which we need
to bisect the image plane:

ℎ"
(") = sign 𝑥" − 0.5

⋮
ℎ"$
(") = sign 𝑥# − 1.5

1𝑥" 𝑥#

ℎ"
(") ℎ"$

(")…

−0.5 −1.51
1

Layer 2

In layer 2, let’s compute rectangles of solid
color. We can compute those using logical
operations:

ℎ"
(#) = ℎ"

(") ∧ ¬ℎ#
" ∧ ℎ2

" ∧ ¬ℎ"$
"

⋮
ℎ"#
(#) = ℎ3

(") ∧ ¬ℎ4
" ∧ ℎ2

" ∧ ¬ℎ"$
"

ℎ(
(()

ℎ)
(() ℎ*

(()

ℎ+
(()

ℎ,
(()

ℎ(-
(()

ℎ()
())

ℎ(
())

Layer 2

… and then convert the logical operations into
linear functions:

ℎ"
(#) = u ℎ"

(") − ℎ#
" + ℎ2

" − ℎ"$
" − 3.5

⋮
ℎ"#
(#) = u ℎ3

(") − ℎ4
" + ℎ2

" − ℎ"$
" − 3.5

ℎ(
(()

ℎ)
(() ℎ*

(()

ℎ+
(()

ℎ,
(()

ℎ(-
(()

ℎ()
())

ℎ(
())

Layer 2

1𝑥" 𝑥#

ℎ"
(") ℎ"$

(")…

−0.5 −1.51
1

In layer 2, let’s compute rectangles of solid
color:

ℎ"
(#) = u ℎ"

(") − ℎ#
" + ℎ2

" − ℎ"$
" − 3.5

⋮
ℎ"#
(#) = u ℎ3

(") − ℎ4
" + ℎ2

" − ℎ"$
" − 3.5

1

ℎ"
(#) ℎ"#

(#)…

−3.5 −3.5
1

−1
−1

Layer 3

In layer 3, let’s compute the red, green, and blue
regions using the inclusive-OR of these rectangles:

𝑅 = ℎ"
(#) ∨ ℎ#

∨ ℎ$
∨ ℎ5

#

∨ ℎ3
∨ ℎ4

∨ ℎ2
∨ ℎ6

∨ ℎ""
∨ ℎ"#

#

𝐺 = ℎ"
(#) ∨ ℎ#

∨ ℎ3
∨ ℎ2

∨ ℎ6
∨ ℎ""

∨ ℎ"#
#

𝐵 = ℎ7
(#) ∨ ℎ"+

#

ℎ()
())

ℎ(
())

ℎ.
()) ℎ/

()) ℎ(0
())

ℎ)
())

Layer 3

In layer 3, let’s compute the red, green, and blue
regions using the inclusive-OR of these rectangles:

𝑅 = 𝑢
ℎ&
(') + ℎ'

' + ℎ5
' + ℎ6

' + ℎ7
'

+ℎ8
' + ℎ9

' + ℎ:
' + ℎ&&

' + ℎ&'
' − 0.5

𝐺 = 𝑢
ℎ&
(') + ℎ'

' + ℎ7
' + ℎ9

' + ℎ:
' +

ℎ&&
' + ℎ&'

' − 0.5

𝐵 = u ℎ;
(') + ℎ&<

' − 0.5

ℎ()
())

ℎ(
())

ℎ.
()) ℎ/

()) ℎ(0
())

ℎ)
())

Layer 3

In layer 3, let’s compute the red, green, and blue
regions using the inclusive-OR of these rectangles:

𝑅 = 𝑢
ℎ&
(') + ℎ'

' + ℎ5
' + ℎ6

' + ℎ7
'

+ℎ8
' + ℎ9

' + ℎ:
' + ℎ&&

' + ℎ&'
' − 0.5

𝐺 = 𝑢
ℎ&
(') + ℎ'

' + ℎ7
' + ℎ9

' + ℎ:
' +

ℎ&&
' + ℎ&'

' − 0.5

𝐵 = u ℎ;
(') + ℎ&<

' − 0.5

1𝑥" 𝑥#

ℎ"
(") ℎ"$

(")…

−0.5 −1.51
1

1

ℎ"
(#) ℎ"#

(#)…

−3.5 −3.5
1

−1
−1

𝑅 𝐵
−0.5

−0.5
1

1
1

1

𝐺
−0.5

1

Summary

• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem: if 𝑥" and 𝑥# are binary, then

𝑥" ∨ 𝑥# = 𝑢 𝑥" + 𝑥# − 0.5
𝑥" ∧ 𝑥# = 𝑢 𝑥" + 𝑥# − 1.5

• Flow diagram for a multi-layer neural net

𝜉!
(&) = 𝑏!

(&) +D
*

𝑤!,*
(&)ℎ*

(&.")

ℎ!
(&) = 𝑔(&) 𝜉!

(&)

• Forward-propagation example

