Lecture 9: Two-Layer Neural Nets

Mark Hasegawa-Johnson

$$
2 / 2022
$$

License: CC-BY 4.0. You may remix or redistribute if you cite the source.

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- Flow diagram for the XOR problem
- Flow diagram for a multi-layer neural net
- Forward-propagation example

Biological Inspiration: McCulloch-Pitts Artificial Neuron, 1943

Input

- In 1943, McCulloch \& Pitts proposed that biological neurons have a nonlinear activation function (a step function) whose input is a weighted linear combination of the currents generated by other neurons.
- They showed lots of examples of mathematical and logical functions that could be computed using networks of simple neurons like this.

Biological Inspiration: Neuronal Circuits

- Even the simplest actions involve more than one neuron, acting in sequence in a neuronal circuit.
- One of the simplest neuronal circuits is a reflex arc, which may contain just two neurons:
- The sensor neuron detects a stimulus, and communicates an electrical signal to ...
- The motor neuron, which activates the muscle.

Illustration of a reflex arc: sensor neuron sends a voltage spike to the spinal column, where the resulting current causes a spike in a motor neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

A McCulloch-Pitts Neuron can compute some logical functions...

When the features are binary ($x_{j} \in$ $\{0,1\}$), many (but not all!) binary functions can be re-written as linear functions. For example, the function

$$
f(\vec{x})=\left(x_{1} \vee x_{2}\right)
$$

can be re-written as

$$
f(\vec{x})=u\left(x_{1}+x_{2}-0.5\right)
$$

Similarly, the function

$$
f(\vec{x})=\left(x_{1} \wedge x_{2}\right)
$$

can be re-written as

$$
f(\vec{x})=u\left(x_{1}+x_{2}-1.5\right)
$$

... but not all.
"A linear classifier cannot learn an XOR function."

- Minsky \& Papert, 1969
- ...but a two-layer neural net can compute an XOR function!

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- Flow diagram for the XOR problem
- Flow diagram for a multi-layer neural net
- Forward-propagation example

Example: one way (of many possible ways) to represent the XOR function using a two-layer neural network

For example, consider the XOR problem.
Suppose we create two hidden nodes:

$$
\begin{aligned}
& h_{1}(\vec{x})=u\left(0.5-x_{1}-x_{2}\right) \\
& h_{2}(\vec{x})=u\left(x_{1}+x_{2}-1.5\right)
\end{aligned}
$$

Then the XOR function $f(\vec{x})=\left(x_{1} \oplus\right.$
$\left.x_{2}\right)$ is given by $f(\vec{x})=\neg\left(x_{1} \vee x_{2}\right)$. For example, we could write this as:
\# $f(\vec{x})=u\left(0.5-h_{1}(x)-h_{2}(x)\right)$
$h_{1}(\vec{x})=1$ down in this region
 both $h_{1}(\vec{x})$ and $h_{2}(\vec{x})$

Flow diagrams

Suppose we create two hidden nodes:

$$
\begin{aligned}
& h_{1}(\vec{x})=u\left(0.5-x_{1}-x_{2}\right) \\
& h_{2}(\vec{x})=u\left(x_{1}+x_{2}-1.5\right)
\end{aligned}
$$

Here is a flow diagram for this computation:

$h_{1}(\vec{x})=1$ down in this region

Here in the middle, both $h_{1}(\vec{x})$ and $h_{2}(\vec{x})$ are zero.

Flow diagrams

A flow diagram is a way to represent the computations performed by a neural network.

- Circles, a.k.a. "nodes," a.k.a. "neurons," represent scalar operations.
- The circles above x_{1} and x_{2} represent the scalar operation of "read this datum in from the dataset."
- The circles labeled h_{1} and h_{1} represent the scalar operation of "unit step function."
- Lines represent multiplication by a scalar.
- Where arrowheads come together, the corresponding variables are added.

Flow diagrams

It's often useful to distinguish two types of hidden variables at each neuron:

- The neural excitation, ξ_{j}, is the result of adding together all of the inputs to the neuron.
- The neural activation, h_{j}, is the result of passing ξ_{j} through a scalar nonlinearity.

Flow diagrams

So in this flow diagram, for example, we can see that:

$$
\begin{gathered}
\xi_{1}=0.5-1 \cdot x_{1}-1 \cdot x_{2} \\
\xi_{2}=-1.5+1 \cdot x_{1}+1 \cdot x_{2}
\end{gathered}
$$

... and then ...

$$
\begin{aligned}
& h_{1}=u\left(\xi_{1}\right) \\
& h_{2}=u\left(\xi_{2}\right)
\end{aligned}
$$

... where $u(\cdot)$ is the unit step function.

Flow diagrams

Now suppose that we want to compute $f(\vec{x})=\left(x_{1} \oplus x_{2}\right)$. We could write this as:

$$
f(\vec{x})=u\left(0.5-h_{1}-h_{2}\right)
$$

Flow diagrams

We can write the XOR function as:

$$
\xi_{3}=0.5-1 \cdot h_{1}-1 \cdot h_{2}
$$

$$
f(\vec{x})=u\left(\xi_{3}\right)
$$

Flow diagrams
Putting it all together:

$$
\begin{gathered}
\xi_{1}=0.5-1 \cdot x_{1}-1 \cdot x_{2} \\
\xi_{2}=-1.5+1 \cdot x_{1}+1 \cdot x_{2} \\
h_{1}=u\left(\xi_{1}\right) \\
h_{2}=u\left(\xi_{2}\right) \\
\xi_{3}=0.5-1 \cdot h_{1}-1 \cdot h_{2} \\
f(\vec{x})=u\left(\xi_{3}\right)
\end{gathered}
$$

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- Flow diagram for the XOR problem
- Flow diagram for a multi-layer neural net
- Forward-propagation example

Multi-layer neural net

- $\xi_{j}^{(l)}=$ excitation of the $j^{\text {th }}$ neuron (a.k.a. "node") in the $\mathrm{t}^{\text {th }}$ layer
- Computed by adding together inputs from many other neurons, each weighted by a corresponding connection strength or connection weight, $w_{j, k}^{(l)}$
- $h_{j}^{(l)}=\underline{\text { activation }}$ of the $\mathrm{j}^{\text {th }}$ node in the I^{th} layer
- This is computed by just passing the excitation through a scalar nonlinear activation function, thus $h_{j}^{(l)}=g\left(\xi_{j}^{(l)}\right)$. The activation functions in different layers differ, so to be pedantic, sometimes we'll write $h_{j}^{(l)}=g^{(l)}\left(\xi_{j}^{(l)}\right)$.

Multi-layer neural net

Given: some training token $\vec{x}=\left[x_{1}, \ldots, x_{D}, 1\right]^{T}$ and its target label y

1. Initialize: $h_{k}^{(0)}=x_{k}$
2. Forward propagate: for $l \in\{1, \ldots, L\}$:
a. Compute the excitations as weighted sums of the previous-layer activations:

$$
\xi_{j}^{(l)}=b_{j}^{(l)}+\sum_{k} w_{j, k}^{(l)} h_{k}^{(l-1)}
$$

b. Compute the activations by applying scalar nonlinearities:

$$
h_{j}^{(l)}=g^{(l)}\left(\xi_{j}^{(l)}\right)
$$

3. Output: $P(Y=k \mid x)=h_{k}^{(L)}$

Forward propagation

- From activation to excitation is a matrix multiply:

$$
\xi_{j}^{(l)}=b_{j}^{(l)}+\sum_{k} w_{j, k}^{(l)} h_{k}^{(l-1)}
$$

- From excitation to activation is a scalar nonlinearity:

$$
h_{j}^{(l)}=g^{(l)}\left(\xi_{j}^{(l)}\right)
$$

Forward propagation: Matrix multiply

From activation to excitation is a matrix multiply:

$$
\vec{\xi}^{(l)}=W^{(l)} \vec{h}^{(l-1)}
$$

...where...

$$
\begin{gathered}
\vec{\xi}^{(l)}=\left[\begin{array}{c}
\xi_{1}^{(l)} \\
\vdots \\
\xi_{N}^{(l)}
\end{array}\right], \quad \vec{h}^{(l-1)}=\left[\begin{array}{c}
h_{1}^{(l-1)} \\
\vdots \\
h_{M}^{(l-1)} \\
1
\end{array}\right] \\
W^{(l)}=\left[\begin{array}{cccc}
w_{1,1}^{(l)} & \cdots & w_{1, M}^{(l)} & b_{1}^{(l)} \\
\vdots & \ddots & \vdots & \vdots \\
w_{N, 1}^{(l)} & \cdots & w_{N, M}^{(l)} & b_{N}^{(l)}
\end{array}\right]
\end{gathered}
$$

Forward propagation

From excitation to activation is a scalar nonlinearity:

$$
h_{j}^{(l)}=g^{(l)}\left(\xi_{j}^{(l)}\right)
$$

What type of nonlinearity?
Answer: it depends on what task you want your neural net to learn.

Activation functions

The "activation function," $g^{(l)}(\cdot)$, can be any scalar nonlinearity. Common ones that you should know include the unit step and signum functions, and:
Logistic Sigmoid:

$$
\sigma(\beta)=\frac{1}{1+e^{-\beta}}
$$

Hyperbolic Tangent (tanh):

$$
\tanh (\beta)=\frac{e^{\beta}-e^{-\beta}}{e^{\beta}+e^{-\beta}}
$$

Rectified Linear Unit (ReLU):

$$
\overline{\operatorname{ReLU}(\beta)}=\max (0, \beta)
$$

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- Flow diagram for the XOR problem
- Flow diagram for a multi-layer neural net
- Forward-propagation example

Example: Square smiley

- Input: $\vec{x}=\left[x_{1}, x_{2}, 1\right]^{T}$
- Output: $f(\vec{x})=[R, G, B]^{T}$

Remember that yellow = red + green, so we just need to compute R, G, B as functions of x_{1} and x_{2}.

This could be done using a two-layer network, but I it's easier using a three-layer network, so let's do it that way.

Layer 1

In layer 1, let's find all the different ways in which we need to bisect the image plane:

$$
\begin{gathered}
h_{1}^{(1)}=\operatorname{sign}\left(x_{1}-0.5\right) \\
\vdots \\
h_{13}^{(1)}=\operatorname{sign}\left(x_{2}-1.5\right)
\end{gathered}
$$

Layer 1

In layer 1, let's find all the different ways in which we need to bisect the image plane:

$$
\begin{gathered}
h_{1}^{(1)}=\operatorname{sign}\left(x_{1}-0.5\right) \\
\vdots \\
h_{13}^{(1)}=\operatorname{sign}\left(x_{2}-1.5\right)
\end{gathered}
$$

Layer 2

In layer 2, let's compute rectangles of solid color. We can compute those using logical operations:

$$
\begin{aligned}
& h_{1}^{(2)}=h_{1}^{(1)} \wedge \neg h_{2}^{(1)} \wedge h_{7}^{(1)} \wedge \neg h_{13}^{(1)} \\
& h_{12}^{(2)}=h_{5}^{(1)} \wedge \neg h_{6}^{(1)} \wedge h_{7}^{(1)} \wedge \neg h_{13}^{(1)}
\end{aligned}
$$

Layer 2

... and then convert the logical operations into linear functions:

$$
\begin{gathered}
h_{1}^{(2)}=\mathrm{u}\left(h_{1}^{(1)}-h_{2}^{(1)}+h_{7}^{(1)}-h_{13}^{(1)}-3.5\right) \\
\vdots \\
h_{12}^{(2)}=\mathrm{u}\left(h_{5}^{(1)}-h_{6}^{(1)}+h_{7}^{(1)}-h_{13}^{(1)}-3.5\right)
\end{gathered}
$$

Layer 2

In layer 2, let's compute rectangles of solid color:

$$
\begin{gathered}
h_{1}^{(2)}=\mathrm{u}\left(h_{1}^{(1)}-h_{2}^{(1)}+h_{7}^{(1)}-h_{13}^{(1)}-3.5\right) \\
h_{12}^{(2)}=\mathrm{u}\left(h_{5}^{(1)}-h_{6}^{(1)}+h_{7}^{(1)}-h_{13}^{(1)}-3.5\right)
\end{gathered}
$$

Layer 3

In layer 3, let's compute the red, green, and blue regions using the inclusive-OR of these rectangles:

$$
\begin{gathered}
R=h_{1}^{(2)} \vee h_{2}^{(2)} \vee h_{3}^{(2)} \vee h_{4}^{(2)} \\
\vee h_{5}^{(2)} \vee h_{6}^{(2)} \vee h_{7}^{(2)} \vee h_{9}^{(2)} \vee h_{11}^{(2)} \vee h_{12}^{(2)} \\
G=h_{1}^{(2)} \vee h_{2}^{(2)} \vee h_{5}^{(2)} \vee h_{7}^{(2)} \vee h_{9}^{(2)} \vee h_{11}^{(2)} \vee h_{12}^{(2)} \\
B=h_{8}^{(2)} \vee h_{10}^{(2)}
\end{gathered}
$$

Layer 3

In layer 3, let's compute the red, green, and blue regions using the inclusive-OR of these rectangles:

$$
\begin{gathered}
R=u\binom{h_{1}^{(2)}+h_{2}^{(2)}+h_{3}^{(2)}+h_{4}^{(2)}+h_{5}^{(2)}}{+h_{6}^{(2)}+h_{7}^{(2)}+h_{9}^{(2)}+h_{11}^{(2)}+h_{12}^{(2)}-0.5} \\
G=u\binom{h_{1}^{(2)}+h_{2}^{(2)}+h_{5}^{(2)}+h_{7}^{(2)}+h_{9}^{(2)}+}{h_{11}^{(2)}+h_{12}^{(2)}-0.5} \\
B=\mathrm{u}\left(h_{8}^{(2)}+h_{10}^{(2)}-0.5\right)
\end{gathered}
$$

Layer 3

In layer 3, let's compute the red, green, and blue regions using the inclusive-OR of these rectangles:

$$
\begin{gathered}
R=u\binom{h_{1}^{(2)}+h_{2}^{(2)}+h_{3}^{(2)}+h_{4}^{(2)}+h_{5}^{(2)}}{+h_{6}^{(2)}+h_{7}^{(2)}+h_{9}^{(2)}+h_{11}^{(2)}+h_{12}^{(2)}-0.5} \\
G=u\binom{h_{1}^{(2)}+h_{2}^{(2)}+h_{5}^{(2)}+h_{7}^{(2)}+h_{9}^{(2)}+}{h_{11}^{(2)}+h_{12}^{(2)}-0.5} \\
B=u\left(h_{8}^{(2)}+h_{10}^{(2)}-0.5\right)
\end{gathered}
$$

Summary

- Breaking the constraints of linearity: multi-layer neural nets
- Flow diagram for the XOR problem: if x_{1} and x_{2} are binary, then

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right)=u\left(x_{1}+x_{2}-0.5\right) \\
& \left(x_{1} \wedge x_{2}\right)=u\left(x_{1}+x_{2}-1.5\right)
\end{aligned}
$$

- Flow diagram for a multi-layer neural net

$$
\begin{gathered}
\xi_{j}^{(l)}=b_{j}^{(l)}+\sum_{k} w_{j, k}^{(l)} h_{k}^{(l-1)} \\
h_{j}^{(l)}=g^{(l)}\left(\xi_{j}^{(l)}\right)
\end{gathered}
$$

- Forward-propagation example

