Lecture 9: Two-Layer
Neural Nets

Mark Hasegawa-Johnson
2/2022

License: CC-BY 4.0. You may remix or redistribute
if you cite the source.

Outline

* Breaking the constraints of linearity: multi-layer neural nets

* Flow diagram for the XOR problem
* Flow diagram for a multi-layer neural net

* Forward-propagation example

Biological Inspiration: McCulloch-Pitts
Artificial Neuron, 1943

Input e [n 1943, McCulloch & Pitts
Weights proposed that biological neurons
X have a nonlinear activation

function (a step function) whose
input is a weighted linear
combination of the currents

Output: u(w-x)
P generated by other neurons.

* They showed lots of examples of
mathematical and logical
functions that could be computed

Wo using networks of simple neurons

like this.

Afferent neuron
axon (sensory)

* Even the simplest actions Spinalcord ;AN
involve more than one neuron, o (moton
acting in sequence in a neuronal {*@%’ -
circuit. -
* One of the simplest neuronal Action . g
circuits is a reflex arc, which may Muscle effector)
contain just two neurons: Fingertreceiver) ()
* The sensor neuron detects a ' —
stimulus, and communicates an Source

electrical signal to ...
« The motor neuron, which IIIu.stratlon of a reflex arc: sensor neuron sends a voltage splke to the
spinal column, where the resulting current causes a spike in a motor

activates the muscle. neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

A McCulloch-Pitts Neuron can compute some logical functions...

When the features are binary (x; € Similarly, the function

{0,1}), many (but not all!) binary) = (x1 Axy)
functions can be re-written as linear ,, pe re-written as

functions. For example, the function F(®) = ux, + x, — 1.5)

f(xX) = (x1 Vx3)
can be re-written as
() =ulx; + x5, —0.5)

... but not all.

“A linear classifier cannot learn an
XOR function.”

- Minsky & Papert, 1969

...but a two-layer neural net can
compute an XOR function!

Outline

* Flow diagram for the XOR problem
* Flow diagram for a multi-layer neural net

* Forward-propagation example

Example: one way (of many possible ways) to represent
the XOR function using a two-layer neural network

xzhz(f) =1up é

For example, consider the XOR problem. in this region

Suppose we create two hidden nodes: |||' «\5‘?
& hl (D_C)) = U(OS — X1 — xZ) ﬁ\l'gfl)s r:egliodnOWn \ »
N Q" = B 1
% h2 (X) = u(x1 + Xy, — 15) m Here in the middle,
X

both h{(X) and h,(X)
are zero.

Then the XOR function f(x) = (x; D

[
[

x,) is given by f(x) = —(x; V x3). For

O

N

N

example, we could write this as:
% f(x) = u(O.S —hi(x) — hz(x)) é 1 X

Flow diagrams

xzhz(f) =1up é

Suppose we create two hidden nodes: in this region

2) — _ _ [/
& hi(}¥) =u(0.5 —x; —x5) |||i éﬁ
hz (f) — U(xl + Xy — 15) hl(J_C)) =]:dOWI’]
% in this region \ 7/ xl

\
Here is a flow diagram for this computation: Here in the middle,

both h{(X) and h,(X)

hl (f) hZ (f) are zero.

Flow diagrams xz h, =1 7

A flow diagram is a way to represent the .&7/3

computations performed by a neural <

network. ~
h=1_60 %

* Circles, a.k.a. “nodes,” a.k.a. “neurons,” Here in the middle,

é

represent scalar operations. both hy (X) and h, (%)
are zero.

* The circles above x; and x, represent the

scalar operation of “read this datum in from
the dataset.”

* The circles labeled h; and h; represent the
scalar operation of “unit step function.”

* Lines represent multiplication by a scalar.

* Where arrowheads come together, the
corresponding variables are added.

Flow diagrams xz h, =1 7

It’s often useful to distinguish two types Z
of hidden variables at each neuron:

N

* The neural excitation, ¢, is the result of - h ALLL2X 4
i i Here in the middle,
adding together all of the inputs to the both Fo. (8 and b ()

neuron. are zero.

=
|

—

1]

é

* The neural activation, hj, is the result of
passing ¢; through a scalar nonlinearity.

Flow diagrams xz h, =1 7

So in this flow diagram, for example, we X
can see that:

1=05—-1-x;—1-x,

52 =—1.5+1‘X1+1°x2

N

LL2X 4

Here in the middle,
both h{(X) and h,(X)

>
=
|

—

1]

é

are zero.

... and then ...
hy = u(éy)
hy, = u(éy)

... where u(-) is the unit step function.

Flow diagrams

Now suppose that we want to compute

f(xX) = (x; D x,). We could write this

as.

f(X) =u(0.5—hy — hy)

%7 =17

7

&

—) L

hl =1 §_ Here in the middle,

both h{(X) and h,(X)
are zero.

Flow diagrams

3=O.5_1‘h1_1'h2

| A
ll |
&7
AN
We can write the XOR function as:

fx) = u($s)

Flow diagrams

€1=O.5_1‘X1_1'x2
§2=—1.5+1‘X1+1‘XZ

[Al
ll |
Q2
N
Putting it all together:

hy = u(éy)
hy, = u(é,)

§3=0.5—1‘h1—1'h2

f(?_f) = u(¢é3)

Outline

* Flow diagram for a multi-layer neural net
* Forward-propagation example

Multi-layer neural net

. f]@ = excitation of the jt" neuron (a.k.a. “node”) in the It" layer

 Computed by adding together inputs from many other neurons, each

weighted by a corresponding connection strength or connection weight, Wj(j()

. h]@ = activation of the j*" node in the It" layer

* This is computed by just passing the excitation through a scalar nonlinear
activation function, thus h]@ = g(fjm). The activation functions in different

layers differ, so to be pedantic, sometimes we’ll write h]@ = g(l) (61@).

Multi-layer neural net

Given: some training token X = [x4, ..., Xp, 1]T and its target label y
1. Initialize: h,(co) = Xj
2. Forward propagate: forl € {1, ..., L}:

a. Compute the excitations as weighted sums of the previous-layer activations:
@ _ O (D, (1-1)
Stj - bj + Z Wj,k hk
k
b. Compute the activations by applying scalar nonlinearities:
D _ (D
b = g® (&)

3. Output: P(Y = k|x) = h{"

Forward propagation

* From activation to excitation is a
! l)
matrix multiply: hg) hg) hy

l l D, (I-1
P TG0 0 6o

k
l l Q)
f() é) y

* From excitation to activation is a scalar .
nonlinearity: m
D _ () _ B _
S _g()(gj) hgt D 0D hl(vll 1)

Forward propagation: Matrix multiply

From activation to excitation is a matrix

multiply:

...where...

-

gt(l) —

ga) —

- (l)_
1

0
SN A

(l)

Wi 1

TAOGSS,

(D)
W1 M

(l)
N,M

—hgz—n

o

1

bV

by

h(l) h(l) h(l)
(l) (l) <l>
hgl_l) hgl_l) - hl(vll_l)

1

Forward propagation

From excitation to activation is a scalar
l l D)
nonlinearity: h() h() hy
D _ (D

=) o o
What type of nonlinearity? (l) (l) (l)
Answer: it depends on what task you
want your neural net to learn. ;

hgl_l) hgl_l) hl(\/l_l)

1

Activation functions

1.5

Logistic: g(b)=1/(1+e™®)

1+

0.5-

0

a(b)

-0.5-

-1

.—/

|

-15

Tanh: g(b)=(e®-e™®)/(e"+e™)

1.5

1t

0.5-

0

a(b)

-0.5-

-1

-15

_/

~

ReLU: g(b)=max(0,b)

—
2
I

3
2
1
0
1

_24

The “activation function,” g (+), can be any scalar
nonlinearity. Common ones that you should know
include the unit step and signum functions, and:

Logistic Sigmoid:
B)=——
O T P
Hyperbolic Tangent (tanh):
eB — o= B
tanh =
nh(h) = g e

Rectified Linear Unit (RelLU):
ReLU(S) = max(0,)

Outline

* Forward-propagation example

Example: Square smiley

e Input: X = [xq,x,,1]"
* Output: f(X) = [R,G,B]"

Remember that yellow = red + green,
so we just need to compute R, G, B
as functions of x; and x,.

This could be done using a two-layer
network, but | it’s easier using a
three-layer network, so let’s do it
that way.

Layer 1

In layer 1, let’s find all the
different ways in which we need
to bisect the image plane:

hgl) = sign(x; — 0.5)

h%) = sign(x, — 1.5)

Layer 1

In layer 1, let’s find all the
different ways in which we need
to bisect the image plane:

hgl) = sign(x; — 0.5)

h%) = sign(x, — 1.5)

Layer 2

In layer 2, let’s compute rectangles of solid
color. We can compute those using logical
operations:

R = P A =hSD ARSY A <R(Y

W = Y A=hSD ARSY A —h

Layer 2

... and then convert the logical operations into
linear functions:

P =u(hY — bV + AP — hfy - 3.5)

A =u(h{ — b + AP — hfy - 3.5)

Layer 2

In layer 2, let’s compute rectangles of solid
color:

P =u(hY — bV + AP — hfy - 3.5)

A =u(h{ — b + AP — hfy - 3.5)

Layer 3

In layer 3, let’s compute the red, green, and blue
regions using the inclusive-OR of these rectangles: hgz

R=h>vr? vaD vhd
vh? v hgzjj Vv h§2% Y, hff% Vv hﬁl5 v h{?

G =hPvhP v v va vie? v

B = h{ vh{)

2
RSP h$? Ry

(2)
hiz

Layer 3

In layer 3, let’s compute the red, green, and blue
regions using the inclusive-OR of these rectangles:

_— h? 4+ +n? + n 4+ p?
+h? + P + 0 + P + 12 — 05

. K2+ + 0P + 0 +r +
- r® +h2 — 0.5
11 12 '

B = u(h®+h{ —05)

|

(2)
hiz

Layer 3

In layer 3, let’s compute the red, green, and blue
regions using the inclusive-OR of these rectangles:

_— h? 4+ +n? + n 4+ p?
+h? + P + 0 + P + 12 — 05

. K2+ + 0P + 0 +r +
- r® +h2 — 0.5
11 12 '

B = u(h®+h{ —05)

Summary

* Breaking the constraints of linearity: multi-layer neural nets

* Flow diagram for the XOR problem: if x; and x, are binary, then
(x1 Vxy) =u(x; + x5, —0.5)
(x1 Axy) =u(xy + x5, — 1.5)

* Flow diagram for a multi-layer neural net
D _ O (D)3 (1-1)
fj — bj + Z Wj,k hk

1 =90 (&)

* Forward-propagation example

