CS440/ECE448 Lecture 8:
Logistic Regression

1.5

0.5¢

Logistic: g(b)=1/(1+e™®)

1,

Mark Hasegawa-Johnson, 2/2022
License: CC-BY 4.0

Outline

* One-hot vectors: rewriting the perceptron to look like linear
regression

 Softmax: Soft category boundaries
* Cross-entropy = negative log probability of the training data
* Stochastic gradient descent for logistic regression

Comparison of Multi-Class Perceptron to Multiple Regression

Multi-Class Perceptron Multiple Regression

Input Weights Input Weights

fl(f) = W{f

Output:
argmax’_, (Wl %)

N~

>
X

fz(f) =W

fv(f) = ng

Here’s a weird question:

Can we come up with some new notation that can be used to write
both the multi-class perceptron AND the linear regression algorithm?

New notation: Don’t change the multi-class
perceptron algorithm, but make it easier to write

* Instead of defining y; as an integer, let’s define y; to be a vector:

3’1’,1]

Yiy

* For a multi-class perceptron, this only makes sense if y; is what’s
called a one-hot vector:

Vi =

- _J1 ¢ =trueclasslabel of the it" token
yl c — .
0 otherwise

New notation: Don’t change the multi-class
perceptron algorithm, but make it easier to write

* Let’s also define the output to be a one-hot vector:

f1 (%)
fx) = [:]

fr (%)
... where ...

£(7) = {1 ¢ = argmaxw/ ¥
0

otherwise

Example: Binary classifier

Consider the classifier

S f1(%) » 1 ¢ =argmaxw/x
Xi) = g Xi) = o c
f) fo(X;) fe(%0) 0 otherwise
... with only two classes. Then the classification regions might

look like this:

R F I
A b

1 1 | 1 |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.

X1

1

Multi-Class Linear Classifiers

X

Consider the classifier

fi(x:)
f(x) = [:],
fv (%)
5y _)1 ¢ =argmaxw!x
Jelx) = {O otherwise

with 20 classes. Then some of the
classifications might look like this.

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

Now the perceptron has a vector error, just
like linear regression

Now we can define an error term for every output:

El,l
gi — [:]; €ic = fC(fl) —Vic
€y
* If c was the correct class label (y; . = 1), but the network didn’t get it right
(f-(x;) = 0), then it undershot:

€ic = —1

* If the network thought the correct answer was ¢ (f.(xX;) = 1), but it wasn’t
(yic = 0), then it overershot

Ei,C = +1

e Otherwise,
€,c=0

Multi-class perceptron, written in terms of
one-hot vectors

But with this definition, we can write the perceptron update the same
as the linear regression update:

— -
(wc +nx; €.=-1
— — > — - _ 1
We &« We —NE;j Xy = \We —NXi €jc =t
—
W Ei’c =0

\

Comparison of Multi-Class Perceptron to Multiple Regression

Multi-Class Perceptron: Multiple Regression:
One-hot output Real-valued Output
Input Weights Input Weights

_ —T =
1 = argmaxw, x

otherwise

_ ST 2
2 = argmaxw; X

otherwise

‘ fv(x) = {(1) V = argmaxw/ X

otherwise

Outline

 Softmax: Soft category boundaries
* Cross-entropy = negative log probability of the training data
* Stochastic gradient descent for logistic regression

Probabilistic boundaries

Instead of trying to find the exact Igoundaries, Iogisticﬁregression
models the probability that token x belongs to class y.

N\ N x Q)
SR
o \O \ . ® !)T
O

S \
30O e
)zO o> O \. .
O In this region,
N O<P(Y=[(1)]|X=3?)<1

> xl
In this region,
P(y=v= [(1)] |x

I
=1

O

Perceptron versus logistic regression

Remember that for the perceptron, we have

fl(fi) 1 . —T =
Go=| s | R ={ T
Ly (X)
For logistic regression, we have
f1 (%) p W
f(iél) = : ’ fC()_C)l) gl —To
fv (X)) k=1€" K"

The softmax function

* This is called the softmax
_soft{nax

softmax(x;) = :
soft&nax

W)

function:

(49)

e ..where the matrix W is defined to be

W = [Wll “er)

softmax(W7Tx) =

—

wy |

Argmax and Softmax

—T >
£(7,) = 1 ¢ =argmaxw/x £(7,) = erc”
e 0 otherwise et v_ o WA

In both cases, we have:
'fc(fi) >0
'fc(fi) <1

‘c/=1 fC()_C)l) =1

Argmax and Softmax

_ wlx
5 1 ¢ =argmaxw/x , ere
X' — x — — -
Jelxi) {O otherwise felx) V_ oWk

In both cases, we can interpret these as probabilities:

f.(x) = P(Class = c|X = x)

Some details: Logistic function

The probability P(Class = 1|X = x) in the two-class case has an
interesting form. It’s called the ”logistic sigmoid” function:

—T
W7 %) e1¥ 1
P(Class = 1|X = x) = softmax(w{ x) = — — = —
(|) (1 eWIx n eng 1+ e_WTx

—> —> —>
where w = w; — ws.

Logistic: g(b)=1/(1+e™®)

Some details: Logistic function -
. .) Oz —-/
This function,) s 7
P(Class =1|X =x) = PR 1; ‘ ‘
is called the “logistic sigmoid function.” T : i

* [t’s called “sigmoid” because it is S-shaped.

* |t was first discovered by Verhulst in the 1830s, as a model of
population growth. The idea was that the population grows

exponentially until it runs up against resource limitations,
and then starts to stagnate.

. . . 1.5
Logistic Regression |
We can frame the basic idea of logistic regression
in this way: replace the non-differentiable decision 3 °
function 0.5
§ = u(@x)
with a differentiable decision funclttion: 15
o —)T _
y=ow'x) = 1+ o—Wlx 15
...s0 that the classifier can be trained using
gradient descent. 05
2 o
-0.5}
-1+
-1.5

Unit Step: g(b)=u(b)

2 0 2
b
Logistic: g(b)=1/(1+e™)

Outline

* Cross-entropy = negative log probability of the training data
* Stochastic gradient descent for logistic regression

Learning logistic regression

* Suppose we have some data.

_ T
* We want to learn vectors w, = [Wcjl, ., We D, bc] so that

P(Class = c|X = %) = softmax(WT%).
C

Learning logistic regression: Training data

Data:
D= {(551; 1), (552» C2)) o) (fnr cn)}

S T, .
where each X; = [xl-’l, ey Xi D) 1] is a vector, and each ¢; € {1, ...,V}isa
integer encoding the true class label.

Learning logistic regression: Model parameters

We want to learn the model parameters
W = [V_V>1, ...,Wv]

so that
P(C = ¢;|X = X;) = softmax(WTx;)
Ci

. (X202 =1)
‘(553;% =1)
. »
" Xi1
Q.

Learning logistic regression: Training criterion

We want to learn the model parameters, W = [wy, ..., Wy], in order to maximize
the probability of the observed data:

P(D|W) = ﬂp(c = X = 7))
=1

. (X202 =1)
‘(553;% =1)
. »
" Xi1
Q.

Learning logistic regression

We want to learn the model parameters, W = [wy, ..., Wy], in order to maximize
the probability of the observed data:

n
P(D|W) = Hsoftmax(WTfi)
Ci

=1

. (Xz,c2 =1)
‘(553;% =1)

O.(?_C)zp Cy = 2)

" Xi1

Learning logistic regression

We want to learn the model parameters, W = [wy, ..., Wy], in order to maximize
the probability of the observed data:

no Wiz

e
row) =| [
€7k

i=1 Luke=

. (Xz,c2 =1)
‘(553;% =1)

O.(?_C)zp Cy = 2)

" Xi1

How do you maximize a function?

Our goal is to find W = [wy, ..., wy/] in order to maximize

PCDW=1_[7
(DIW) VWi

i=1 &k=
Here are some useful things to know:

1. Logarithm turns products into sums
2. Maximizing f (W) is the same thing as minimizing —f (W)

1. Logarithms turn products into sums

In x (the natural logarithm of x, shown
as log, x in the plot at right) is a
monotonically increasing function of x.

Since it’s monotonically increasing,

argmax P(D|W) = argmaxIn P(D|W)
7% 7%

Almost always, maximizing the log
probability is easier than maximizing —2

the probability, because logarithms turn | |
p rOd UCtS intO sums. Logarithm_plots.png, CC-SA 3.0, Richard F. Lyon, 2011

1. Logarithms turn products into sums

Our goal is to find W = [wy, ..., wy/] in order to maximize

—>T v
We; Xi

n n vV
e T
In P(D|W) = Z In —— = z We, X; — lnz e WiXi
o V=1 eWkXi :

2. Maximizing f (W) is the same thing as minimizing —f (W).

Our goal is to find W = [wy, ..., wy/] in order to maximize

n %
InP(D|W) = Z (W(Tifi —1In z ewiz’zi>

=1 k=1

Choosing W to maximizing W, X;is kind of obvious: just set w,, = AX;,
where A is a scalar that’s as big as possible. Maximizing

w2 - .
—1InY}_, e%k*i, is not obvious.

2. Maximizing f (W) is the same thing as minimizing —f (W).

To emphasize the hard part of the problem, there is a convention that,
instead of maximizing In P(D|W), we minimize —In P(D|W):

Our goal is to find W = [wy, ..., wy] in order to minimize
n %
L=—InP@®IW) = Z (lnz eWiexi — v_’vgifi)
i=1 k=1

The curly £ is a symbol we use to denote a “loss function”. A loss
function is something you want to minimize.

Some details: Cross entropy

* The loss function is called “cross entropy,” because it is similar in
some ways to the entropy of a thermodynamic system in physics.

* When you implement this in software, it’s a good idea to normalize by
the number of training tokens, so that the scale is easier to
understand:

n
1 1
Q= —ElogP(fDIW) = —7—121ogP(C = ¢i|X = x;)
i=1

Outline

* Stochastic gradient descent for logistic regression

Logistic regression training

* In each iteration, present a batch of training data, © =

{(x1,¢1), (X2, ¢2), ooy (s i) }-
* If the batch contains all the data, this is called “gradient descent”

* If the batch contains a randomly chosen subset of the data, this is called
“stochastic gradient descent”

e Calculate P(Class = c|X = X;) = softmax(WTX) for each training
5 C
token Xx;, for each class c.
* Update all the weight vectors using stochastic gradient descent.

Logistic regression training example

Start with the given dataset ©. Here the true class is indicated by both

color and shape.
AA
O
O

A

.A o ® -
11

o AQ 004

O

Logistic regression training example

Randomly initialize the weight vectors, and then calculate the
probabilities P(Y = c|X = x;) for every class c, for every training token
(shown as transparency and color change, left side)

Xi2 I
A ¢
® _,
A Wq
® .

A ® .
AO OO xll Wz

O

Logistic regression training example

Modify the weight vectors to reduce the loss function, as
We < W, — 77V\/_v’c'8

Xi2 I .
A = = e
w
A 3
‘ « >

. A o

" Xi1

A
o 0©°

O

Logistic regression training example

Repeat until the loss stops decreasing: W, < W, — nVy 8

A A

2 W3 “ _,
» Wy
A A O
A ®) .

® " X

D i1
o O

o © W,

Stochastic gradient descent
Our goal is to find W = [wy, ..., wy] in order to minimize
n %
L=—InP®O|W) = Z (lnz eWiki ngl)
i=1 \ k=1

Just like in linear regression, let’s do that one token at a time. Choose a
training token (X;, ¢;), and try to minimize

|74
—T >

L =—InP(C=c¢|lX=x;) = lnz eWieXi — Wi X;
k=1

Stochastic gradient descent

Our goal is to find W = [wy, ..., wy] in order to minimize

14
W% _ T 32
2 =In) ek* —w. X;
l
k=1

We do that by adjusting W, < W, — nVy;_£;, where

* 11 is called the learning rate. Typically n = 0.001, but it’s very hard to
know in advance what learning rate will work for a particular
problem; you need to experiment to see what works.

* Vi3 & is the gradient of the loss with respect to W,.

The gradient of the cross-entropy of a softmax

Now, let’s calculate that gradient.

vV
V- Q. =V |1 Witi | — y, (WI%;)
k=1

14

=T =, -

= VWC (ln z ekal> — yl"c.x,:
k=1

..where y; . is our old friend the one-hot vector:

o 1 C; =¢C
Yic 0 otherwise

The gradient of the cross-entropy of a softmax

vV
VWcﬁl' — VWC <ln z eW%il) o yl',C)_C)i

k=1

—)T —)_
eWe Xi

= X; — VicX
—72 Xi — YicXi
k=1 €k

= (fC(')_C)l) — Yi,c)fi

_ -
= €jcXi

Conclusion

* Perceptron:

_ - —> —> -
€Eic = fc(xi) — Yic We < We — NE; X
* Linear Regression:
_ - —> —> -
€Eic = fc(xi) — Yic We < We — NE; X
* Logistic Regression:
_ - —> —> -
€Eic = fc(xi) — Yic We < We — NEj X

The only difference is how you define the network output (argmax,
linear, or softmax).

Comparison of Multi-Class Perceptron to Multiple Regression

Multi-Class Perceptron: Multiple Regression:
One-hot output Real-valued Output
Input Weights Input Weights

_ —T =
1 = argmaxw, x

otherwise

_ ST 2
2 = argmaxw; X

otherwise

‘ fv(x) = {(1) V = argmaxw/ X

otherwise

Logistic Regression

Logistic Regression:
Qutput is a vector of probabilities
Input Weights

f1() = softlmax(WTic’i)

f,(%) = softzmax(WTic’i)

fr (%) = soft&nax(WTfi)

