
CS440/ECE448 Lecture 8:
Logistic Regression

Mark Hasegawa-Johnson, 2/2022
License: CC-BY 4.0

Outline

• One-hot vectors: rewriting the perceptron to look like linear
regression
• Softmax: Soft category boundaries
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent for logistic regression

Comparison of Multi-Class Perceptron to Multiple Regression

1

x1

xD

x2

Input Weights

.

.

.

Output:
argmax!"#$ 𝑤!%�⃗�

.

.

.

𝑏#𝑏&

𝑤#,(

𝑏$

𝑤&,(
𝑤$,(

argm
ax

.

.

.

Multi-Class Perceptron

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏#𝑏&

𝑤#,(

𝑏$

𝑤&,(
𝑤$,(

Multiple Regression

𝑓! �⃗� = 𝑤!"𝑥

𝑓# �⃗� = 𝑤#"𝑥

𝑓$ �⃗� = 𝑤$"𝑥

Here’s a weird question:

Can we come up with some new notation that can be used to write
both the multi-class perceptron AND the linear regression algorithm?

New notation: Don’t change the multi-class
perceptron algorithm, but make it easier to write
• Instead of defining 𝑦! as an integer, let’s define �⃗�! to be a vector:

�⃗�! =
𝑦!,#
⋮
𝑦!,$

• For a multi-class perceptron, this only makes sense if �⃗�! is what’s
called a one-hot vector:

𝑦!,% = %1 𝑐 = true class label of the 𝑖&' token
0 otherwise

New notation: Don’t change the multi-class
perceptron algorithm, but make it easier to write
• Let’s also define the output to be a one-hot vector:

𝑓 �⃗�! =
𝑓# �⃗�!
⋮

𝑓$ �⃗�!
… where …

𝑓% �⃗�! = %1 𝑐 = argmax𝑤%(�⃗�
0 otherwise

Example: Binary classifier
Consider the classifier

𝑓 �⃗�! = 𝑓" �⃗�!
𝑓# �⃗�!

, 𝑓$ �⃗�! = &1 𝑐 = argmax𝑤$%�⃗�
0 otherwise

… with only two classes. Then the classification regions might
look like this:

𝑥"

𝑥#
𝑓 �⃗� = 1

0
𝑓 �⃗� = 0

1

Multi-Class Linear Classifiers
Consider the classifier

𝑓 �⃗�! =
𝑓# �⃗�!
⋮

𝑓$ �⃗�!
,

𝑓% �⃗�! = %1 𝑐 = argmax𝑤%(�⃗�
0 otherwise

… with 20 classes. Then some of the
classifications might look like this.

𝑥"

𝑥#

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

𝑓(�⃗�) =

0
0
⋮
0
1

𝑓(�⃗�) =

0
0
⋮
1
0

𝑓(�⃗�) =

1
0
⋮
0
0

𝑓(�⃗�) =

0
1
⋮
0
0

Now the perceptron has a vector error, just
like linear regression
Now we can define an error term for every output:

𝜖1 =
𝜖1,3
⋮
𝜖1,4

, 𝜖1,5 = 𝑓5 �⃗�1 − 𝑦1,5

• If c was the correct class label (𝑦1,5 = 1), but the network didn’t get it right
(𝑓5 �⃗�1 = 0), then it undershot:

𝜖1,5 = −1
• If the network thought the correct answer was c (𝑓5 �⃗�1 = 1), but it wasn’t

(𝑦1,5 = 0), then it overershot
𝜖1,5 = +1

• Otherwise,
𝜖1,5 = 0

Multi-class perceptron, written in terms of
one-hot vectors
But with this definition, we can write the perceptron update the same
as the linear regression update:

𝑤% ← 𝑤% − 𝜂𝜖!,%�⃗�! = E
𝑤% + 𝜂�⃗�! 𝜖!,% = −1
𝑤% − 𝜂�⃗�! 𝜖!,% = +1

𝑤% 𝜖!,% = 0

Comparison of Multi-Class Perceptron to Multiple Regression

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏#𝑏&

𝑤#,(

𝑏$

𝑤&,(
𝑤$,(

Multi-Class Perceptron:
One-hot output

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏#𝑏&

𝑤#,(

𝑏$

𝑤&,(
𝑤$,(

Multiple Regression:
Real-valued Output

𝑓! �⃗� = 𝑤!"𝑥

𝑓# �⃗� = 𝑤#"𝑥

𝑓$ �⃗� = 𝑤$"𝑥

𝑓! �⃗� = &1 1 = argmax𝑤%"�⃗�
0 otherwise

𝑓# �⃗� = &1 2 = argmax𝑤%"�⃗�
0 otherwise

𝑓$ �⃗� = &1 𝑉 = argmax𝑤%"�⃗�
0 otherwise

.

.

.

.

.

.

Outline

• One-hot vectors: rewriting the perceptron to look like linear
regression
• Softmax: Soft category boundaries
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent for logistic regression

Probabilistic boundaries
Instead of trying to find the exact boundaries, logistic regression
models the probability that token �⃗� belongs to class �⃗�.

𝑥"

𝑥#
In this region,
𝑃 𝑌 = 0

1 𝑋 = �⃗� ≈ 1

In this region,
𝑃 𝑌 = 𝑌 = 0

1 𝑋 = �⃗� ≈ 0 In this region,
0 < 𝑃 𝑌 = 0

1 𝑋 = �⃗� < 1

Remember that for the perceptron, we have

𝑓 �⃗�! =
𝑓" �⃗�!
⋮

𝑓& �⃗�!
, 𝑓$ �⃗�! = &1 𝑐 = argmax𝑤$%�⃗�

0 otherwise

For logistic regression, we have

𝑓 �⃗�! =
𝑓" �⃗�!
⋮

𝑓& �⃗�!
, 𝑓$ �⃗�! =

𝑒'78)⃗

∑*+"& 𝑒'98)⃗

Perceptron versus logistic regression

• This is called the softmax function:

softmax �⃗�! =
softmax

"
𝑊%�⃗�

⋮
softmax

&
𝑊%�⃗�

, softmax
$

𝑊%�⃗� =
𝑒'78)⃗

∑*+"& 𝑒'98)⃗

• …where the matrix W is defined to be
𝑊 = 𝑤", … , 𝑤&

The softmax function

𝑓$ �⃗�! = &1 𝑐 = argmax𝑤$%�⃗�
0 otherwise

, 𝑓$ �⃗�! =
𝑒'78)⃗

∑*+"& 𝑒'98)⃗

In both cases, we have:
• 𝑓$ �⃗�! ≥ 0
• 𝑓$ �⃗�! ≤ 1
•∑$+"& 𝑓$ �⃗�! = 1

Argmax and Softmax

𝑓$ �⃗�! = &1 𝑐 = argmax𝑤$%�⃗�
0 otherwise

, 𝑓$ �⃗�! =
𝑒'78)⃗

∑*+"& 𝑒'98)⃗

In both cases, we can interpret these as probabilities:

𝑓$ �⃗� = P Class = 𝑐 𝑋 = �⃗�

Argmax and Softmax

Some details: Logistic function

The probability P Class = 1 𝑋 = 𝑥 in the two-class case has an
interesting form. It’s called the ”logistic sigmoid” function:

P Class = 1 𝑋 = 𝑥 = softmax 𝑤#(𝑥 =
𝑒)!"*

𝑒)!"* + 𝑒)#"*
=

1
1 + 𝑒+)"*

where 𝑤 = 𝑤# −𝑤,.

Some details: Logistic function

This function,

P Class = 1 𝑋 = 𝑥 =
1

1 + 𝑒+)"*
is called the “logistic sigmoid function.”
• It’s called “sigmoid” because it is S-shaped.
• It was first discovered by Verhulst in the 1830s, as a model of

population growth. The idea was that the population grows
exponentially until it runs up against resource limitations,
and then starts to stagnate.

Logistic Regression
We can frame the basic idea of logistic regression
in this way: replace the non-differentiable decision
function

N𝑦 = u(𝑤(𝑥)
with a differentiable decision function:

N𝑦 = σ 𝑤(𝑥 =
1

1 + 𝑒+)"*
…so that the classifier can be trained using
gradient descent.

Outline

• One-hot vectors: rewriting the perceptron to look like linear
regression
• Softmax: Soft category boundaries
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent for logistic regression

Learning logistic regression
• Suppose we have some data.

• We want to learn vectors 𝑤% = 𝑤%,#, … ,𝑤%,-, 𝑏%
(

so that
P Class = 𝑐 𝑋 = �⃗� = softmax

%
𝑊(�⃗� .

𝑥!,"

𝑥!,#

Learning logistic regression: Training data
Data:

𝔇 = �⃗�#, 𝑐# , �⃗�,, 𝑐, , … , �⃗�., 𝑐.

where each �⃗�! = 𝑥!,#, … , 𝑥!,-, 1
(

is a vector, and each 𝑐! ∈ {1,… , 𝑉} is a
integer encoding the true class label.

𝑥!,"

𝑥!,#
(�⃗�&, �⃗�& =

1
0)

(�⃗�), �⃗�) =
1
0)

(�⃗�*, �⃗�* =
0
1)

(�⃗�#, �⃗�# =
0
1)

Learning logistic regression: Model parameters
We want to learn the model parameters

𝑊 = 𝑤#, … ,𝑤$
so that

P C = 𝑐! 𝑋 = �⃗�! = softmax
%$

𝑊(�⃗�!

𝑥!,"

𝑥!,#
(�⃗�&, 𝑐& = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�#, 𝑐# = 2)

Learning logistic regression: Training criterion
We want to learn the model parameters, 𝑊 = 𝑤#, … ,𝑤$, in order to maximize
the probability of the observed data:

𝑃 𝔇 𝑊 =Z
!/#

.

P C = 𝑐! 𝑋 = �⃗�!

𝑥!,"

𝑥!,#
(�⃗�&, 𝑐& = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�#, 𝑐# = 2)

Learning logistic regression
We want to learn the model parameters, 𝑊 = 𝑤#, … ,𝑤$, in order to maximize
the probability of the observed data:

𝑃 𝔇 𝑊 =Z
!/#

.

softmax
%$

𝑊(�⃗�!

𝑥!,"

𝑥!,#
(�⃗�&, 𝑐& = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�#, 𝑐# = 2)

Learning logistic regression
We want to learn the model parameters, 𝑊 = 𝑤#, … ,𝑤$, in order to maximize
the probability of the observed data:

𝑃 𝔇 𝑊 =Z
!/#

.
𝑒)%$

" *⃗$

∑1/#$ 𝑒)&"*⃗$

𝑥!,"

𝑥!,#
(�⃗�&, 𝑐& = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�#, 𝑐# = 2)

How do you maximize a function?

Our goal is to find 𝑊 = 𝑤#, … ,𝑤$ in order to maximize

𝑃 𝔇 𝑊 =Z
!/#

.
𝑒)%$

" *⃗$

∑1/#$ 𝑒)&"*⃗$
Here are some useful things to know:
1. Logarithm turns products into sums
2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊)

1. Logarithms turn products into sums
ln 𝑥 (the natural logarithm of x, shown
as log9 𝑥 in the plot at right) is a
monotonically increasing function of x.
Since it’s monotonically increasing,

argmax
:

𝑃 𝔇 𝑊 = argmax
:

ln 𝑃 𝔇 𝑊

Almost always, maximizing the log
probability is easier than maximizing
the probability, because logarithms turn
products into sums. Logarithm_plots.png, CC-SA 3.0, Richard F. Lyon, 2011

1. Logarithms turn products into sums

Our goal is to find 𝑊 = 𝑤#, … ,𝑤$ in order to maximize

ln𝑃 𝔇 𝑊 =\
!/#

.

ln
𝑒)%$

" *⃗$

∑1/#$ 𝑒)&"*⃗$
=\

!/#

.

𝑤%$
(�⃗�! − ln\

1/#

$

𝑒)&
"*⃗$

2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊).

Our goal is to find 𝑊 = 𝑤#, … ,𝑤$ in order to maximize

ln𝑃 𝔇 𝑊 =\
!/#

.

𝑤%$
(�⃗�! − ln\

1/#

$

𝑒)&
"*⃗$

Choosing W to maximizing 𝑤%$
(�⃗�!is kind of obvious: just set 𝑤%$ = 𝐴�⃗�!,

where A is a scalar that’s as big as possible. Maximizing
− ln∑1/#$ 𝑒)&

"*⃗$, is not obvious.

2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊).

To emphasize the hard part of the problem, there is a convention that,
instead of maximizing ln𝑃 𝔇 𝑊 , we minimize −ln𝑃 𝔇 𝑊 :
Our goal is to find 𝑊 = 𝑤#, … ,𝑤$ in order to minimize

𝔏 = − ln𝑃 𝔇 𝑊 =\
!/#

.

ln\
1/#

$

𝑒)&
"*⃗$ −𝑤%$

(�⃗�!

The curly 𝔏 is a symbol we use to denote a “loss function”. A loss
function is something you want to minimize.

Some details: Cross entropy

• The loss function is called “cross entropy,” because it is similar in
some ways to the entropy of a thermodynamic system in physics.
• When you implement this in software, it’s a good idea to normalize by

the number of training tokens, so that the scale is easier to
understand:

𝔏 = −
1
𝑛 log𝑃 𝔇 𝑊 = −

1
𝑛\
!/#

.

log P C = 𝑐! 𝑋 = �⃗�!

Outline

• One-hot vectors: rewriting the perceptron to look like linear
regression
• Softmax: Soft category boundaries
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent for logistic regression

Logistic regression training

• In each iteration, present a batch of training data, 𝔇 =
𝑥#, 𝑐# , 𝑥,, 𝑐, , … , 𝑥., 𝑐. .
• If the batch contains all the data, this is called “gradient descent”
• If the batch contains a randomly chosen subset of the data, this is called

“stochastic gradient descent”

• Calculate P Class = 𝑐 𝑋 = �⃗�! = softmax
%

𝑊(�⃗� for each training
token �⃗�!, for each class 𝑐.
• Update all the weight vectors using stochastic gradient descent.

Logistic regression training example
Start with the given dataset 𝔇. Here the true class is indicated by both
color and shape.

𝑥!"

𝑥!#

Logistic regression training example
Randomly initialize the weight vectors, and then calculate the
probabilities P Y = 𝑐 𝑋 = 𝑥! for every class 𝑐, for every training token
(shown as transparency and color change, left side)

𝑥!"

𝑥!#

𝑤#

𝑤"

𝑤-

Logistic regression training example
Modify the weight vectors to reduce the loss function, as

𝑤% ← 𝑤% − 𝜂∇)%𝔏

𝑥!"

𝑥!#

𝑤#

𝑤"
𝑤-

Logistic regression training example
Repeat until the loss stops decreasing: 𝑤% ← 𝑤% − 𝜂∇)%𝔏

𝑤#

𝑤"
𝑤-

𝑥!"

𝑥!#

Stochastic gradient descent

Our goal is to find 𝑊 = 𝑤#, … ,𝑤$ in order to minimize

𝔏 = − ln𝑃 𝔇 𝑊 =\
!/#

.

ln\
1/#

$

𝑒)&
"*⃗$ −𝑤%$

(�⃗�!

Just like in linear regression, let’s do that one token at a time. Choose a
training token �⃗�!, 𝑐! , and try to minimize

𝔏! = −ln𝑃 𝐶 = 𝑐! 𝑋 = �⃗�! = ln\
1/#

$

𝑒)&
"*⃗$ −𝑤%$

(�⃗�!

Stochastic gradient descent

Our goal is to find 𝑊 = 𝑤#, … ,𝑤$ in order to minimize

𝔏! = ln\
1/#

$

𝑒)&
"*⃗$ −𝑤%$

(�⃗�!

We do that by adjusting 𝑤% ← 𝑤% − 𝜂∇)%𝔏!, where
• 𝜂 is called the learning rate. Typically 𝜂 ≈ 0.001, but it’s very hard to

know in advance what learning rate will work for a particular
problem; you need to experiment to see what works.
• ∇)%𝔏! is the gradient of the loss with respect to 𝑤%.

The gradient of the cross-entropy of a softmax

Now, let’s calculate that gradient.

∇)%𝔏! = ∇)% ln\
1/#

$

𝑒)&
"*⃗$ − ∇)% 𝑤%$

(�⃗�!

= ∇)% ln\
1/#

$

𝑒)&
"*⃗$ − 𝑦!,%�⃗�!

…where 𝑦!,% is our old friend the one-hot vector:

𝑦!,% = %1 𝑐! = 𝑐
0 otherwise

The gradient of the cross-entropy of a softmax

∇)%𝔏! = ∇)% ln\
1/#

$

𝑒)&
"*⃗$ − 𝑦!,%�⃗�!

=
𝑒)%"*⃗$

∑1/#$ 𝑒)&"*⃗$
�⃗�! − 𝑦!,%�⃗�!

= 𝑓% �⃗�! − 𝑦!,% �⃗�!

= 𝜖!,%�⃗�!

Conclusion

• Perceptron:
𝜖!,% = 𝑓% �⃗�! − 𝑦!,%, 𝑤% ← 𝑤% − 𝜂𝜖!,%�⃗�!

• Linear Regression:
𝜖!,% = 𝑓% �⃗�! − 𝑦!,%, 𝑤% ← 𝑤% − 𝜂𝜖!,%�⃗�!

• Logistic Regression:
𝜖!,% = 𝑓% �⃗�! − 𝑦!,%, 𝑤% ← 𝑤% − 𝜂𝜖!,%�⃗�!

The only difference is how you define the network output (argmax,
linear, or softmax).

Comparison of Multi-Class Perceptron to Multiple Regression

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏#𝑏&

𝑤#,(

𝑏$

𝑤&,(
𝑤$,(

Multi-Class Perceptron:
One-hot output

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏#𝑏&

𝑤#,(

𝑏$

𝑤&,(
𝑤$,(

Multiple Regression:
Real-valued Output

𝑓! �⃗� = 𝑤!"𝑥

𝑓# �⃗� = 𝑤#"𝑥

𝑓$ �⃗� = 𝑤$"𝑥

𝑓! �⃗� = &1 1 = argmax𝑤%"�⃗�
0 otherwise

𝑓# �⃗� = &1 2 = argmax𝑤%"�⃗�
0 otherwise

𝑓$ �⃗� = &1 𝑉 = argmax𝑤%"�⃗�
0 otherwise

.

.

.

.

.

.

Logistic Regression

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏#𝑏&

𝑤#,(

𝑏$

𝑤&,(
𝑤$,(

Logistic Regression:
Output is a vector of probabilities

𝑓! �⃗� = softmax
!

𝑊"�⃗�&

𝑓# �⃗� = softmax
#

𝑊"�⃗�&

𝑓$ �⃗� = softmax
$

𝑊"�⃗�&

.

.

.

