
CS440/ECE448 
Lecture 7: 
Linear Regression
Mark Hasegawa-Johnson, 1/2022

License: CC-BY 4.0; redistribute at 
will, as long as you cite the source.

Public domain 
image, Oleg 

Alexandrov, 2008



Outline

• Review: perceptron
• Linear regression: a neuron without the nonlinearity
• Mean-squared error
• Learning the solution: stochastic gradient descent
• Multiple linear regression



Review: Perceptron Learning Algorithm

For each training instance �⃗� with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑓(�⃗�) = sign(𝑤!𝑥)
• Update weights:   
• If 𝑓 �⃗� = 𝑦 then do nothing
• If 𝑓 �⃗� ≠ 𝑦 then 

𝑤 = 𝑤 + 𝑦�⃗� = /𝑤 + �⃗� 𝑦 = +1
𝑤 − �⃗� 𝑦 = −1



Example
Now we have 𝑤! = 0,2,1 .
Suppose the next token is �⃗�! = −2,1,1 , with the label 𝑦 = −1.  Since 
𝑓 𝑥 is wrong, we update: 

𝑤 = 𝑤 − �⃗�

𝑓 𝑥 = −1

𝑓(𝑥) = 1

𝑤 =
0
2
1
−

−2
1
1

=
2
1
0

LEARN!

𝑓 𝑥 = −1

𝑓(𝑥) = 1-1

�⃗� =
−2
1
1

, 𝑦 = −1

+1

-1

+1



Review: Multi-Class Perceptron

For each training instance �⃗� with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑓(�⃗�) = argmax

!
(𝑤,-�⃗�)

• Update weights:   
• If 𝑓 �⃗� = 𝑦 then do nothing
• If 𝑓 �⃗� ≠ 𝑦 then 

𝑤" = 𝑤" + 𝜂�⃗�
𝑤#(&⃗) = 𝑤#(&⃗) − 𝜂�⃗�



Notation: Vector dot product, with bias added

𝑓 �⃗� = argmax
!

(𝑤"!�⃗�)

�⃗� =

𝑥"
⋮
𝑥#
1

, 𝑤! =

𝑤!,"
⋮

𝑤!,#
𝑏!

𝑤!%𝑥 = 𝑏! +6
&'"

#

𝑤!,&𝑥&

𝑥7

𝑥8

𝒇(𝒙) = 0

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16 𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19



Outline

• Review: perceptron
• Linear regression: a neuron without the nonlinearity
• Mean-squared error
• Learning the solution: stochastic gradient descent
• Multiple linear regression



Linear regression
Linear regression is used to 
estimate a real-valued target 
variable, 𝑦, using a linear 
combination of real-valued input 
variables:

𝑓 𝑥 = 𝑤!�⃗� = 𝑏 +2
#$%

&

𝑤#𝑥#

… so that …
𝑓 𝑥 ≈ 𝑦

Linear regression.  Public 
domain image, Seewaqu, 2010

𝑦

𝑓(𝑥)

𝑥%

𝑏

𝑤%



Linear regression is like a neuron without a nonlinearity

• The neuron’s excitation is

𝑤!�⃗� = 𝑏 +2
#$%

&

𝑤#𝑥#

• The neuron’s activation is

𝑓(𝑥) = 𝑤!�⃗�

1

x1

xD

b

w1

w2

x2

wD

Input

Weights

.

.

.

Output: wTx



Polynomial regression = multivariate linear 
regression

Polyreg_scheffe.svg.  CC-BY 3.0, 
Skbkekas, 2009

We can use linear regression to solve 
nonlinear regression problems by 
simply augmenting the features.  For 
example, suppose we start with just 
one input variable, x, but suppose we 
expand it to four variables like this:

�⃗� =

𝑥
𝑥2
𝑥3
1

Then
𝑓 𝑥 = 𝑤4�⃗�
= 𝑏 + 𝑤5𝑥 + 𝑤2𝑥2 +𝑤3𝑥3



Multivariate linear regression in general

Regression_plane_avc_R.svg.  
CC-SA 3.0, Cdang, 2013

More generally, multivariate linear 
regression fits a D-dimensional 
hyperplane in the (D+1)-
dimensional space (𝑥%, … , 𝑥&, 𝑦):

�⃗� =

𝑥%
⋮
𝑥&
1

Then

𝑓 �⃗� = 𝑤!�⃗� = 𝑏 +2
#$%

&

𝑤#𝑥#



Outline

• Review: perceptron
• Linear regression: a neuron without the nonlinearity
• Mean-squared error
• Learning the solution: stochastic gradient descent
• Multiple linear regression



What does it mean that 
𝑓 𝑥 ≈ 𝑦?
• Generally, we want to choose 

the weights and bias, 𝑤, in order 
to minimize the errors.
• The errors are the vertical green 

bars in the figure at right,
𝜖 = 𝑓 �⃗� − 𝑦

• Some of them are positive, some 
are negative.  What does it mean 
to “minimize” them? Public domain 

image, Oleg 
Alexandrov, 2008



First: count the training 
tokens
Let’s introduce one more index 
variable.  Let 𝑖=the index of the training 
token.

�⃗�' =

𝑥',%
⋮
𝑥',&
1

𝑓 �⃗�' = �⃗�'!𝑤 = 𝑏 +2
#$%

&

𝑥',#𝑤#
Public domain 

image, Oleg 
Alexandrov, 2008



Training token errors

Using that notation, we can define a 
signed error term for every training 
token:

𝜖' = 𝑓 �⃗�' − 𝑦'

The error term is positive for some 
tokens, negative for other tokens.  
What does it mean to minimize it?

Public domain 
image, Oleg 

Alexandrov, 2008



Mean-squared error
One useful criterion (not the only useful criterion, 
but perhaps the most common) of “minimizing the 
error” is to minimize the mean squared error:

𝑀𝑆𝐸 =
1
𝑛'
!"#

$

𝜖!%

=
1
𝑛'
!"#

$

�⃗�!&𝑤 − 𝑦!
%

Literally,
• … the mean …
• … of the square …
• … of the error terms.

Public domain 
image, Oleg 

Alexandrov, 2008



Outline

• Review: perceptron
• Linear regression: a neuron without the nonlinearity
• Mean-squared error
• Learning the solution: stochastic gradient descent
• Multiple linear regression



Minimizing the MSE

Our goal is to find the coefficients 𝑤 = 𝑤%, … ,𝑤&, 𝑏 ! that minimize 
the MSE:

𝑀𝑆𝐸 =
1
𝑛2
'$%

)

�⃗�'!𝑤 − 𝑦(
*

=
1
𝑛2
'$%

)

𝑏 +2
#$%

&

𝑤#𝑥',# − 𝑦'

*



MSE = Parabola
Notice that, although it looks kind of 
complicated, the MSE is just a 
parabola in terms of 𝑏 and 𝑤#:

𝑀𝑆𝐸 =
1
𝑛2
'$%

)

𝑏 +2
#$%

&

𝑤#𝑥',# − 𝑦'

*

Since it’s a parabola, it has a unique
minimum that you can compute in
closed form!  But we won’t do that 
today.  Instead…

𝑤

𝑀𝑆𝐸 = 𝑎𝑤) + 𝑏𝑤 + 𝑐



The iterative solution to linear regression
Instead of minimizing MSE in closed 
form, we’re going to use an iterative 
algorithm called gradient descent.  It 
works like this:
• Start from a random initial value of
𝑤 (at 𝑡 = 0).
• Adjust𝑤 in order to reduce MSE 

(𝑡 = 1).
• Repeat until you reach the 

optimum (𝑡 = ∞).
𝑤

𝑀𝑆𝐸 = 𝑎𝑤) + 𝑏𝑤 + 𝑐
𝑡 = 0

𝑡 = 1
𝑡 = ∞

…



The gradient descent algorithm
• Start from a random initial value of 𝑤.
• Calculate the derivative of MSE with respect to𝑤:

∇'𝑀𝑆𝐸 =

𝜕𝑀𝑆𝐸
𝜕𝑤#
⋮

𝜕𝑀𝑆𝐸
𝜕𝑤(
𝜕𝑀𝑆𝐸
𝜕𝑏

• Take a step “downhill” (in the direction of the negative 
gradient

𝑤 ← 𝑤 −
𝜂
2∇'𝑀𝑆𝐸

…where 𝜂 is a constant called the “learning rate,” that 
determines how big of a step you take.  Usually, you 
need to adjust 𝜂 in order to get optimum performance 
on a dev set, but often 𝜂 ≈ 0.001.

𝑤

𝑀𝑆𝐸 = 𝑎𝑤) + 𝑏𝑤 + 𝑐



Stochastic gradient descent
• If n is large, computing or differentiating MSE can be expensive.  
• The stochastic gradient descent algorithm picks one training token 
�⃗�', 𝑦' at random (”stochastically”), and adjusts 𝑤 in order to reduce 

the error a little bit for that one token:
𝑤 ← 𝑤 −

𝜂
2∇+𝜖'

*

…where
𝜖'* = �⃗�'!𝑤 − 𝑦(

*



Stochastic gradient descent
𝜖C8 = �⃗�C!𝑤 − 𝑦C

8

If we differentiate that, we discover 
that:

∇D𝜖C8 = 2𝜖C�⃗�C

So the stochastic gradient descent 
algorithm is:

𝑤 ← 𝑤 − 𝜂𝜖C�⃗�C
𝑤

𝜖(
) = 𝑎𝑤) + 𝑏𝑤 + 𝑐



Comparison of perceptron and linear 
regression
Perceptron:

• If 𝑓 �⃗� = 𝑦 then do nothing

• If 𝑓 �⃗� = 1 but 𝑦 = −1: 
𝑤 ← 𝑤 − 𝜂�⃗�

• If 𝑓 �⃗� = −1 but 𝑦 = 1: 
𝑤 ← 𝑤 + 𝜂�⃗�

Linear regression:

• If 𝜖C = 0 then do nothing

• If 𝜖C > 0:
𝑤 ← 𝑤 − 𝜂𝜖C�⃗�C

• If 𝜖C < 0:
𝑤 ← 𝑤 − 𝜂𝜖C�⃗�C



Outline

• Review: perceptron
• Linear regression: a neuron without the nonlinearity
• Mean-squared error
• Learning the solution: stochastic gradient descent
• Multiple linear regression



What if �⃗� is a vector?
Sometimes we want to model a 
system with many inputs, and many
outputs. In that case, 𝑦 and f(x) 
both become vectors:

�⃗� =
𝑦%
⋮
𝑦,

, 𝑓(�⃗�) =
𝑓%(�⃗�)
⋮

𝑓,(�⃗�)

…and our goal is to find a function
𝑓(�⃗�) so that 𝑓(�⃗�) ≈ �⃗�.

CC-SA 4.0, Joseph Lamiot, 2019



What if �⃗� is a vector?
We can model this using multiple 𝑤"
vectors, a little like we did for multi-
class perceptron:

𝑓" �⃗� = 𝑤"!𝑥 = 𝑏" +2
#$%

&

𝑤",#𝑥#

CC-SA 4.0, Joseph Lamiot, 2019



The gradient of the error with 
respect to each of the weights is:

𝜖",' = 𝑓" �⃗�' − 𝑦",'

CC-SA 4.0, Joseph Lamiot, 2019

… it means 𝜖: is a 
vector!



This means that we have a different 
error term for each of the weight 
vectors:

∇+*𝜖",'
* = 2𝜖",'�⃗�'

… so the stochastic gradient descent 
update step is

𝑤" ← 𝑤" − 𝜂𝜖",'�⃗�'

CC-SA 4.0, Joseph Lamiot, 2019

… and each 𝑤; has its 
own gradient.



Comparison of Multi-Class Perceptron to Multiple Regression

1

x1

xD

x2

Input Weights

.

.

.

Output:
argmax!"#$ 𝑤!%�⃗�

.

.

.

𝑏&𝑏#

𝑤&'

𝑏$(#

𝑤#'
𝑤$(#,'

argm
ax

.

.

.

Multi-Class Perceptron

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏&𝑏#

𝑤&'

𝑏$(#

𝑤#'
𝑤$(#,'

Multiple Regression

𝑓! �⃗� = 𝑤!"𝑥

𝑓# �⃗� = 𝑤#"𝑥

𝑓$ �⃗� = 𝑤$"𝑥



Summary
• Review: perceptron
• Linear regression: a neuron without the nonlinearity

𝑓 �⃗� = 𝑤4�⃗�
• Mean-squared error

𝑀𝑆𝐸 =
1
𝑛.
?@5

A

𝜖?2 =
1
𝑛.
?@5

A

�⃗�?4�⃗� − 𝑦?
2

• Learning the solution: stochastic gradient descent
𝑤 ← 𝑤 −

𝜂
2
∇B𝜖?2 = 𝑤 − 𝜂𝜖?�⃗�?

• Multiple linear regression
𝑤C ← 𝑤C −

𝜂
2
∇B)𝜖C,?

2 = 𝑤C − 𝜂𝜖C,?�⃗�?


