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• Perceptron: Teaching the McCulloch-Pitts neuron to learn
• Linear classifiers in general
• Relationship between weights and data in a linear classifier
• The perceptron learning algorithm
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly 
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron



McCulloch-Pitts Artificial Neuron, 1943
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• In 1943, McCulloch & Pitts 
proposed that biological neurons 
have a nonlinear activation 
function (a step function) whose 
input is a weighted linear 
combination of the currents 
generated by other neurons.
• They showed lots of examples of 

mathematical and logical 
functions that could be computed 
using networks of simple neurons 
like this.



Biological inspiration: Hebbian learning

“Neurons that fire together, wire together.
…

The general idea is an old one, that any two cells or systems of cells 
that are repeatedly active at the same time will tend to become 

`associated’ so that activity in one facilitates activity in the other.”

- D.O. Hebb, 1949



Rosenblatt’s interpretation of Hebb’s idea: add a supervision signal that 
tells the neuron what its output should have been.
• If the neuron got the right answer, don’t change the weights.
• Else: If the correct answer was “+1”, then adjust the weights so that 
∑!𝑤!𝑥!, in the McCulloch-Pitt neuron, is more positive
• Else: If the correct answer was “-1”, then adjust the weights so that 
∑!𝑤!𝑥!, in the McCulloch-Pitt neuron, is more negative



Perceptron 1959: Rosenblatt is granted a 
patent for the “perceptron,” an 
electrical circuit model of a 
neuron, with the ability to 
learn from data.
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Classifier example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

By YellowLabradorLooking_new.jpg: *derivative work: Djmirko (talk)YellowLabradorLooking.jpg: 
User:HabjGolden_Retriever_Sammy.jpg: Pharaoh HoundCockerpoo.jpg: ALMMLonghaired_yorkie.jpg: Ed Garcia from 
United StatesBoxer_female_brown.jpg: Flickr user boxercabMilù_050.JPG: AleRBeagle1.jpg: 
TobycatBasset_Hound_600.jpg: ToBNewfoundland_dog_Smoky.jpg: Flickr user DanDee Shotsderivative work: 
December21st2012Freak (talk) -
YellowLabradorLooking_new.jpgGolden_Retriever_Sammy.jpgCockerpoo.jpgLonghaired_yorkie.jpgBoxer_female_br
own.jpgMilù_050.JPGBeagle1.jpgBasset_Hound_600.jpgNewfoundland_dog_Smoky.jpg, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=10793219

By Alvesgaspar - Top left:File:Cat August 2010-4.jpg by AlvesgasparTop middle:File:Gustav chocolate.jpg by 
Martin BahmannTop right:File:Orange tabby cat sitting on fallen leaves-Hisashi-01A.jpg by HisashiBottom
left:File:Siam lilacpoint.jpg by Martin BahmannBottom middle:File:Felis catus-cat on snow.jpg by 
Von.grzankaBottom right:File:Sheba1.JPG by Dovenetel, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=17960205



Classifier example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #1:  Cats are smaller than dogs.

Our robot will pick up the animal and weigh it.

If it weighs more than 20 pounds, call it a dog.   Otherwise, call it a 
cat.



Classifier example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

CC BY-SA 4.0, 
https://commons.wikimedia.o
rg/w/index.php?curid=550843
03



Classifier example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #2:  Dogs are tame, cats are wild.

We’ll try the following experiment: 40 different people call the 
animal’s name.  Count how many times the animal comes when 
called.

If the animal comes when called, more than 20 times out of 40, 
it’s a dog.
If not, it’s a cat.



Classifier example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

By Smok Bazyli - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=16864492



Classifier example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #3:  
𝑥! = # times the animal comes when called (out of 40).
𝑥" = weight of the animal, in pounds.
If 0.5𝑥! + 0. 5𝑥" > 20, call it a dog.
Otherwise, call it a cat.

This is called a “linear classifier” because 0.5𝑥! + 0. 5𝑥" = 20 is 
the equation for a straight line.



Linear Classifiers in General
Consider the classifier  
𝑓(𝑥) = 1 if 𝑏 + ∑-./0 𝑤-𝑥- > 0,          otherwise 𝑓 𝑥 = −1
This is called a “D-dimensional linear classifier” because the 

boundary between the two classes is a line.  Here is an example 
of such a classifier, with its boundary plotted as a line in the 

two-dimensional space 𝑥/ by 𝑥1:

𝑥/

𝑥1
𝑓 𝑥 = −1

𝑓(𝑥) = 1



Simplify notation: use the signum function
We can write this as  

𝑓 𝑥 = sign 𝑏 +3
-./

0

𝑤-𝑥- , sign 𝜉 = 6 1 𝜉 > 0
−1 𝜉 < 0

𝑥/

𝑥1
𝑓 𝑥 = −1

𝑓(𝑥) = 1



Simplify notation: use a vector dot product
We can save some space if we write this as a vector dot product:

𝑓 �⃗� = sign 𝑤#�⃗� , �⃗� =

𝑥!
⋮
𝑥$
1

, 𝑤 =

𝑤!
⋮
𝑤$
𝑏

, 𝑤#�⃗� = 𝑏 +<
%&!

$

𝑤%𝑥%

𝑥/

𝑥1
𝑓 𝑥 = −1

𝑓(𝑥) = 1



McCulloch-Pitt Neuron is a Linear Classifier
In particular, the M-P neuron 
inspires these two names:
• The neuron’s excitation is

𝑤"�⃗� = 𝑏 +)
#$%

&

𝑤#𝑥#

• The neuron’s activation is

𝑓(𝑥) = sign 𝑤"�⃗�
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Can incorporate bias as 
component of the weight 
vector by always including a 
feature with value set to 1
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Relationship between weights and data

Consider the classifier

𝑓 𝑥 = sign 1 +*
!"#

$

𝑥!

i.e.,

�⃗� =

𝑥#
⋮
𝑥$
1

, 𝑤 =
1
⋮
1
1

Then the boundary between class +1 
and class -1 is…

𝑓 𝑥 = −1

𝑓(𝑥) = 1



Relationship between weights and data

Notice that the vector

𝑤 =
1
⋮
1
1

… is perpendicular to the
boundary between the two 
classes. 𝑓 𝑥 = −1

𝑓(𝑥) = 1

𝑤 =
1
⋮
1
1



Relationship between weights and data

This is a fundamental geometry 
fun-fact!  If

𝑓(𝑥) = sign 𝑤"�⃗�

… then the boundary between
𝑓(𝑥) = 1 and 𝑓(𝑥) = −1 is 
always a hyperplane 
perpendicular to the vector 𝑤.

𝑓 𝑥 = −1

𝑓(𝑥) = 1

𝑤 =
1
⋮
1
1



Another example

𝑓 𝑥 = sign −2 + 𝑥% + 2𝑥'
i.e.,

�⃗� =
𝑥%
𝑥'
1
,𝑤 =

1
2
−2

𝑓 𝑥 = −1

𝑓(𝑥) = 1

𝑤 =
1
2
−2



Another example

𝑓 𝑥 = sign −𝑥% − 2𝑥'
i.e., 

�⃗� =
𝑥%
𝑥'
1
,𝑤 =

−1
−2
0

𝑓 𝑥 = 1

𝑓 𝑥 = −1

𝑤 =
−1
−2
0
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Rosenblatt’s interpretation of Hebb’s idea: add a supervision signal that 
tells the neuron what its output should have been.
• If the neuron got the right answer, don’t change the weights.
• Else: If the correct answer was “+1”, then adjust the weights so that 
∑!𝑤!𝑥!, in the McCulloch-Pitt neuron, is more positive
• Else: If the correct answer was “-1”, then adjust the weights so that 
∑!𝑤!𝑥!, in the McCulloch-Pitt neuron, is more negative

Perceptron Learning Algorithm



Rosenblatt’s interpretation of Hebb’s idea: add a supervision signal that 
tells the neuron what its output should have been.
• If the neuron got the right answer, don’t change the weights.
• Else: If the correct answer was “+1”, then adjust the weights so that 
∑!𝑤!𝑥!, in the McCulloch-Pitt neuron, is more positive by setting

𝑤 = 𝑤 + �⃗�
• Else: If the correct answer was “-1”, then adjust the weights so that 
∑!𝑤!𝑥!, in the McCulloch-Pitt neuron, is more negative:

𝑤 = 𝑤 − �⃗�

Perceptron Learning Algorithm



Example
Start with 𝑤" = 0,0,0 .  Then, no matter what �⃗� is, 𝑓 𝑥 = sign 𝑤"�⃗�
will be wrong, because it’s undefined.
Suppose that �⃗�" = 0,2,1 , with the label 𝑦 = +1.  Since the 𝑓 𝑥 was 
wrong, we update: 

𝑤 = 𝑤 + �⃗�

𝑤 =
0
0
0 𝑓 𝑥 = −1

𝑓(𝑥) = 1𝑤 =
0
2
1

�⃗� =
0
2
1
, 𝑦 = 1

𝑓(𝑥) undefined everywhere

LEARN!

+1 +1



Example
Now we have 𝑤" = 0,2,1 .
Suppose the next token is �⃗�" = −2,1,1 , with the label 𝑦 = −1.  Since 
𝑓 𝑥 is wrong, we update: 

𝑤 = 𝑤 − �⃗�

𝑓 𝑥 = −1

𝑓(𝑥) = 1

𝑤 =
0
2
1
−

−2
1
1

=
2
1
0

LEARN!

𝑓 𝑥 = −1

𝑓(𝑥) = 1-1

�⃗� =
−2
1
1

, 𝑦 = −1

+1

-1

+1



Example
Suppose the next token is �⃗�" = 3,0,1 , with the label 𝑦 = +1.  Since 
𝑓 𝑥 is right, the weights don’t need to be updated: 

𝑤 = 𝑤

𝑓 𝑥 = −1

𝑓(𝑥) = 1

𝑤 unchanged

No 
correction 
necessary!

�⃗� =
3
1
1
, 𝑦 = +1

-1

+1

𝑓 𝑥 = −1

𝑓(𝑥) = 1

-1

+1

+1 +1



Perceptron Learning Algorithm

For each training instance �⃗� with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑓(�⃗�) = sgn(𝑤=𝑥)
• Update weights:   
• If 𝑓 �⃗� = 𝑦 then do nothing
• If 𝑓 �⃗� ≠ 𝑦 then 

𝑤 = 𝑤 + 𝑦�⃗� = >𝑤 + �⃗� 𝑦 = +1
𝑤 − �⃗� 𝑦 = −1
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Does the perceptron find an answer?
Does it find the correct answer?
Suppose we run the perceptron algorithm for a very long time.   Will it 
converge to an answer?  Will it converge to the correct answer? 
That depends on whether or not the data are linearly separable.
”Linearly separable” means it’s possible to find a line (a hyperplane, in D-
dimensional space) that separates the two classes, like this:

𝑥/

𝑥1



Convergence of the Perceptron
• If the data are linearly separable, as shown below, then the perceptron is 

guaranteed to reach a value of 𝑤 that classifies the training data with 100% 
accuracy.
• When it reaches 100% accuracy, there are no more mistakes, therefore𝑤

stops changing! We say that it has “converged.”

𝑥/

𝑥1



Convergence of the Perceptron
• If the data are NOT linearly separable, as shown below, then every possible

value of𝑤 will make some mistakes.
• Therefore 𝑤 never stops changing.
• The perceptron algorithm never converges.

𝑥/

𝑥1

?



Perceptron with learning rate
•We can force the perceptron to converge to a reasonably good 

answer, even if the data aren’t linearly separable, by multiplying 
the update by a learning rate, 𝜂:

• If 𝑓 �⃗� = 𝑦 then do nothing
• If 𝑓 �⃗� ≠ 𝑦 then 

𝑤 = 𝑤 + 𝜂𝑦�⃗� = >𝑤 + 𝜂�⃗� 𝑦 = +1
𝑤 − 𝜂�⃗� 𝑦 = −1

•We force it to converge by choosing a value of 𝜂 that gets 
gradually smaller.  For example, on the 𝑛>? iteration of training, 
we can set 𝜂 = /

@
.
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Multi-Class Perceptron
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True class is 𝑦 ∈ {1,2,… , 𝑉}.
Classifier output is 

𝑓(𝑥) = argmax'&()*! 𝑤',!𝑥! +⋯+ 𝑤',$𝑥$ + 𝑏'

= argmax($%) 𝑤("�⃗�
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.



Multi-Class Perceptron

𝑥/

𝑥1

𝒇(𝒙) = 0

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16 𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19

The argmax classifier, 

𝑓(�⃗�) = argmax($%) 𝑤("�⃗�

results in classification boundaries that 
are piece-wise linear.

Just think about why that is: the
boundary between the regions for y=1 
and y=2 is the line where

𝑤%"�⃗� = 𝑤'"�⃗�
… or in other words, 𝑤% −𝑤' "�⃗� = 0, 

which is the equation for a straight 
line!



Training a Multi-Class Perceptron
First, classify a training token, 𝑓(�⃗�) = argmaxH./I 𝑤H=�⃗� .  Then:
• If 𝑓 �⃗� = 𝑦 then do nothing
• If 𝑓 �⃗� ≠ 𝑦 then
• Add x to the vector that should have been the winner:

𝑤J = 𝑤J + 𝜂�⃗�

• Subtract x from the vector that shouldn’t have won, but did:
𝑤K(L) = 𝑤K(L) − 𝜂�⃗�

• Don’t change any of the other classes



Conclusions

• Perceptron as a model of a biological neuron: 𝑓(𝑥) = sign(𝑤#𝑥)
• The perceptron learning algorithm: if 𝑦 = 𝑓(𝑥) then do nothing, else 
𝑤 = 𝑤 + 𝜂y𝑥.
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly 
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron: if 𝑦 = 𝑓(𝑥) then do nothing, else 𝑤+ = 𝑤+ +
𝜂𝑥, and 𝑤,(.) = 𝑤K(L) − 𝜂𝑥.


