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Naïve Bayes

• minimum probability of error
• Bayes’ rule
• naïve Bayes
• unigrams and bigrams
• estimating the likelihood: maximum likelihood parameter estimation



Minimum Probability of Error 

• Suppose we have an experiment with two random variables, 
X and Y.
• X is something we can observe, like the words in an email.
• Y is something we can’t observe, but we want to know.  For 

example, Y=1 means the email is spam (junk mail), Y=0 means it’s 
ham (desirable mail).  

• Can we train an AI to read the email, and determine 
whether it’s spam or not?
• Obviously, the AI will sometimes make errors.  A useful 

performance criterion is the probability of an error.

https://en.wikipedia.org/wiki/Spam_(Monty_Python)


Minimum Probability of Error 

• Let’s say that f(X) is the decision made by the AI: it sees X, 
and tries to figure out the value of Y.
• The probability of error is the probability that 𝑓 𝑋 ≠ 𝑌

𝑃 Error = 𝑃 𝑌 = 1, 𝑓 𝑋 = 0 + 𝑃(𝑌 = 0, 𝑓 𝑋 = 1)

• Our goal, as system designers, is to design the function f(X)
in order to minimize the probability of error.



Minimum Probability of Error 

• We can be a bit more specific.  Since f(X) is a function of X, 
we can require that f(X) minimizes the probability of error 
for every particular value of X:

𝑃 Error|𝑋 = 𝑥 = 2𝑃(𝑌 = 1|𝑋 = 𝑥) 𝑓 𝑥 = 0
𝑃(𝑌 = 0|𝑋 = 𝑥) 𝑓 𝑥 = 1

• We don’t have control over Y, we don’t have control over X.  
The only thing we can control, in the equation above, is f(x).  
• What should f(x) be, in order to minimize P(Error|X)?



Minimum Probability of Error 

• We can minimize the probability of error by designing f(x) so 
that f(x)=1 when Y=1 is more probable, and f(x)=0 when Y=0 
is more probable.

𝑓(𝑥) = 21 𝑃 𝑌 = 1 𝑋 = 𝑥 > 𝑃(𝑌 = 0|𝑋 = 𝑥)
0 𝑃 𝑌 = 1 𝑋 = 𝑥 < 𝑃(𝑌 = 0|𝑋 = 𝑥)

• This statement is so obvious that we sometimes don’t 
notice how profound it is.



MPE = MAP 

• The “minimum probability of error” (MPE) decision rule is 
the rule that chooses f(X) in order to minimize the
probability of error:

𝑓(𝑥) = argmin𝑃(Error|𝑋 = 𝑥)

• The “maximum a posteriori” (MAP) decision rule is the rule 
that chooses f(X) in order to maximize the a posteriori
probability:

𝑓(𝑥) = argmax𝑃(𝑌 = 𝑓(𝑥)|𝑋 = 𝑥)

• Those two decision rules are the same.  MPE = MAP.



Naïve Bayes

• minimum probability of error
• Bayes’ rule
• naïve Bayes
• unigrams and bigrams
• estimating the likelihood: maximum likelihood parameter estimation



The Bayesian Scenario 

• Let’s use 𝑥~𝑋 to mean that 𝑥 is an instance of random 
variable 𝑋, and similarly 𝑦~𝑌.
• In order to minimize the probability of error, we just need to 

know 𝑃(𝑌 = 𝑦|𝑋 = 𝑥) for every pair of values 𝑥~𝑋 and 
𝑦~𝑌.  Then we choose 𝑓(𝑥) = argmax

!
𝑃(𝑌 = 𝑦|𝑋 = 𝑥).



Example: spam detection 
• But how can we estimate 𝑃(𝑌 = 𝑦|𝑋 = 𝑥)?
• The prior probability of spam might be obvious.  If 80% of all email on the internet 

is spam, that means that 
𝑃 𝑌 = 1 = 0.8, 𝑃 𝑌 = 0 = 0.2

• The probability of X given Y is also easy.  Suppose we have a database full of 
sample emails, some known to be spam, some known to be ham.  We count how 
often any word occurs in spam vs. ham emails, and estimate:
𝑃 𝑋 = 𝑥 𝑌 = 1 = frequency of the words 𝑥 in emails known to be spam
𝑃 𝑋 = 𝑥 𝑌 = 0 = frequency of the words 𝑥 in emails known to be ham

• Now we have 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 and 𝑃 𝑌 = 𝑦 .  How do we get 𝑃(𝑌 = 𝑦|𝑋 = 𝑥)?



Bayes’ Rule

• The reverend Thomas Bayes solved this problem for us in 1763.  His proof has 
three steps.  First, the definition of conditional probability:

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)
• Second, he pointed out that there’s only two ways X can equal x.  Either X=x and

Y=0, or X=x and Y=1:

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃 𝑋 = 𝑥, 𝑌 = 0 + 𝑃(𝑋 = 𝑥, 𝑌 = 1)
• Finally, apply the definition of conditional probability one more time:

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

𝑃 𝑋 = 𝑥|𝑌 = 0 𝑃(𝑌 = 0) + 𝑃 𝑋 = 𝑥 𝑌 = 1 𝑃(𝑌 = 1)

Rev. Thomas Bayes
(1702-1761)

By Unknown -
[2][3], Public 
Domain, 
https://commons.
wikimedia.org/w/i
ndex.php?curid=1
4532025

https://en.wikipedia.org/wiki/Bayes%27_theorem


Bayes’ Rule

• We can simplify Bayes rule (making it easier to remember) by putting a 
summation sign in the denominator:

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

∑!~# 𝑃 𝑋 = 𝑥 𝑌 = 𝑘 𝑃(𝑌 = 𝑘)

• Most people remember it in an even simpler form: just add together all the terms 
in the denominator to get:

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)

Rev. Thomas Bayes
(1702-1761)

By Unknown -
[2][3], Public 
Domain, 
https://commons.
wikimedia.org/w/i
ndex.php?curid=1
4532025



The four Bayesian probabilities

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦

𝑃(𝑋 = 𝑥)
This equation shows the relationship among four probabilities. This equation has 
become so world-famous, since 1763, that these four probabilities have standard 
universally recognized names that you need to know:
• 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 is the a posteriori (after-the-fact) probability, or posterior
• 𝑃(𝑌 = 𝑦) is the a priori (before-the-fact) probability, or prior
• 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 is the likelihood
• 𝑃(𝑋 = 𝑥) is the evidence
Bayes’ rule is: the posterior equals the prior times the likelihood over the evidence.



MPE = MAP using Bayes’ rule
• MPE = MAP: to minimize the probability of error, design f(X) so that

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦|𝑋 = 𝑥)

• Bayes’ rule: 

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦

𝑃(𝑋 = 𝑥)
• Putting the two together:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦
𝑃(𝑋 = 𝑥)

= argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦



MPE = MAP using Bayes’ rule
Suppose your goal is to minimize the probability of error:

𝑓(𝑥) = argmin𝑃(Error|𝑋 = 𝑥)

…but the only things you know are the prior 𝑃(𝑌 = 𝑦), and the
likelihood 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 .  Well, presto!  Using Bayes’ rule, we can 
prove that the MPE decision rule is:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦



Naïve Bayes

• minimum probability of error
• Bayes’ rule
• naïve Bayes
• unigrams and bigrams
• estimating the likelihood: maximum likelihood parameter estimation



MPE = MAP using Bayes’ rule
Using Bayes’ rule, we can prove that the MPE decision rule is:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦

• 𝑃(𝑌 = 𝑦) is always easy to estimate: we just estimate how many 
emails on the internet are spam, and how many are not spam.
• 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 is a little harder.  What does it mean to say that the 

words, x, have a particular probability?



The problem with likelihood: Too many words
What does it mean to say that the words, x, have a particular 
probability?
Suppose our training corpus contains two sample emails:
Email1: 𝑌 = 1, 𝑋 =“hi there man – feel the vitality! Nice meeting you…”
Email2: 𝑌 = 0, 𝑋 =“this needs to be in production by early afternoon…”

Our test corpus is just one email:
Email1: Y=?, X=“…approved prescription for you…”

How can we estimate 𝑃(𝑋 = “…approved prescription for you…”|𝑌)?



Naïve Bayes
Naïve Bayes approximates the likelihood.  Suppose that x is a list of 
several consecutive observations (e.g., words), thus

𝑥 = [𝑤", 𝑤#, … ,𝑤$]
The naïve Bayes approximation is the assumption that the words are 
conditionally independent given knowledge of the label:

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈N
%&"

$

𝑃(𝑊 = 𝑤%|𝑌 = 𝑦)

For example,
𝑃 𝑋 = “approved prescription… ” 𝑌 = Spam ≈

𝑃 𝑊 = approved 𝑌 = Spam 𝑃 𝑊 = prescription 𝑌 = Spam …



Naïve Bayes for words = “Bag-of-words”
Naïve Bayes is a general model, applying to any 
types of observations 𝑥 = [𝑤!, 𝑤", … , 𝑤#]. The 
special case we’ve been talking about, when 𝑤$ are 
words, is called a “bag of words” model.  
We call it “bag of words” because the naïve Bayes 
approximation notices which words are in the 
email, but it ignores their order.  It’s almost like we 
took all the words in the email, threw them into a 
bag, and shuffled them up, then asked whether that 
bag is spam or not. 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈0
$%!

#

𝑃(𝑊 = 𝑤$|𝑌 = 𝑦)
approved

prescription
foryou



Naïve Bayes Representation
• Goal: estimate likelihoods P(document | class) 

and priors P(class)
• Likelihood: bag of words representation

• The document is a sequence of words (w1, …, wn) 
• The order of the words in the document is not important
• Each word is conditionally independent of the others given document 

class 



Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

http://chir.ag/projects/preztags/


Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

http://chir.ag/projects/preztags/


Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

http://chir.ag/projects/preztags/


Why naïve Bayes is “naïve”
We call this model “naïve Bayes” because the words aren’t really conditionally independent 
given the label.  For example, the sequence “for you” is more common in spam emails than 
it would be if the words “for” and “you” were conditionally independent.
True Statement:

𝑃 𝑋 = for you 𝑌 = Spam > 𝑃 𝑊 = for 𝑌 = Spam 𝑃 𝑊 = you 𝑌 = Spam

The naïve Bayes approximation simply says: estimating the likelihood of every word 
sequence is too hard, so for computational reasons, we’ll pretend that sequence probability 
doesn’t matter.
Naïve Bayes Approximation:

𝑃 𝑋 = for you 𝑌 = Spam ≈ 𝑃 𝑊 = for 𝑌 = Spam 𝑃 𝑊 = you 𝑌 = Spam

We use naïve Bayes a lot because, even though we know it’s wrong, it gives us 
computationally efficient algorithms that work remarkably well in practice.  



MPE = MAP using naïve Bayes
Using naïve Bayes, the MPE decision rule is:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)N
%&"

$

𝑃(𝑊 = 𝑤%|𝑌 = 𝑦)



Floating-point underflow

𝑓(𝑥) = argmax
&

𝑃(𝑌 = 𝑦)0
$%!

#

𝑃(𝑊 = 𝑤$|𝑌 = 𝑦)

• That equation has a computational issue.  Suppose that the probability of 
any given word is roughly 𝑃(𝑊 = 𝑤$|𝑌 = 𝑦) ≈ 10'(, and suppose that 
there are 103 words in an email.  Then ∏$%!

# 𝑃(𝑊 = 𝑤$|𝑌 = 𝑦) = 10'()*, 
which gets rounded off to zero.  This phenomenon is called “floating-point 
underflow.”
• In order to avoid floating-point underflow, we can take the logarithm of the 

equation above:

𝑓(𝑥) = argmax
&

ln 𝑃(𝑌 = 𝑦) +>
$%!

#

ln 𝑃(𝑊 = 𝑤$|𝑌 = 𝑦)



Naïve Bayes

• minimum probability of error
• Bayes’ rule
• naïve Bayes
• unigrams and bigrams
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Reducing the naivety of naïve Bayes
Remember that the bag-of-words model is unable to represent this fact:
True Statement:
𝑃 𝑋 = for you 𝑌 = Spam > 𝑃 𝑊 = for 𝑌 = Spam 𝑃 𝑊 = you 𝑌 = Spam

Though the bag-of-words model can’t represent that fact, we can
represent it using a slightly more sophisticated naïve Bayes model, called 
a “bigram” model.



N-Grams
Claude Shannon, in his 1948 book A Mathematical Theory of Communication, 
proposed that the probability of a sequence of words could be modeled using N-
grams: sequences of N consecutive words.

• Unigram: a unigram (1-gram) is an isolated word, e.g., “you”
• Bigram: a bigram (2-gram) is a pair of words, e.g., “for you”
• Trigram: a trigram (3-gram) is a triplet of words, e.g., “prescription for you”
• 4-gram: a 4-gram is a 4-tuple of words, e.g., “approved prescription for you”



Bigram naïve Bayes
A bigram naïve Bayes model approximates the bigrams as conditionally 
independent, instead of the unigrams.  For example,

𝑃 𝑋 = “approved prescription for you” 𝑌 = Spam ≈

𝑃 𝐵 = “approved prescription” 𝑌 = Spam ×
𝑃 𝐵 = “prescription for” 𝑌 = Spam ×

𝑃 𝐵 = “for you” 𝑌 = Spam



Advantages and disadvantages of bigram 
models relative to unigram models
• Advantage: the bigram model can tell you if a particular bigram is 

much more frequent in spam than in ham emails.
• Disadvantage: over-training.  Even if probabilities of individual words 

in the training and test corpora are similar, probabilities of bigrams 
might be different.



Naïve Bayes

• minimum probability of error
• Bayes’ rule
• naïve Bayes
• unigrams and bigrams
• estimating the likelihood: maximum likelihood parameter estimation



What are “parameters”?

• Oxford English dictionary: parameter (noun): a numerical or other 
measurable factor forming one of a set that defines a system or sets 
the conditions of its operation.
• The naïve Bayes model has two types of parameters:

• The a priori probability (prior) parameters: 𝑃(𝑌 = 𝑦)
• The likelihood parameters: 𝑃(𝑊 = 𝑤$|𝑌 = 𝑦)

• In order to create a naïve Bayes classifiers, we must somehow
estimate the numerical values of those parameters.



Parameter estimation
Model parameters: feature likelihoods p(word | label) and priors p(label) 

• How do we obtain the values of these parameters?

spam:  0.33
¬spam:  0.67 

P(word | ¬spam)P(word | spam)prior



Parameter estimation: Prior

The prior, 𝑃(𝑌 = 𝑦), is usually estimated in one of two ways.
• If we believe that the test corpus is like the training corpus, then we 

just use frequencies in the training corpus:

𝑃(𝑌 = Spam) =
Docs(𝑌 = Spam)

Docs 𝑌 = Spam +Docs(𝑌 ≠ Spam)
where “Docs(Y=Spam)” means the number of documents in the 
training corpus that have the label Y=Spam.
• If we believe that the test corpus is different from the training corpus, 

then we set P(Y=Spam)= the frequency with which we believe spam 
will occur in the test corpus.



Parameter estimation: Likelihood

The likelihood, 𝑃(𝑊 = 𝑤%|𝑌 = 𝑦), is also estimated by counting.  We 
will refine this estimate in lecture 4, but a useful starting point is what’s 
called the “maximum likelihood estimate of the likelihood parameter:”

𝑃(𝑊 = 𝑤%|𝑌 = Spam) =
Count(𝑊 = 𝑤%, 𝑌 = Spam)

Count 𝑌 = Spam

where “Count(𝑊 = 𝑤%, 𝑌 = Spam)” means the number of times that 
the word 𝑤% occurs in the Spam portion of the training corpus, and 
“Count 𝑌 = Spam ” is the total number of words in the Spam portion.



Likelihood of the training dataset
Consider the following optimization problem.  Suppose we want to choose the model parameters, 
𝑃(𝑊 = 𝑤!|𝑌 = Spam), in order to maximize the likelihood of the whole training dataset:

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐞: 𝑃(Spam training data) = ;
"! ∈ $%&' ()&*+*+, -&(&

𝑃(𝑊 = 𝑤!|𝑌 = Spam)

under the constraint that 𝑃(𝑊 = 𝑤!|𝑌 = Spam) must be properly normalized probabilities:

𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭: 1 = C
"!∈ -*.(*/+&)0

𝑃(𝑊 = 𝑤!|𝑌 = Spam)

If you were to use advanced math (Lagrangians or linear programming) to solve this constrained 
maximization problem, the result would be:

𝑃(𝑊 = 𝑤!|𝑌 = Spam) =
Count(𝑊 = 𝑤! , 𝑌 = Spam)

Count 𝑌 = Spam



Maximum likelihood estimate of the 
likelihood parameter
We call this estimate the “maximum likelihood estimate of the
likelihood parameter:”

𝑃(𝑊 = 𝑤%|𝑌 = Spam) =
Count(𝑊 = 𝑤%, 𝑌 = Spam)

Count 𝑌 = Spam

… because this is the estimate that maximizes the likelihood of the
training dataset, subject to the constraint that 

1 = U
'%∈ )*+,*-./01

𝑃(𝑊 = 𝑤%|𝑌 = Spam)



Conclusions
• MPE = MAP

argmin 𝑃(Error|𝑋 = 𝑥) = argmax 𝑃(𝑌 = 𝑦|𝑋 = 𝑥)
• Bayes’ rule

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦

𝑃(𝑋 = 𝑥)
• naïve Bayes

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈P
$&'

(

𝑃(𝑊 = 𝑤$|𝑌 = 𝑦)

• unigrams and bigrams: 𝑤$ = “you”, 𝑏$ = “for you”
• maximum likelihood parameter estimation

𝑃(𝑊 = 𝑤$|𝑌 = 𝑦) =
Count(𝑊 = 𝑤$ , 𝑌 = 𝑦)

Count 𝑌 = 𝑦


