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Naive Bayes

* minimum probability of error

* Bayes’ rule

* naive Bayes

* unigrams and bigrams

 estimating the likelihood: maximum likelihood parameter estimation



Minimum Probability of Error

* Suppose we have an experiment with two random variables,
XandY.

* Xis something we can observe, like the words in an email.

* Y is something we can’t observe, but we want to know. For
example, Y=1 means the email is spam (junk mail), Y=0 means it’s
ham (desirable mail).

e Can we train an Al to read the email, and determine
whether it’s spam or not?

* Obviously, the Al will sometimes make errors. A useful
performance criterion is the probability of an error.


https://en.wikipedia.org/wiki/Spam_(Monty_Python)

Minimum Probability of Error

* Let’s say that f(X) is the decision made by the Al: it sees X,
and tries to figure out the value of Y.

* The probability of error is the probability that f(X) # Y

P(Error) = P(Y =1,f(X) =0)+ P(Y =0, f(X) = 1)

* Our goal, as system designers, is to design the function f(X)
in order to minimize the probability of error.



Minimum Probability of Error

* We can be a bit more specific. Since f(X) is a function of X,
we can require that f(X) minimizes the probability of error
for every particular value of X:

PY=1X=x) f(x)=0

P(Error|X = x) = {P(Y =0lX=x) f(x)=1

 We don’t have control over Y, we don’t have control over X.
The only thing we can control, in the equation above, is f(x).

e What should f(x) be, in order to minimize P(Error|X)?



Minimum Probability of Error

» We can minimize the probability of error by designing f(x) so
that f(x)=1 when Y=1 is more probable, and f(x)=0 when Y=0
is more probable.

(1 Pr=1X=x)>P¥ =0|X=x)
f(x)_{o P(Y =1|X = x) < P(Y = 0|X = x)

* This statement is so obvious that we sometimes don’t
notice how profound it is.



MPE = MAP

* The “minimum probability of error” (MPE) decision rule is
the rule that chooses f(X) in order to minimize the
probability of error:

f(x) = argmin P(Error|X = x)

* The “maximum a posteriori” (MAP) decision rule is the rule
that chooses f(X) in order to maximize the a posteriori
probability:

f(x) =argmaxP(Y = f(x)|X = x)

* Those two decision rules are the same. MPE = MAP.
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The Bayesian Scenario

e Let’s use x~X to mean that x is an instance of random
variable X, and similarly y~Y.

* In order to minimize the probability of error, we just need to
know P(Y = y|X = x) for every pair of values x~X and
y~Y. Then we choose f(x) = argmax P(Y = y|X = x).

y



Example: spam detection

* But how can we estimate P(Y = y|X = x)?

* The prior probability of spam might be obvious. If 80% of all email on the internet

is spam, that means that
P(Y=1)=08P(Y =0)=0.2

* The probability of X given Y is also easy. Suppose we have a database full of
sample emails, some known to be spam, some known to be ham. We count how
often any word occurs in spam vs. ham emails, and estimate:

P(X = x|Y = 1) = frequency of the words x in emails known to be spam
P(X = x|Y = 0) = frequency of the words x in emails known to be ham

* Now we have P(X = x|Y =y)and P(Y = y). Howdowe get P(Y = y|X = x)?



By Unknown -
[2][3], Public
Domain,
https://commons.
wikimedia.org/w/i
ndex.php?curid=1
4532025

Bayes’ Rule

Rev. Thomas Bayes
(1702-1761)

* The reverend Thomas Bayes solved this problem for us in 1763. His proof has
three steps. First, the definition of conditional probability:

PX=xY=y)
P(Y=ylX=x) =
(v = ylX =) = =5 =
* Second, he pointed out that there’s only two ways X can equal x. Either X=x and
Y=0, or X=x and Y=1:

PY =ylX =x) =

PX=xY=y)
PX=x,Y=0+PX=xY=1)
 Finally, apply the definition of conditional probability one more time:

P(X =x|Y = y)P(Y = y)

PY =ylX =x) TPX =x|Y =0)P(Y =0) + P(X = x|Y = DP(Y = 1)



https://en.wikipedia.org/wiki/Bayes%27_theorem

By Unknown -
[2][3], Public
Domain,
ttps://commons.

Bayes’ Rule

4532025
Rev. Thomas Bayes

(1702-1761)

* We can simplify Bayes rule (making it easier to remember) by putting a
summation sign in the denominator:

POt — ylx = 2y = PE =XV = PPE =)

Yy P(X =x|Y = k)P(Y = k)

* Most people remember it in an even simpler form: just add together all the terms
in the denominator to get:

P(X =x|Y = y)P(Y = y)
P(X =x)

P(Y=y|lX=x) =



The four Bayesian probabilities

PY=y)P(X =x|Y =y)
P(X =x)
This equation shows the relationship among four probabilities. This equation has

become so world-famous, since 1763, that these four probabilities have standard
universally recognized names that you need to know:

P(Y=y|lX=x) =

« P(Y = y|X = x) is the a posteriori (after-the-fact) probability, or posterior
* P(Y = y) is the a priori (before-the-fact) probability, or prior

« P(X = x|Y = y) is the likelihood

* P(X = x) is the evidence

Bayes’ rule is: the posterior equals the prior times the likelihood over the evidence.




MPE = MAP using Bayes’ rule

 MPE = MAP: to minimize the probability of error, design f(X) so that
f(x) =argmaxP(Y = y|X =x)
Yy

* Bayes’ rule:

P(X =x)

* Putting the two together:
F(x) = ar o LA =P =x|Y =)
5 P(X = x)

y
= argmaxP(Y = y)P(X =x|Y =)
y




MPE = MAP using Bayes’ rule

Suppose your goal is to minimize the probability of error:

f(x) = argmin P(Error|X = x)

...but the only things you know are the prior P(Y = y), and the
likelihood P(X = x|Y = y). Well, presto! Using Bayes’ rule, we can
prove that the MPE decision rule is:

f(x) =argmaxP(Y = y)P(X =x|Y =y)
y
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MPE = MAP using Bayes’ rule

Using Bayes’ rule, we can prove that the MPE decision rule is:

f(x) =argmaxP(Y = y)P(X =x|Y =y)
y

* P(Y = y) is always easy to estimate: we just estimate how many
emails on the internet are spam, and how many are not spam.

 P(X = x|Y = y) is a little harder. What does it mean to say that the
words, x, have a particular probability?



The problem with likelihood: Too many words

What does it mean to say that the words, x, have a particular
probability?

Suppose our training corpus contains two sample emails:
Emaill: Y = 1, X ="hi there man — feel the vitality! Nice meeting you...”
Email2: Y = 0, X ="this needs to be in production by early afternoon...”

Our test corpus is just one email:
Emaill: Y=7, X="...approved prescription for you...”

How can we estimate P(X = “...approved prescription for you ...”|Y)?



Naive Bayes

Naive Bayes approximates the likelihood. Suppose that x is a list of
several consecutive observations (e.g., words), thus

x = |wq,wy, ..., wy]
The naive Bayes approximation is the assumption that the words are
conditionally independent given knoxvledge of the label:

Px=xlv =y) = | [Paw =wily = y)
=1

For example,
P(X = “approved prescription ...”|Y = Spam) =

P(W = approved|Y = Spam)P(W = prescription|Y = Spam) ...



Naive Bayes for words = “Bag-of-words”

Naive Bayes is a general model, applying to any
types of observations x = [wy,w,, ..., w,]. The
special case we’ve been talking about, when w; are
words, is called a “bag of words” model.

We call it “bag of words” because the naive Bayes
approximation notices which words are in the
email, but it ignores their order. It's almost like we
took all the words in the email, threw them into a
bag, and shuffled them up, then asked whether that
bag is spam or not.

Px=xy =y ~| [P =w|v = y)

=1

prescription

you for
approved




Nalve Bayes Representation

* Goal: estimate likelihoods P(document | class)
and priors P(class)

* Likelihood: bag of words representation
* The document is a sequence of words (w, ..., w,,)
* The order of the words in the document is not important
* Each word is conditionally independent of the others given document

class
Dear Sir.
First, | must solicit your confidence in this
transaction, this is by virture of its nature OK, Iknow this is blatantly OT but I'm
as being utterly confidencial and top beginning to go insane. Had an old Dell
secret. ... Dimension XPS sitting in the corner and
decided to put it to use, | know it was
TO BE REMOVED FROM FUTURE working pre being stuck in the corner, but
MAILINGS, SIMPLY REPLY TO THIS when | plugged it in, hit the power nothing
MESSAGE AND PUT "REMOVE" IN THE happened
SUBJECT. :
99 MILLION EMAIL ADDRESSES
FOR ONLY $99




Bag of words illustration

2007-01-23: State of the Union Address
George W. Bush (2001-)

on accountable affordable afghanistan africa ally anbar armed s baghdad tiess challenges chamber chaos
choices civilians coalition commitment confident confront congressman titut corps debates deduction
deficit deliver democratic deploy dikembe diplomacy disruptions earmarks economy einstein elections eliminates
expand extremists failing families freedom fuel funding god haven ideology immigration impose

L]
gents iran ] raq islam julie lebanon love madam marine math medicare neighborhoods nuclear offensive

palestinian payroll qaeda radical regimes resolve retreat rieman sacri cience sectarian se

shia stays strength students succeed sunni tax te rro r] StS threats uphold victory

violence violent WAl washington weapons wesley

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/



http://chir.ag/projects/preztags/

Bag of words illustration

2007-01-23: State of the Union Address
George W. Bush (2001-)

hoi "1 1962-10-22: Soviet Missiles in Cuba

choices g John F. Kennedy (1961-63)
deficit ¢

expand | abandon achieving adversaries aggression agricultura armaments dl'ITS assessments atlantic ballistic berlin

buildup burdens college commitment communist consumers cooperation crisis C U b a dangers

— > deficit depended disarmament divisions domination doubled €COoNO0MIC education
elimination emergence equals europe expand exports fact false family forum freedom fulfill gromyko
halt hazards hemisphere hospitals ideals Independent industries inflation labor latin limiting missi leS

violendl 1 dernization neglect nuclear sbserver OfFfENSIVE peril pledged predicted purchasing quarantine quote

recession retaliatory safeguard sites solution SOV] et space spur stability standby St renoth

surveillance tax undertakings unemployment Wal™ warhead WeaponS velfare w rn widen wit

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/
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Bag of words illustration

2007-01-23: State of the Union Address
George W. Bush (2001-)

hoi "1 1962-10-22: Soviet Missiles in Cuba
choices ¢ John F. Kennedy (1961-63)

deficit ¢

expand | abandd 1944.12-08: Request for a Declaration of War

buildt Franklin D. Roosevelt (1933-45)

abandoning aggr ession aggressors airplanes armaments armed army assault assembly authorizations bombing

palestini;
tution curtail december defeats defending delays democratic dictators disdose

eliming . .
halt ha €conomic empire endanger faCtS false forgotten fortunes france freedom fulfilled fullness fundamental gangsters
german germany god guam harbor hawaii hemisphere hint hitler immune improving indies innumerable

in n islands isolate J a pa n ese labor metals midst midway NaVy nazis obligation offensive

violenc modern

recessi(

surveil

officially paC1f1C partisanship pearl peril philippine preservation privilege reject
: d resisting retain revealing rumors seas soldiers speaks speedy stamina strength sunday sunk supremacy tanks taxes

treachery true tyranny undertaken victory Wa r wartime washington

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/
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Why naive Bayes is “naive”

We call this model “naive Bayes” because the words aren’t really conditionally independent
given the label. For example, the sequence “for you” is more common in spam emails than
it would be if the words “for” and “you” were conditionally independent.

True Statement:
P(X = for you|Y = Spam) > P(W = for|Y = Spam)P(W = you|Y = Spam)

The naive Bayes approximation simply says: estimating the likelihood of every word -
(sjequence is too hard, so for computational reasons, we’ll pretend that sequence probability
oesn’t matter.

Naive Bayes Approximation:
P(X = for you|Y = Spam) = P(W = for|Y = Spam)P(W = you|Y = Spam)

We use naive Bayes a lot because, even though we know it’s wrong, it gives us
computationally efficient algorithms that work remarkably well in practice.



MPE = MAP using naive Bayes

Using naive Bayes, the MPE decision rule is:

— P(Y = P(W = iY:
f () = argmax P( y)[l[ W =w;|Y =)



Floating-point underflow

= P(Y = P(W = w,|Y =
f () = argmax P( y)L[( wilY = y)

* That equation has a computational issue. Suppose that the probability of
any given word is roughly P(W = w;|Y = y) ~ 1073, and suppose that
there are 103 words in an email. Then [T, P(W = w;|Y =y) = 107397,
which gets rounded off to zero. This phenomenon is called “floating-point
underflow.”

* |In order to avoid floating-point underflow, we can take the logarithm of the
equation above:

f(x) = argmax (ln P(Y =y)+ z InP(W =w;|Y = y))
Y i=1



Naive Bayes

* unigrams and bigrams
 estimating the likelihood: maximum likelihood parameter estimation



Reducing the naivety of naive Bayes

Remember that the bag-of-words model is unable to represent this fact:

True Statement:
P(X = foryoul|Y = Spam) > P(W = for|Y = Spam)P(W = you|Y = Spam)

Though the bag-of-words model can’t represent that fact, we can
represent it using a slightly more sophisticated naive Bayes model, called

a “bigram” model.



N-Grams

Claude Shannon, in his 1948 book A Mathematical Theory of Communication,
proposed that the probability of a sequence of words could be modeled using N-
grams: sequences of N consecutive words.

e Unigram: a unigram (1-gram) is an isolated word, e.g., “you”
e Bigram: a bigram (2-gram) is a pair of words, e.g., “for you”
e Trigram: a trigram (3-gram) is a triplet of words, e.g., “prescription for you”

* 4-gram: a 4-gram is a 4-tuple of words, e.g., “approved prescription for you”



Bigram naive Bayes

A bigram naive Bayes model approximates the bigrams as conditionally
independent, instead of the unigrams. For example,

P(X = “approved prescription for you”|Y = Spam) =

P(B = “approved prescription”|Y = Spam) X
P(B = “prescription for”|Y = Spam) X
P(B = “for you”|Y = Spam)



Advantages and disadvantages of bigram
models relative to unigram models

* Advantage: the bigram model can tell you if a particular bigram is
much more frequent in spam than in ham emails.

* Disadvantage: over-training. Even if probabilities of individual words

in the training and test corpora are similar, probabilities of bigrams
might be different.



Naive Bayes

 estimating the likelihood: maximum likelihood parameter estimation



What are “parameters”?

» Oxford English dictionary: parameter (noun): a numerical or other
measurable factor forming one of a set that defines a system or sets
the conditions of its operation.

* The naive Bayes model has two types of parameters:
* The a priori probability (prior) parameters: P(Y = y)
* The likelihood parameters: P(W = w;|Y = y)

* In order to create a naive Bayes classifiers, we must somehow
estimate the numerical values of those parameters.



Parameter estimation

Model parameters: feature likelihoods p(word | label) and priors p(label)
* How do we obtain the values of these parameters?

prior P(word | spam) P(word | =spam)
spam: 0.33 the : 00156 the : 0.0210
—spam: 0.67 EG @ 0.0153 o 0.0133
and 0.0115 ofz & . 01l9
of 0.0095 2002: 00,0110
you 0.0093 with: 0.0108
a ¢ 0.0086 Etroms 0. 0107
with: 0.0080 and 0.0105
from: 0.0075 a 0.0100




Parameter estimation: Prior

The prior, P(Y = y), is usually estimated in one of two ways.

* |f we believe that the test corpus is like the training corpus, then we
just use frequencies in the training corpus:

POV — S B Docs(Y = Spam)

(Y= Spam) = Docs(Y = Spam) + Docs(Y # Spam)
where “Docs(Y=Spam)” means the number of documents in the
training corpus that have the label Y=Spam.

* |f we believe that the test corpus is different from the training corpus,
then we set P(Y=Spam)= the frequency with which we believe spam
will occur in the test corpus.



Parameter estimation: Likelihood

The likelihood, P(W = w;|Y = y), is also estimated by counting. We
will refine this estimate in lecture 4, but a useful starting point is what’s
called the “maximum likelihood estimate of the likelihood parameter:”

Count(W = w;, Y = Spam)
Count(Y = Spam)

P(W =w;|Y = Spam) =

where “Count(W = w;, Y = Spam)” means the number of times that
the word w; occurs in the Spam portion of the training corpus, and
“Count(Y = Spam)” is the total number of words in the Spam portion.



Likelihood of the training dataset

Consider the following optimization problem. Suppose we want to choose the model parameters,
P(W = w;|Y = Spam), in order to maximize the likelihood of the whole training dataset:

Maximize: P(Spam training data) = 1_[ P(W = w;|Y = Spam)

w; € Spam training data

under the constraint that P(W = w;|Y = Spam) must be properly normalized probabilities:

Constraint: 1 = z P(W = w;|Y = Spam)

w;€E dictionary

If you were to use advanced math (Lagrangians or linear programming) to solve this constrained
maximization problem, the result would be:

Count(W = w;,Y = Spam)

P(W = wi|Y = Spam) = Count(Y = Spam)




Maximum likelihood estimate of the
likelihood parameter

We call this estimate the “maximum likelihood estimate of the
likelihood parameter:”

Count(W = w;, Y = Spam)
Count(Y = Spam)

P(W =w;|Y = Spam) =

... because this is the estimate that maximizes the likelihood of the
training dataset, subject to the constraint that

1= Z P(W = w;|Y = Spam)

w;€ dictionary



Conclusions

* MPE = MAP
argmin P(Error|X = x) = argmax P(Y = y|X = x)

Bayes’ rule
PY =y)P(X =x|Y =y)

P(X =x)

P(Y=y|lX=x) =

naive Bayes n
P =xY =y) ~ | [P = wyiy = »)
i=1

* unigrams and bigrams: w; = “you”, b; = “for you”
maximum likelihood parameter estimation

Count(W =w;,Y =vy)
Count(Y = y)

P(W =wi|Y =y) =



